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Abstract 

Background: Bisulfite sequencing (BS-Seq) is a fundamental technique for character-
izing DNA methylation profiles. Genotype calling from bisulfite-converted BS-Seq data 
allows allele-specific methylation analysis and the concurrent exploration of genetic 
and epigenetic profiles. Despite various methods have been proposed, single nucleo-
tide polymorphisms (SNPs) calling from BS-Seq data, particularly for SNPs on chromo-
some X and in the presence of contaminative data, poses ongoing challenges.

Results: We introduce bsgenova, a novel SNP caller tailored for bisulfite sequenc-
ing data, employing a Bayesian multinomial model. The performance of bsgenova 
is assessed by comparing SNPs called from real-world BS-Seq data with those from cor-
responding whole-genome sequencing (WGS) data across three human cell lines. 
bsgenova is both sensitive and precise, especially for chromosome X, compared 
with three existing methods. Moreover, in the presence of low-quality reads, bsgenova 
outperforms other methods notably. In addition, bsgenova is meticulously imple-
mented, leveraging matrix imputation and multi-process parallelization. Compared 
to existing methods, bsgenova stands out for its speed and efficiency in memory 
and disk usage. Furthermore, bsgenova integrates bsextractor, a methylation extractor, 
enhancing its flexibility and expanding its utility.

Conclusions: We introduce bsgenova for SNP calling from bisulfite-sequencing data. 
The source code is available at https:// github. com/ hippo- yf/ bsgen ova under license 
GPL-3.0.
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Introduction
Bisulfite-conversion sequencing is an accurate and prevalently used technique to pro-
file whole-genome DNA methylation (methylation at fifth position of cytosine, 5mC) 
at single-base resolution. Genotype or SNP calling from bisulfite-converted sequencing 
data, enabling allele-specific methylation analysis [1, 2] and joint analysis of genetic and 
epigenetic profiles such as quantitative trait loci analysis of DNA methylation (meQTL) 
[3, 4], is fundamental.
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Compared with usual genotype calling from whole-genome sequencing (WGS) 
data, the task for BS-Seq data is faced with two primary obstacles. First, a part of 
cytosines (C) undergo transformation to thymine (T) in the sequenced data while 
the corresponding bases in the complementary strand transform from guanine (G) 
to adenine (A) during PCR amplification. But the exact transformed cytosines are 
unknown. Second, due to DNA templates destruction of bisulfite treatment, BS-Seq 
library quality is seriously affected by PCR duplicates and chimeric sequences among 
others. Possible base transformation and low-quality library make the read mapping 
for BS-Seq data more challenging than that for WGS data. As a result, genotype call-
ing from BS-Seq data must tackle base conversion and low-quality mapping.

Bis-SNP [5], based on the Genome Analysis Toolkit (GATK) map-reduce frame-
work, is the first formally published SNP caller from BS-Seq data that enables accu-
rate SNP detection. At the same time, it is heavyweight and time-consuming. Latter 
MethylExtract [6], built on a simple model, is reported to be less specific but more 
sensitive compared to Bis-SNP. BS-SNPer [7], written in C, is fast and precision but 
not sensitive. Cgmaptools [8] is a toolkit dedicated for BS-Seq data analysis. For SNP 
calling, cgmaptools is sensitive but not robust against low-quality reads according to 
our evaluations. gemBS [9] is a thorough analysis pipeline adopted by ENCODE for 
BS-Seq data analysis including the functionality to correct methylation level from 
SNVs. However, its performance of whole-genome SNP calling has not evaluated for 
real-world BS-Seq data yet.

Despite the proposed methods for genotype/SNP calling from BS-Seq data in recent 
years, they fall short when compared to the well-developed counterparts for WGS 
data, such as bcftools [10], Mutect2 [11] from GATK4 toolkit, Strelka2 [12], Deep-
Variant [13], and others, in terms of performance and availability. Furthermore, the 
reported evaluations of published methods [5–9] for bisulfite-converted SNP calling 
are quite simple which ask for individual samples and fixed threshold or even simu-
lated data.

In our study of porcine oocyte methylome [14], we initially introduced the prototype 
of bsgenova along with basic evaluation, the allele-specific methylation analysis with the 
prototype given clear patterns and distinctions of different types of oocytes. To maxi-
mize the availability, recently, we reconstruct bsgenova with deep optimizations. The key 
improvements include: (1) bsgenova is reimplemented with Python and multi-process 
parallelization; (2) the likelihood and posterior computations of a batch of genome sites 
are optimized in matrix manipulation; (3) bsgenova maintains an in-memory cache 
pool from a stream of file and dispatches batches of data to each workhorse process; (4) 
bsgenova uses mapped bam file or an intermediate summary ATCGmap file as input; (5) 
to address the possible incompatibility of mapper and downstream SNP caller for WGBS 
data, we also implement bsextractor, a methylation extractor, which extracts methylation 
information as bedgraph and CGmap files and extracts read counts of all genome sites as 
ATCGmap file as illustrated by the workflow in Fig. 1a.

Benefited from these efforts, bsgenova is efficient in time, memory, and disk usages 
and flexible to cooperated with other tools. Most of all, the evaluations with WGBS 
and WGS data of three human cell lines from the Encyclopedia of DNA Elements 
(ENCODE) Project [15] affirm that bsgenova is accurate, as measured by precisions and 
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sensitivities at different thresholds, and robust against contaminative library compared 
existing methods. For SNPs on chromosome X, the superiority of bsgenova is even more 
pronounced.

Materials and methods
Bsgenova uses a summary ATCGmap file as input which includes the essential ref-
erence base, CG context, and ATCG read counts mapped onto Watson and Crick 
strands respectively. The output file includes a customized snv file and a conventional 
vcf file. The snv file records the posterior probabilities of 10 possible genotypes, and 
the posterior probability that this site is not a SNP (p-value), the posterior probability 
of homozygous genotype, and the derived posterior frequencies of A/T/C/G alleles. 
The vcf file records similar information in the specified format.

Bayesian probabilistic model of bsgenova

Bsgenova builds a Bayesian probabilistic model of read counts for each specific 
genomic position to calculate the (posterior) probability of a SNP. We first formulate 
the probabilistic model for reads mapped to Watson strand only in a haploid genome. 
Then it is easy to extend model to the case of both Watson and Crick strands in a dip-
loid genome on the top of simple-case model.
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Fig. 1 Workflow and model of bsgenova. a There are two ways to use bsgenova: two-step manner extracts 
an intermediate summary ATCGmap file of whole-genomic base coverages from bam file and then calls 
SNPs with ATCGmap file as input; one-step manner directly calls SNPs with bam file as input. bsgenova also 
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bsgenova makes the following assumptions,

 A1. Cytosine is methylated with probability pm depending on its sequence context CG 
( p(CG)m )or non-CG ( p(nonCG)m );

 A2. Before bisulfite conversion, each base turns into other three bases with equal prob-
ability p1 during sample preparation, p1 models the errors of DNA replication, spon-
taneous deamination of methylated cytosines and others;

 A3. Bisulfite conversion is perfect, since the goal is to infer SNP not methylation, it is 
equivalent to regard all converted cytosines as “unmethylated” and all unconverted 
cytosines as “methylated” in the model;

 A4. After bisulfite conversion, each base turns into other three base with equal probabil-
ity p2 due to mistakes during PCR, sequencing, and read alignment;

 A5. DNA templates from Watson and Crick strands degrade uniformly, PCR is linear, 
and each DNA fragment is sequenced with equal probability;

 A6. The read counts mapped onto Watson strand indicating A, T, C, 
and G at specific site follow multinomial distributions, namely, 
W = (AW,TW,CW,GW),W |g ∼ multinomial n,µg  , g ∈ G = {A,T, C,G} is 
the genotype, n = AW + TW + CW + GW , µg is the vector of probabilities of each 
base in the reads with actual genotype g provided.

According to the processes illustrated in Fig. 1b, each element of µg is the condi-
tional probability of sequencing base s with genotype g  provided,

where X1,X2 are the bases after the process of mutation and bisulfite con-
version, respectively. The calculation is straightforward, for example 
P
(

s = T |g = A
)

= 2p1 − p1pm + p2 − 4p1p2 + 2p1p2pm . The concise vector represen-
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, g ∈ G is useful in the extension of the 
model.

The prior distribution of g  is specified depending on the base r reference genome 
and the parameter of mutation rate pu,

The prior is the guess without any sequenced reads. After counting the reads, 
according to Bayes’ formula, the posterior probability of g  is given by

Now we turn to the counts of both Watson and Crick strands in a diploid genome, 
there are four major differences: (1) now there are 10, instead of 4, possible genotypes in 
diploid genome, i.e., g ∈ G = {AA,TT, CC,GG, AC,AG,AT,CG,CT,GT} ; (2) the prior 
distribution should be updated on extended genotype space G accordingly; (3) we assume 
the joint distribution of reads mapped to Watson and Crick strands as multinomial, i.e., 
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Z = (W ,C) and Z|g ∼ multinomial
(

n,µg

)

, g ∈ G , where W = (AW,TW,CW,GW) and 
C = (AC,TC,CC,GC) are numbers of reads indicating A, T, C, and G mapped onto Wat-
son and Crick strands, respectively, at the specific genomic position; n is the total reads, 
n = AW + TW + CW + GW + AC + TC + CC + GC , then the posterior probability of 
genotype is given by P

(

g |Z, r
)

∝ P
(

Z|g
)

P
(

g |r
)

 ; (4) the expected proportion of each sort 
of reads µg , g ∈ G now is a vector of 8-dimension, according to the results of simple-case 

model, we have µg = µab = 1
4

(

pa + pb,pa + pb

)

, a, b ∈ G = {A,T, C,G} and a is the 

complement of a , i.e., A = T,T = A,C = G , and G = C.
The posterior P

(

g |Z, r
)

 , a vector of dimension 10, indicates the probability of each pos-
sible genotype in G . According to it, the “p-value” of a SNP is defined as the posterior prob-
ability of reference genotype P

(

g = r|Z, r
)

 ; the posterior probability of a homozygote is 
P
(

g ∈ {AA,TT, CC,GG}|Z, r
)

 ; and the A, T, C, and G allele frequencies are estimated 
by the weighted means of posterior probabilities. These informative metrics are output by 
bsgenova.

Likelihood and posterior probability by matrix computation

The likelihood P
(

Z|g
)

 and posterior probabilities P
(

g |Z, r
)

 of multiple genomic positions 
are easy to calculate via matrix multiplication. Considering the probability of 8-dimension 
multinomial distribution, Z|g ∼ multinomial

(

n,µg

)

, g ∈ G,

where z(k) and µg (k) are k-th elements of z and µg , respectively. The log-likelihood

Suppose the reference bases of these positions are the same, then the unnormalized pos-
terior probabilities of N  genomic positions are
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where zi is vector of reads at position-i and µ(i)
g  is the vector of expected proportions 

of each kind of reads for genotype g , exp is the element-wise exponential. At last, each 
genomic position (row of P ) is normalized to sum to one.

Results
Real‑world data and methods involved in the evaluation

Since Reduced Representation Bisulfite Sequencing (RRBS) only captures a small frac-
tion of genome sites and shotgun Whole Genome Bisulfite Sequencing (WGBS) can 
capture most sites, to evaluate the performance of bsgenova, we compared the SNPs 
called from WGBS samples and SNPs called from WGS samples of the same cell line. All 
WGBS and WGS samples were downloaded from ENCODE (Table S1). In total, there 
were 8 WGBS samples (clean data of median ~ 79G bases or ~ 25 × depth) and 9 WGS 
samples (clean data of ~ 102 G bases or ~ 32 × depth) of three human cell lines A549 
[16, 17], GM23248 [16, 18], and K562 [16, 17, 19]. Except bsgenova, we also carried out 
the same evaluations for three common methods including BS-Snper and two methods 
from cgmaptools (including cgmaptools_bayes and cgmaptools_binom) for comparison. 
All the evaluations were performed in a computer model with Intel Xeon E5-2620 v2 
CPU, 250 GB DDR3 1600 MHz memory, and Centos with Linux kernel 3.10.

For each cell line each pair of WGBS sample and WGS sample was subjected to com-
parison. WGS samples were mapped to UCSC hg38 genome with bwa [20, 21], SNPs 
identified by both Mutect2 and bcftools were considered as true background. To miti-
gate the impact of coverage disparities between WGBS and WGS samples, only callable 
genomic sites, which were covered by at least 10 reads in two types of samples, were 
included in the evaluation. After depth filtering, the median genomic sites used for 
comparison was 2.58 Gbp (83.2% out of 3.1 Gbp, the size of human reference genome 
GRCh38). For each pair of samples, the callable set was unique. Furthermore, reads 
with map qualities less than 20 were excluded for all methods, the remaining reads were 
referred to as clean data.

bsgenova is precise, sensitive, and resistant against contaminations

As shown in Fig.  2, with each facet representing a pair of WGBS and WGS samples, 
depicted the ROC (receiver operating characteristic) curves (solid lines) of different 
methods by tunning p-value/score threshold compared with the true SNPs called from 
corresponding callable sites of WGS sample. The number of true SNPs (on autosomes) 
was shown at bottom. Notably, maximal precisions of bsgenova, cgmaptools_bayes, and 
BS-Snper in most pairs of samples exceeded 90% even 95%. However, BS-Snper exhib-
ited a limited ability to detect true SNPs evidenced by sharp drops of corresponding 
ROC curves at sensitivities between ~ 40% and 60%. In other words, BS-Snper may miss 
40% ~ 60% SNPs regardless of threshold relaxation. bsgenova and cgmaptools_bayes 
exhibited greater sensitivity, detecting over 90% of the SNPs in most cases.

Given the prevalence of contamination and noise-induced low-quality omics data, 
especially for bisulfite-treated libraries, the robustness of data analysis models becomes 
crucial. Approximately 10% (Figure S1) of reads with map quality less than 20 were 
excluded from SNP calling in WGBS samples during the evaluations mentioned earlier. 
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To assess the resistance of different methods against these intrinsic contaminations, we 
provided all mapped reads as input to each SNP caller keeping other processes constant. 
No additional in silicon artificial reads were introduced indicating the realism of the 
scenarios.

The parallel results for contaminative data were illustrated by the dashed lines along-
side in Fig. 2. bsgenova exhibited limited declines for each sample of each cell line (indi-
cated by the difference of solid and dashed lines) and maintained precisions greater than 
80% in most pairs of samples while holding the same sensitivity. Conversely, cgmaptools 
exhibited a pronounced decline when dealing with unidealized data, with the precision 
dropping below 50% even below 20%, suggesting the underlying model collapsed due to 
the contaminations. At last, the performance reduction of BS-Snper was moderate.

Performance of SNP calling on chromosome X

Due to sequence homology and/or a reduced DNA content especially in male genome 
(A549 and GM23248 cell lines), SNP calling for chromosome X poses a greater challenge 
compared with autosomes. In Fig. 3, the SNP calling performance (ROCs) on chromo-
some X with the same processes as described above for different methods was illustrated. 
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Fig. 2 Evaluations of bsgenova and other methods calling SNPs on autosomes with real-world data. For 
each cell line and each pair of WGBS and WGS samples, the SNP intersection of Mutect2 (in GATK toolkit) and 
bcftools were regarded as truths, ROC of sensitivity and precision was calculated by tuning the threshold of 
p-value/score. cgmaptools_binom did not output a continuous score or p-value and hence manifested as a 
point. Only the callable genomic sites, namely covered by at least 10 reads in both WGBS and WGS samples, 
were included in the evaluation. The number of true SNPs of callable sites (in autosomes) was shown at the 
bottom. The clean data included the reads with map quality ≥ 20 (solid lines), while the contaminative data 
(dashed lines) included all the mapped reads without filtering low-quality reads to reproduce the intrinsic 
contamination introduced during WGBS library construction and sequencing
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For cell lines A549 and GM23248, bsgenova outperformed other methods at various 
levels of sensitivity. Notably, when calling SNPs with contaminated data (depicted by 
dashed lines), the advantage of bsgenova became even more pronounced. These results 
suggest that bsgenova is well-equipped to handle challenging scenarios such as those for 
chromosome X or involving contaminative data, whereas existing methods, especially 
cgmaptools, exhibited subpar performance.

Maximizing a linear combination of sensitivity and precision

To comprehensively compare the performance of different methods independent of 
thresholds, we consider a scalarization of sensitivity and precision instead of the com-
mon measure AUC (area under curve). This method is adopted because complete ROC 
was hard to calculate and in certain cases, sensitivity and precision may be discriminated 
with different degrees of importance. Specifically, we define the follow maximization,

When α = 1/2 , sensitivity and precision are equally important; when α = 5/6 , the 
importance of precision is five times that of precision indicating a fair tradeoff of a 5% 
decrease of sensitivity for a 1% increase of precision.

M = max
{

(1− α)× sensitivity+ α × precision
}

, for fixed α ∈ [0, 1].
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Fig. 3 Evaluations of bsgenova and other methods calling SNPs on chromosome X with real-world data. The 
configurations are the same with Fig. 2 except that the SNPs under evaluation are on chromosome X. For 
male cell lines (A549 and GM23248), calling SNPs on chromosome X from WGBS data is harder. In this case, 
bsgenova outperformed other methods for both clean and contaminative data
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For α = 1/2 (Fig. 4a), both bsgenova and cgmaptools_bayes exhibited superior perfor-
mance compared with BS-Snper and cgmaptools_binom for samples containing clean 
reads only (map quality ≥ 20 ), in both autosomes and chromosome X. On the other 
hand, when setting α = 5/6 to reduce false positive SNPs (Fig. 4b), the comprehensive 
M scores of BS-Snper increased across all cases. Notably, bsgenova outperformed the 
other methods particularly in the more challenging scenarios containing contaminations 
and for chromosome X.

bsgenova is fast and resource‑efficient

In addition to utilizing matrix computation, bsgenova incorporates multi-process paral-
lelization for acceleration. bsgenova reads data from file or pipe and maintains an in-
memory cache pool of data batches of genome intervals. The batches are then dispatched 
to workhorse processes. The synergy of matrix computation, parallelization, and caching 
rendered bsgenova both fast (~ 3 h for a sample of ~ 79G bases) and resource-efficient in 
terms of memory and disk usage (Fig. 5).

bsgenova cgmaptools_bayes cgmaptools_binom BS-SNPer

a

b
max {1/2 sensitivity + 1/2 precision}

bsgenova
cgmaptools_bayes

cgmaptools_binom

BS-SNPer

bsgenova
cgmaptools_bayes

cgmaptools_binom

BS-SNPer

clean data contaminative data

autosom
es

chr X

0.3 0.6 0.9 0.3 0.6 0.9

max {1/6 sensitivity + 5/6 precision}

bsgenova
cgmaptools_bayes

cgmaptools_binom

BS-SNPer

bsgenova
cgmaptools_bayes

cgmaptools_binom

BS-SNPer

clean data contaminative data

autosom
es

chr X

0.3 0.6 0.9 0.3 0.6 0.9

Fig. 4 Maximizing linear combinations of sensitivity and precision. a In cases that sensitivity and precision 
are of equal importance, we set equal coefficients in the scalarization. b In cases that false positive calls are 
to be avoided preferentially, we set the coefficient of precision larger than that of sensitivity, say five times, 
which indicates a fair tradeoff of a 5% decrease of sensitivity for a 1% increase of precision
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Summarizing these assessments, as indicated in Figure S2, BS-Snper exhibits limited 
sensitivity, identifying only ~ 40% to ~ 60% of all true SNPs, and is memory-intensive. 
cgmaptools is susceptible to contaminative/unideal data and is time-consuming. In con-
trast, bsgenova strikes a balance in these evaluated aspects, making it a versatile tool.

Read depth and parameter tuning

To assess the impact of read depth to bsgenova, we grouped all genomic sites by their 
read depths in WGBS sample and calculated the precision and sensitivity of bsgenova 
on the grouped sites of certain read depth, respectively (Figure S3). Generally speaking, 
with fixed p-value threshold, the sensitivity increases as the depth increases while the 
best read-depth maximizing precision is approximately 15–20.

bsgenova accepts parameters such as mutation rate, error rate, and cytosine methyla-
tion rates in both CpG and non-CpG contexts. to assess the dependence of bsgenova 
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disk (Gbytes)bsgenova
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ATCGmap file
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cgmaptools-bayes

cgmaptools-binom
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0.01

0.01

0.72
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Fig. 5 Resource usages of bsgenova and other methods. a bsgenova is implemented with multi-process 
parallelization consuming ~ 3 h for a WGBS sample of ~ 79 G bases (~ 25X depth) with 8 CPU cores. b 
cgmaptools must use an intermediate ATCGmap file as input, the disk usage of cgmaptools is nearly the 
same as that of BS-Snper. bsgenova has two ways to run: the same manner with cgmaptools (two-step) 
and use bam file as input which does not produce any temporary files (one-step). c bsgenova costs ~ 1 GB 
memory which is affordable in a modern computer
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on these parameters, we compared the differences of SNP outputs with various param-
eter combinations (Figure S4). bsgenova reported consistent results with different tuning 
parameters which suggested its robustness against model (parameters) misspecification.

Discussion
In this report we introduced bsgenova as a novel SNP caller for bisulfite-converted 
sequenced data such as WGBS and RRBS data. To make bsgenova performant and read-
ily available we paid many efforts to the optimizations of probabilistic model and imple-
mentation as shown the results of evaluation and a summary table (Figure S2).

Up to now, the published methods to the best of our knowledge, including bsgenova, only 
model the genotypes of homozygote and heterozygote of a diploidy genome, namely the 
germline single-nucleotide variation (SNV) with respect to reference genome. The muta-
tion of short indel is hard to call by our experience due to low quality of WGBS library. On 
the other hand, somatic SNV of a small fraction of cells can neither be called from WGBS 
library of tissue sample such tumors. Limited by the destruction and conversion of bisulfite 
as well as the statistical models used, mutation calling from bisulfite-converted data can 
only report confidant results for germline SNVs.

An advance of this issue is to use harpin prime during the library construction to 
link two strands of a DNA fragment in a single read in the sequenced data. Linking two 
strands makes sure that both Watson and Crick strands are sequenced at the same time 
which facilitates SNP calling from bisulfite-converted library. Liang et  al. reported a 
significant improvement of SNP calling utilizing harpin bisulfite sequencing [22]. How-
ever, additional protocol steps with harpin prime reduce the DNA template utilization 
rate, hence this method is not available in situations with low DNA content input such 
as at single-cell level. In addition, due to the linkage of two strands, harpin bisulfite 
sequencing makes double-ended sequencing to degenerate to single-ended sequencing 
substantially.

SNP calling from bisulfite-converted data to enable joint analysis of genetic and epige-
netic information remains challenging. Improvements of both library construction and cor-
responding robust probabilistic models need to be made to detect both DNA methylation 
and genotype accurately at whole-genome scope.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 024- 05821-7.

Additional file1 

Author contributions
YF and FG conceived the study. YF developed the model and software and conducted the evaluations. YF drafted the 
manuscript. All the authors reviewed the manuscript.

Funding
The study was funded by the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricul-
tural Sciences (CAAS).

Availability of data and materials
All analyses were done on publicly available data from ENCODE (Table S1). The source code of bsgenova and bsextractor 
is available at https:// github. com/ hippo- yf/ bsgen ova.

https://doi.org/10.1186/s12859-024-05821-7
https://github.com/hippo-yf/bsgenova


Page 12 of 12Feng and Gao  BMC Bioinformatics          (2024) 25:206 

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 18 March 2024   Accepted: 30 May 2024

References
 1. Abante J, et al. Detection of haplotype-dependent allele-specific DNA methylation in WGBS data. Nat Commun. 

2020;11(1):5238.
 2. Zhou Q, et al. MethHaplo: combining allele-specific DNA methylation and SNPs for haplotype region identification. 

BMC Bioinformatics. 2020;21(1):451.
 3. Huan T, et al. Genome-wide identification of DNA methylation QTLs in whole blood highlights pathways for cardio-

vascular disease. Nat Commun. 2019;10(1):4267.
 4. Hawe JS, et al. Genetic variation influencing DNA methylation provides insights into molecular mechanisms regulat-

ing genomic function. Nat Genet. 2022;54(1):18–29.
 5. Liu Y, et al. Bis-SNP: combined DNA methylation and SNP calling for Bisulfite-seq data. Genome Biol. 2012;13(7):R61.
 6. Barturen G, et al. MethylExtract: high-quality methylation maps and SNV calling from whole genome bisulfite 

sequencing data. F1000Res. 2013;2:217.
 7. Gao S, et al. BS-SNPer: SNP calling in bisulfite-seq data. Bioinformatics. 2015;31(24):4006–8.
 8. Guo W, et al. CGmapTools improves the precision of heterozygous SNV calls and supports allele-specific methyla-

tion detection and visualization in bisulfite-sequencing data. Bioinformatics. 2018;34(3):381–7.
 9. Merkel A, et al. gemBS: high throughput processing for DNA methylation data from bisulfite sequencing. Bioinfor-

matics. 2019;35(5):737–42.
 10. Danecek P, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10(2):giab008.
 11. Cibulskis K, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat 

Biotechnol. 2013;31(3):213–9.
 12. Kim S, et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods. 2018;15(8):591–4.
 13. Poplin R, et al. A universal SNP and small-indel variant caller using deep neural networks. Nat Biotechnol. 

2018;36(10):983–7.
 14. Yuan X, et al. Single-cell multi-omics profiling reveals key regulatory mechanisms that poise germinal vesicle 

oocytes for maturation in pigs. Cell Mol Life Sci. 2023;80(8):222.
 15. Consortium EP, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 

2020;583(7818):699–710.
 16. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.
 17. Dixon JR, et al. Integrative detection and analysis of structural variation in cancer genomes. Nat Genet. 

2018;50(10):1388–98.
 18. Lee D, et al. Epigenome-based splicing prediction using a recurrent neural network. PLoS Comput Biol. 

2020;16(6):e1008006.
 19. Zhang J, et al. An integrative ENCODE resource for cancer genomics. Nat Commun. 2020;11(1):3696.
 20. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 

2009;25(14):1754–60.
 21. Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 

2010;26(5):589–95.
 22. Liang J, et al. A new approach to decode DNA methylome and genomic variants simultaneously from double strand 

bisulfite sequencing. Brief Bioinform. 2021;22(6):bbab201.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	bsgenova: an accurate, robust, and fast genotype caller for bisulfite-sequencing data
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Introduction
	Materials and methods
	Bayesian probabilistic model of bsgenova
	Likelihood and posterior probability by matrix computation

	Results
	Real-world data and methods involved in the evaluation
	bsgenova is precise, sensitive, and resistant against contaminations
	Performance of SNP calling on chromosome X
	Maximizing a linear combination of sensitivity and precision
	bsgenova is fast and resource-efficient
	Read depth and parameter tuning

	Discussion
	References


