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Abstract 

Adeno‑associated viruses 2 (AAV2) are minute viruses renowned for their capacity 
to infect human cells and akin organisms. They have recently emerged as prominent 
candidates in the field of gene therapy, primarily attributed to their inherent non‑
pathogenic nature in humans and the safety associated with their manipulation. The 
efficacy of AAV2 as gene therapy vectors hinges on their ability to infiltrate host cells, 
a phenomenon reliant on their competence to construct a capsid capable of breach‑
ing the nucleus of the target cell. To enhance their infection potential, researchers 
have extensively scrutinized various combinatorial libraries by introducing mutations 
into the capsid, aiming to boost their effectiveness. The emergence of high‑throughput 
experimental techniques, like deep mutational scanning (DMS), has made it feasible 
to experimentally assess the fitness of these libraries for their intended purpose. Nota‑
bly, machine learning is starting to demonstrate its potential in addressing predictions 
within the mutational landscape from sequence data. In this context, we introduce 
a biophysically‑inspired model designed to predict the viability of genetic variants 
in DMS experiments. This model is tailored to a specific segment of the CAP region 
within AAV2’s capsid protein. To evaluate its effectiveness, we conduct model training 
with diverse datasets, each tailored to explore different aspects of the mutational land‑
scape influenced by the selection process. Our assessment of the biophysical model 
centers on two primary objectives: (i) providing quantitative forecasts for the log‑
selectivity of variants and (ii) deploying it as a binary classifier to categorize sequences 
into viable and non‑viable classes.

Keywords: Computational biology, Directed evolution, Machine learning, Deep 
mutational scanning

Introduction
Recently, there has been a burgeoning interest in combining high-throughput sequenc-
ing with machine learning techniques to extend predictions beyond the boundaries of 
experimentally observed sequences [1]. While previous studies predominantly concen-
trated on a single protein property directly associated with the selection criteria, such 
as binding, stability, or catalytic activity [2], a few investigations have showcased the 
feasibility of inferring multiple physical properties, including those that are not directly 
measurable [3]. Notable examples of success include predicting thermal stability based 
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on binding affinity measurements [4, 5] and deducing specificity profiles of transcription 
factors from the selective enrichment of DNA sequences [6, 7]. The key to these achieve-
ments lies in the application of biophysics-inspired models, which incorporate thermo-
dynamic principles to yield interpretable predictions.

The combination of high-throughput in-vitro selection methods with high-throughput 
sequencing has been key to identifying protein variants of a given wild-type sequence 
with target functional activity [8–10]. However, it’s crucial to recognize that all experi-
mental approaches are constrained by the maximum library size, typically falling within 
the range of 108 (for yeast display), 1010 (for phage display), to 1015 (for ribosome dis-
play). Although these numbers may seem substantial, they represent only a minuscule 
fraction of the vast sequence space (for example, there are 2028 ∼ 2× 1036 possible 
protein sequences of length 28). Lately, there has been a significant surge of interest in 
directed evolution experiments (both in vitro and in vivo) aimed at engineering the cap-
sid of adeno-associated virus (AAV) [11–14]. AAV2 are small non-enveloped viruses 
of a typical dimension of about 20 nm. They are provided with a spherical capsid com-
posed of a mixture of three proteins (VP1, VP2, and VP3) giving structure to 60 subunits 
arranged with icosahedral symmetry. While they can infect humans and other primate 
species, there are currently no known diseases caused by them. This, besides other tech-
nical motivations, makes them ideal candidates as viral vectors in gene therapy as shown 
in several clinical tests.

The use of AAV2s in gene therapy is conditioned by their potential to infect cells which 
in turn depends on their capacity to assemble a viable capsid, meaning that they assem-
ble an integral capsid that packages the genome. From the mechanical point of view, 
much interest has been attracted by the idea of understanding the assembly process of 
the viral capsid [15], bringing considerable insights about the patterns that lead the cap-
sid formation starting from its basic building blocks (individual capsid proteins, oligom-
ers or capsomers). The capsid formation can be described as a nucleation process driven 
by three free-energy contributions: (i) the energy gain in growing a partial shell given 
by the binding energy between capsid proteins, (ii) a domain wall energy penalty due to 
missing contacts at the border of the shell, and (iii) the elastic energy due to the curva-
ture of the shell shape. Thanks to experimental observations and simulation analysis, it is 
now possible to highlight the leading factors that make the assembly possible in different 
mechanical conditions and also the patterns through which the capsid can assume the 
correct shape. A bottleneck in achieving the desired phenotypic traits of the AAV geno-
type is associated with capsid production, where the majority of sequence variants fail to 
either assemble or package their genome. This phenomenon is commonly referred to as 
viability.

Here, we address the problem of forming a viable capsid from a deep mutational scan-
ning (DMS) experiment perspective. In particular, we study how mutations of a particu-
lar section of the CAP region affect capsid formation. We stress that the assembly of a 
stable capsid and the packaging of the genome are two concurrent processes necessary 
for the functionality of the viral vector. Unfortunately, the experimental strategy used in 
[16] does not permit to discriminate assembly from packaging effects. As the mutated 
part of the capsid encompasses buried, surface, and interface regions, it is not likely to 
be involved in the packaging process. We argue that residues involved in packaging are 
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more likely to be located in the interior of the capsid shell. In any case, given the partial 
understanding of these complicated mechanisms, we cannot exclude that variants might 
impact some determinants of genome packaging without altering the capsid forma-
tion. Following this reasoning to the extreme, in principle, an empty capsid could form 
without being detected by sequencing. This is a limitation of the chosen experimental 
technique, and one must be aware that the viability signal might be affected by packag-
ing-related effects. The idea of this work is to devise a new machine-learning strategy 
that improves currently employed computational techniques to analyze data from DMS 
experiments. Instead of training a deep neural network to solve a regression problem 
where the sequences are the input of the model and the output is the selectivity of the 
sequence, we aim to develop a biophysical model of a general DMS experiment, with 
physically interpretable parameters that remain comparable between different experi-
mental realizations. On top of this advantage, we want to show how a biophysical model 
can lead to a more robust inference: less biased by experimental noise and more accurate 
in predicting the selectivity of the variants especially when we are interested in compar-
ing it between different variants. We remark that our approach, even if inspired by a 
biophysical model, aims at inferring a statistical proxy that is not exactly the stability 
energy of the capsid that can be measured or estimated from dynamical simulation. Even 
if these quantities can be correlated, this should be checked a-posteriori when data on 
capsid stability are available.

For this purpose, we analyzed data collected in a massive study on capsid diversity 
( [16]). In this study a DMS experiment has been performed testing a large library of 
viruses with diverse capsid composition, these data have been then used to train differ-
ent machine learning models to infer the mutational landscape for capsid viability and 
use it to generate viable capsids as different as possible from the WT one. The statistical 
model employed in our approach is an energy-based model, expressed through a com-
bination of convolutional layers (accounting for variations in sequence lengths within 
the training sets) and a dense layer, responsible for mapping sequences to energy levels. 
Notably, the performance of this biophysics-inspired model proves intriguing even in a 
more straightforward classification scenario, where it is applied to the binary task of dis-
tinguishing viable from non-viable sequences.

Experiment and data
The data used in our analysis are derived from a recent comprehensive study [16]. In 
this work, the variability of protein capsids in AAV2 and their ability to remain viable 
for DNA packaging was investigated by developing a deep learning method to estimate 
the mutational landscape for capsid viability and generate new diverse viable capsids 
that differ significantly from those found in nature. The analysis was focused on a spe-
cific region comprising 28 amino acids near the 3-fold symmetry axis of the icosahedral 
AAV2 VP1 protein. This region is known to play a crucial role in viral production. The 
phenotypic trait selected for in the experiment is the virus viability and it was quan-
titatively assessed through high-throughput screening experiments to collect data on a 
wide range of variants. To do so, a series of libraries of designed capsid proteins were 
synthesized and inserted into the virus genome’s cap region. Plasmids encoding vari-
ous capsid structures were cloned to create an extensive plasmid library. These plasmids 
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were first sequenced and then transfected into cells. After viral production, the DNA 
was extracted and sequenced once again, resulting in two sets of reads for each tested 
variant. These reads provided information about the abundance of each sequence before 
and after transfection.

The training set for our algorithm comprises three data sets that differ considerably 
one from another in both size (number of unique variants) and diversity (distance from 
the wild-type sequence). To assess their diversity, we consider the Levenshtein distances 
(from now on we will always imply this particular metric whenever we talk about dis-
tance) of the sequences from the wild-type one and pairwise distances between different 
experiments. Starting from experiment-1 which contains only the WT and single muta-
tions, increasingly more diverse sequences are tested in the following experiments.

(a)

(b)

(c)
Fig. 1 a Distances from the WT sequence of the tested sequences in each of the two experiments 
performed in [16]. b Distances between all pairs of sequences tested in different experiments. c UMAP 
projection of the sequences tested in the three experiments. Due to the high number of variants tested in 
experiment-2 and experiment 3, 5000 sequences have been randomly sampled from these experiments
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Figure  1b shows the distribution of the distances between all pairs of sequences in 
the three different experiments. To have a global overview of variants experimentally 
tested, Fig.  1c shows a schematic of the sequences tested in all experiments, this has 
been realized using the UMAP algorithm representation for dimensionality reduction 
[17]. Table 1, instead, summarizes the main features of the three datasets.

Methods
In this section, we describe the details of our biophysical-inspired statistical model, and 
describe the different training and test datasets used. The model defines a statistical 
energy that we consider as a proxy to the sequence viability. Strictly speaking, viability 
is a discrete phenotypic trait that in the series of experiments conducted that consti-
tute our training set [16] is assessed in terms of sequencing counts. The boolean nature 
viable/non-viable is eventually induced with a statistical analysis a-posteriori. To com-
pare the performance of the our model in solving the simpler boolean classification task, 
we also introduce a standard classifier with the same architecture as the energy-based 
model.

Model

The machine-learning method we propose utilizes a statistical model that aims to 
capture the entire experimental pipeline conducted to assess the ability of variants to 
package the genome within the capsid. The structure of this model is very general and 
permits the analysis of any DMS (Deep Mutational Scanning) experiment. As previously 
discussed in [18], the model comprises three main steps: selection, amplification, and 
sequencing.

During the selection phase, mutated viruses are introduced into tissue cells, where 
their survival depends on their ability to form functional capsids. Typically, only a small 
fraction of the initial population of viruses is selected during this phase. Following selec-
tion, viral DNA is extracted from a sample of supernatant and undergoes amplification. 
Finally, the amplified DNA is sequenced to gather information about the genetic compo-
sition of the selected viruses.

Selection

We examine a population of AAV2s (adeno-associated viruses), each carrying a mutated 
sequence of the gene of interest. Let Ns represent the count of viruses containing 

Table 1 Relevant information about size, quality, and diversity of the dataset tested in each 
experiment

Experiment-1 Experiment-2 Experiment-3

Unique variants 1085 26961 203635

Depth round 0 2423857 14353318 49376644

Depth round 1 3491860 23411926 194466876

Coverage round 0 2234 532 242

Coverage round 1 3218 868 955

Distance from WT round 0 ( µ± σ) 0.9± 0.2 3± 2 13± 5

Distance from WT round 1 ( µ± σ) 0.9± 0.3 3± 2 10± 4
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sequence s in the initial library. From a biophysical perspective, we assume that the func-
tional characteristics of the viral variant are determined by the thermodynamic states 
adopted by the protein products resulting from the mutated gene. The expressed protein 
copies of variant s can either bind together, leading to the assembly of a functional cap-
sid, or their structural properties may hinder capsid formation. The energies of these two 

states will be denoted by Ecapsid
s  and Edissol.

s  , respectively. Since survival depends on the 
ability to form the capsid, the probability of selection for viruses carrying variant s (or 
selectivity) can be computed according to the Boltzmann law

where µcapsid,µdissol. are chemical potentials associated with each state, and we defined 
µ := µdissol. − µcapsid and Es := Edissol.

s − E
capsid
s  . From now on, we define the pair 

Es,µ , energy specificity, and chemical potential respectively. With these definitions, ps 
assumes the well-known Fermi-Dirac distribution form for a two-level system. In the 
large Ns limit, one can expect small fluctuations in terms of the number of selected 
sequences. Therefore, out of the Ns viruses carrying sequence s in the initial library, we 
assume Nsps are selected by their ability to form the capsid. This approximation is some-
times referred to as deterministic binding approximation [18].

Energy specificity

The capsid-formation energy Es , depends on the ability of protein products to bind 
together and assemble the capsid. Protein binding depends on sequence s, and in full 
generality this dependence is complex. In analogy with the reference study, we use one 
of the neural network models tested in [16] to parametrize the energy mapping specific-
ity. The network is composed of two convolutional layers and then three fully connected 
ones (see Sect. 3 in the Supplementary Material for the detailed structure).

We denote the set of parameters of this network (weights and biases) by � . Having 
specified the network architecture, selectivities then become functions of � and the 
chemical potential,

Although other choices of energy function could be used in principle, the convolutional 
structure chosen here allows us to handle sequences of different lengths as explained in 
detail in Sect. 2  in the Supplementary Material.

Amplification

Empirically, it turns out that only a small fraction of viruses survive the selection phase. 
To replenish the original total population size, after the selection round an amplifica-
tion phase through PCR is performed. We assume for simplicity that this process is 

(1)
ps =

eµ
capsid−E

capsid
s

eµ
capsid−E

capsid
s + eµ

dissol.−Edissol.
s

=
1

1+ eµ−Es

(2)ps(�,µ) =
1

1+ eµ−Es(�)
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uniform across all sequences. Then, denoting by N ′
s the abundance of sequence s after 

amplification,

Sequencing

In the experimental pipeline of [16], sequencing is performed at two different steps of 
the experiment: (i) when the initial combinatorial library is inserted into the plasmids ( 
but prior to transfection into the target cells), and (ii) after the viral extraction from the 
cell. It is clear that the target phenotype observed is the viral viability, i.e. the ability of 
the variant to remain active and capable of forming a stable capsid.

If we assume that each variant is sequenced with a probability proportional to its 
abundance, the probability of observing a count Rs for variant s conditional to the (unob-
servable) number of variants Ns , follows the multinomial distribution:

Here and in the following we indicate with R , N , and p the vectors of read counts Rs , 
variant abundances Ns , and selectivities ps , respectively. Similarly, for the sample taken 
after selection and amplification,

Note that P(R′|N,p) depends on the selectivities ps , which in turn depend on the 
parameters �,µ , see (2).

Maximum likelihood inference

The model defined so far has several parameters that must be inferred from data: the 
parameters of the neural networks specifying the mapping from sequence to energy Es , 
that we hereby denote by � , the chemical potentials µs , and the variant abundances in 
the initial library Ns . As a function of these parameters, the model log-likelihood can be 
written:

(3)N ′
s ∝

psNs

σ
pσNσ

(4)P(R|N) =
(
∑

s Rs)!
∏

s(Rs!)

∏

s N
Rs
s

(
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s Ns

)

∑
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(7)

L(�,µ,N) = lnP(R|N)+ lnP(R′|N,p)

=
∑

s

Rs lnNs +
∑

s

R′
s ln(psNs)

−
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Note that the dependence on the parameters �,µ arises from the dependence of the 
selectivities, (2). Following [19], we then learn �,µ,N from the sequencing data by 
numerical maximization of the likelihood,

See Sect. 4 in the Supplementary Material for details on the optimization procedure.
Once the optimal parameters have been obtained, the learning can be validated by 

assessing how the quantities observed experimentally correlate with the ones inferred. 
To be more precise, we look at the correlation between ps and the ratio θs = R′

s/Rs , usu-
ally called empirical selectivity [20], on a subset of sequences that are not used during 
training of the model. Barring sampling noise, θs should be proportional to the selectivi-
ties ps inferred by the model. Unfortunately in this experiment, only one round of selec-
tion has been performed; therefore it is not possible to use information from multiple 
rounds to filter out experimental noise as described in [20] and already exploited in [18].

Binarizing the output of the energy-based model

The most powerful feature of this machine learning method is that it is capable of infer-
ring quantitatively the selectivity of every single variant. Anyway, there are cases in 
which the useful information is less specific and one can be only interested in knowing if 
a variant is able or not to perform its task. In these cases, one can use the model to per-
form a binary classification setting a threshold value for ps and classifying accordingly 
the variants.

One unsophisticated but sensible way to set such a threshold is to fit a bimodal Gauss-
ian distribution from the values of the inferred energies Es . If the phenotypic trait has 
a binary nature and the test set is more or less balanced between viable and non-viable 
sequences that can be recognized by the model, the energy values will cluster around 
two values: a high energy value for non-viable variants and a low energy value for the 
viable ones. Thus, we decided to fit the distribution of the energy by two Gaussians 

(8)max
�,µ,N

L(�,µ,N)

Fig. 2 Fit performed on the histogram of inferred energies on the two test experiments. This provides an 
unsupervised estimate of the threshold for binary classification of the sequences as viable or non‑viable. The 
energy distribution has been fitted with a bimodal Gaussians mixture distribution and the valley in between 
the two peaks has been chosen as threshold value
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mixture model. Of course, depending on how overlapping the two Gaussians turn out 
from the fit, different strategies can be used to define a threshold. In our case, as shown 
in Fig. 2, the two Gaussians are separated enough to produce a minimum in the mixture 
between the two peaks. We decided to use this value for the threshold as it is the most 
robust choice in the sense that a small perturbation around this value produces a mini-
mal change in the classification. Of course, being our method entirely unsupervised, we 
have no unique way to set the threshold. The other option, as done for instance in [16], 
is to use a fully supervised strategy on variants already annotated as viable/non-viable.

As a semi-supervised check, one could only use the viable/non-viable annotation just 
to set the ”optimal threshold” after having inferred unsupervisedly the energy model. In 
Sect.   4 we will compare the discrepancy in classification when we use the threshold 
obtained as described here and the case in which we use the information on the viability 
of the test sequences to find an ”optimal threshold”; we do this to show that the thresh-
old found by the naïve bimodal fit is already almost ”optimal”.

Data binarization

To validate our model, we need to divide data into viable/non-viable classes. To do so, 
first an empirical proxy for the ”fitness” of the variants is computed, this quantity is usu-
ally referred to as empirical (log)selectivity and it is defined as the following

Then these quantities can be used to assign a label to each sequence. In [16] they have 
assigned a binary label to each variant setting a threshold for this quantity. The proce-
dure we used to assign this threshold value is similar to the one used in the reference 
study. By direct inspection of the empirical log-selectivity distribution Fig. 3, one can see 
that they follow a bimodal distribution. We consider sequences near the rightmost peak 
as viable and the remaining as non-viable. In analogy with what we have done for the 
model energy, we fitted a bimodal Gaussian distribution from those histograms and we 
have chosen as threshold the value of log-selectivity where we find a valley in between 
the two peaks to have a stable classification.

(9)θs = log
R′
s

Rs

Fig. 3 Fit performed on the histogram of empirical log‑selectivities of each experiment to determine the 
threshold value for binary labeling of the sequences as viable or non‑viable. The empirical distribution has 
been fitted with a bimodal Gaussians mixture distribution and the valley in between the two peaks has been 
chosen as threshold value
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In contrast with [16] we decided to fit a threshold for each experiment since in prin-
ciple this quantity might change for each experimental realization, and as one can see 
from Fig. 3 this is the case.

It is evident from Figs.  2 and  3 that the bimodal Gaussian mixture distribution fits 
both the experimental data and the predictions very inaccurately. In fact, there is no rea-
son why these quantities should follow such a distribution. In this case, the Gaussian 
mixture distribution is just the simplest thing one can do to select a threshold value for 
these quantities. In the following, it will be clear that this is not an issue because the 
robustness of our biophysical model isn’t affected by the choice of such a threshold as 
long as it is some sensible value between the two peaks. This is evident from the ROC 
curve analysis reported in "Results" section.

Supervised binary classifier

To benchmark the classification performance of the energy-based model, we trained a 
neural network to perform viable/non-viable classification (binary classifier) in a super-
vised manner. The architecture of this classifier is identical to that of the energy-based 
model (refer to Sect. 2 in the Supplementary Material for details). Defining qs,viable and 
qs,non-viable as the two outputs of the Neural Network corresponding to the two states, 
the loss function can be expressed as:

where ys is 1 if the sequence is labeled as viable and 0 otherwise.

Results
To evaluate the model’s performance and its robustness, we conducted two compari-
sons. Firstly, we trained the models on sequences involving single mutations/insertions 
(those tested in experiment-1) and then used the trained models to infer the selectivity 
of sequences tested in experiment-2. Secondly, we trained the models on sequences from 
both experiments 1 and 2 and employed them to predict the selectivity of sequences 
tested in experiment-3. Other train-test splits are possible, indeed. Anyway, we chose 
this procedure because experiments are substantially different one from another to rep-
resent a significant stress test to evaluate the generalization power of the models.

We assess the predictive capability of the models from two perspectives: their abil-
ity to forecast the selectivity of sequences (as defined in Eq.(1)) and their proficiency in 
classifying sequences as viable or non-viable (as detailed in "Binarizing the output of the 
energy-based model" section). Concerning the former, we calculated the Pearson cor-
relation coefficient between the inferred log-selectivity from Eq. (1) and the empirical 
log-selectivity defined by Eq. (9). For the latter, we generated the confusion matrix of the 
binary classification, comparing the inferred viable/non-viable labels with the empiri-
cal ones assigned as described in "Data binarization" section. It’s important to note that 
when referring to the Pearson correlation, we specifically assess the log ps inference, 
while discussions about accuracy and the confusion matrix pertain to the evaluation of 
binary classification.

(10)dC =
∑

s

[

ys ln
eqs,viable

eqs, viable + eqs, non-viable
+ (1− ys) ln

eqs, non-viable

eqs, viable + eqs, non-viable

]
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In the first scenario, the neural network, trained on single mutations and insertions, 
achieves an accuracy of approximately 80% when tested in experiment-2. In contrast, 
the biophysical model attains an accuracy of about 88% on the same sequences. Despite 
the comparable binary classification accuracy, the biophysical model excels in providing 
precise information about the continuous ’selectivity’ values of the variants, providing 
reliable insights into the energy levels of the sequences. In the second scenario, pre-
dicting the selectivity of sequences in experiment-3 proves more challenging as these 
sequences are in principle highly diverse from the ones in the training set. The neural 
network model achieves an accuracy of approximately 67%, whereas the biophysical 
model achieves an accuracy of about 81%. The drop in accuracy experienced by the neu-
ral network is substantial, whereas the biophysical model maintains high accuracy in this 
case. Furthermore, we highlight that the biophysical model also sustains a high correla-
tion between empirical log-selectivities and inferred log-probabilities of the viable state. 
This indicates that the method is robust when the aim is to understand the relative ’fit-
ness’ (the energy levels) of the sequences, as illustrated in Fig. 4a, b (with a Pearson coef-
ficient of 0.75 in the first case and 0.77 in the second one).

We also explore the impact of varying the threshold value on the inferred ps by con-
structing a ROC curve. This analysis provides insights into the robustness of the classifi-
cation concerning the choice of the threshold value. Similarly, a ROC curve is generated 
for the supervised Neural Network by varying the criterion used to classify sequences: 
instead of classifying the sequence as viable if qs,viable ≥ qs,non-viable , we introduce a 
threshold τ , classifying sequences as viable if qs,viable − qs,non-viable ≥ τ . The ROC curves 
for both models are illustrated in Fig. 5a, b for the two train/test combinations.

As one can see from Fig. 5a the area under the ROC is very high ( ≈ 0.93 ) when the 
model is trained on single mutations/insertions and used to test sequences from experi-
ment-2. Figure  5b shows that when the model is trained on experiments 1 and 2 and 
used to predict sequences from experiment-3 the area under the ROC slightly decreases 
at ≈ 0.90 . Perhaps surprisingly, we observe from Fig.  5b that the performance of the 
binary classifier (blue lines) is marginally worse than the biophysical model (orange 
lines) in both experiments. The same trend, perhaps more clearly, is shown in Table 2 

Fig. 4 Scatter plot of empirical log‑selectivities vs inferred log‑probabilities of the viable state. a The model 
is trained on experiment-1 then used to predict sequences from experiment-2. b The model is trained on 
experiments 1 and 2 then used to predict sequences from experiment-3 
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where we display the confusion matrices for the two models in each train/test combina-
tion. When training both models on experiment-1 and testing the classification task on 
experiment-2 (Table 2 first row), we obtain a relatively comparable performance: a true 
positive rate of  0.82 for the biophysical model, while  0.94 for the supervised binary clas-
sifier; a true negative rate of  0.89 for the biophysical model and of  0.77 for the binary 
classifier. Things change when we train on experiment-1 and 2  and we test on experi-
ment-3 (Table 2 second row). Here, with a true positive rate of  0.44 for the binary clas-
sifier, and   0.77 for the biophysical model, we double the figure while keeping a true 
negative rate roughly comparable (around 0.95 for the binary classifier vs. 0.86 for the 
biophysical model).

Fig. 5 ROC curves of both models obtained by varying the classification threshold. a ROC curve of both 
models trained on data from experiment-1 and used to predict sequences tested in experiment-2. b ROC 
curve of both models trained on data from experiment-1 and 2 and used to predict sequences tested in 
experiment-3 

Table 2 Confusion matrices of the two models for each train/test combination

(a) Supervised binary classifier trained on experiment-1 and tested on experiment 2. (b) Biophysical model trained on 
experiment-1 and tested on experiment 2. (c) Supervised binary classifier trained on experiment-1 and experiment-2 and then 
tested on experiment-3. (d) Biophysical model trained on experiment-1 and experiment-2 and then tested on experiment-3

Predicted Predicted
Viable Non-viable

(a)

Viable 4132 286

Non‑viable 5130 16878

(b)

Viable 3612 806

Non‑viable 2474 19534

(c)

Viable 33386 42924

Non‑viable 3450 60874

(d)

Viable 58964 17346

Non‑viable 9271 55053
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Evaluating the generalization capabilities of our model concerning the variant dis-
tance from the WT sequence is a compelling endeavor. This test holds particular inter-
est due to the substantial heterogeneity in composition among the various training sets, 
as illustrated in Fig.  1. To elucidate further, experiment-1 provides a relatively narrow 
view of the mutational landscape around the WT, encompassing only single inserts and 
mutations. Conversely, experiment-2 and experiment-3 explore a broader range of the 
mutational landscape, generating sequences at more substantial distances from the WT. 
Notably, experiment-2 exhibits a higher concentration of sequences around the WT, 
with an exponential distribution tail extending up to a Levenshtein distance of 33. In 
contrast, the composition in experiment-3 is more uniformly distributed across a similar 
range as explored by experiment-2. To evaluate the predictive capabilities of our models 
with respect to the distance from the WT sequence, we dissect the performance of the 
various models based on the distance of the test set sequences from the WT.

Again, we report the results for the model trained on experiment 1 and tested on 
experiment-2 (Fig.   6a, c) and for the model trained on experiment-1,2 and tested on 
experiment 3 (Fig. 6b, d). As a score, we use: the accuracy for the binary classifier, and 

Fig. 6 Robustness analysis with distance. The data set has been divided into slices according to their 
distance from wild‑type and the models have been tested on those slices. The score for the two models is 
reported as a function of the distance of the test data. a The models are trained on experiment-1 and tested 
on experiment-2. b The models are trained on experiments 1 and 2 and tested on experiment-3. c The model is 
trained on experiment-1 and tested on experiment-2. d The model is trained on experiments 1 and 2 and tested 
on experiment-3 
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the Pearson correlation coefficient between the model log-likelihood and the sequence 
empirical log-selectivity for the biophysical model.

From the green lines with square markers in Fig. 6 we immediately note how the viable 
fractions of the two test sets are remarkably different. Whereas experiment-2 (Fig. 6a, 
c) shows a low fraction of viable variants at a small distance from the WT (Levenshtein 
distance lower equal than 2), this fraction increases around 0.6 at higher distances. The 
composition is radically different for experiment 3 (Fig. 6b, d) where the viable fraction 
monotonously decreases as a function of the Levenshtein distance from the WT, from 
an initial value of around 0.9 to almost 0 for the most distant variants. When we com-
pare the performance of the binary classification on the two datasets, for both models 
we observe that the unsupervised biophysical model systematically outperforms the 
supervised binary classifier although the margin is minimal when we consider as a test 
set experiment-2 Fig. 6a, more pronounced for experiment-3 Fig. 6b. In this second case, 
there is a tiny drop in performance at the intermediate distance from the WT sequence 
where viable and non-viable sequences are in almost equal shares, and arguably the clas-
sification task is more difficult.

Interestingly, when we assess the generalization performance of the biophysical model 
to predict the sequence log-selectivity when testing on experiment-2 (Fig. 6c) we observe 
a mildly monotonously decreasing curve from very high correlation values (around 0.9 
for the closest variants) down to a correlation of around 0.7 for the most distant variants. 
A different behavior is observed when testing on experiment-3 (Fig. 6d), where, besides a 
decrease in correlation for the extreme values of the distance from the WT, a stable cor-
relation of around 0.6 is observed.

We remark that there are different possibilities to test the robustness of our model, 
and looking at the prediction accuracy at increasing distance from WT is just one of the 
possibilities. We have chosen this criterion to be consistent with [16] and also because 
exploring functional variants as distant as possible from the WT sequence is the ideal 
objective of the biotechnological application. For completeness, an alternative metric is 
reported in Sect. 4 of the Supplementary Material.

Despite the overall quantitatively and qualitatively good generalization properties of 
our models shown by the above-mentioned results, a prominent challenge that our bio-
physical model still grapples with is the task of learning discernible patterns from the 
viable sequences examined in experiment-3. As shown from Fig.  4b, it’s apparent that 
the model tends to produce false negatives. A plausible explanation for this observation 
becomes evident when we compare the patterns of true positives and false negatives 
with those of genuinely non-viable sequences. Figures 7b, c exhibit a strikingly similar 
composition, and we aspire for our model to correctly categorize all such sequences as 
viable, given their apparent similarities. However, when we contrast these patterns with 
those in Fig. 7a, which represents the sequences used for training, we can discern that 
the model has been exposed to significantly different patterns than those we require it to 
recognize, particularly in the rightmost portion of the sequences. On the other hand, the 
model generally correctly classifies non-viable sequences because they manifest entirely 
distinct patterns, particularly in the leftmost section of the sequence, as illustrated in 
Fig. 7d.
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As we anticipated in "Binarizing the output of the energy-based model" section, 
there isn’t any prescribed way to assign a threshold for the binary classification using 
the inferred energies Es (or equivalently the selectivities ps ), the best way to do it might 
depend on the data and the task we want to accomplish. We will now make a comparison 

Fig. 7 Sequence logos of some subsets of the tested sequences. The numbers on the x axis indicate the 
position along the sequence, starting from site 561 which corresponds to position 1. Those sites that are 
composed only of gaps within the specific subset have been cut out from the logo (for the details about 
the sequence encoding see Sect. 2 in the Supplementary Material). The height of each letter is proportional 
to the frequency of the corresponding amino acid in the specific sub‑set of unique sequences. The color, 
instead, is related to the physico‑chemical characteristics of the amino acids. In some of the panels, at the 
rightmost sites, the gaps are so much more frequent that it is difficult to see the other small letters appearing. 
a Sequence logo of sequences of experiment-1 and experiment-2. b Sequence logo of sequences from 
experiment-3 that are correctly classified as viable. c Sequence logo of sequences from experiment-3 that are 
classified as non‑viable but have been tested as viable. d Sequence logo of sequences from experiment-3 that 
are correctly classified as non‑viable
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between the binary classification performed using the threshold value obtained by fitting 
a bimodal Gaussian distribution for the inferred energies Es and a threshold value that 
is obtained in a standard way if we knew the empirical labels of the sequences: by maxi-
mizing what is known as g-means score. To do so, first, we use the inferred parameters 
to sort the variants according to their value of selectivity ps . Let us call this ordering per-
mutation πs ∈ {1, . . . , S} such that πs ≤ πσ if and only if ps ≥ pσ . Then for each s ∈ S , we 
compute the fraction of empirical positive and negative sequences in the set {s′|πs′ ≤ s} 
according to their empirical θ value. This corresponds to setting the threshold equal to 
ps such that s is the first sample (according to the permutation π ) to be considered as 
viable. Then, for each value of the threshold, we compute the g-means score defined as:

Then, we look for s∗ = argmaxs{g-means(ps)} , thereby, the corresponding value of ps∗ 
sets the optimal threshold value for the binary classification. Figure 8 shows the points 
on the ROC corresponding to the thresholds estimated in the two ways; it is evident that 
in this case, a bimodal fit on the energies distribution finds a threshold value that has a 
very similar performance to the one that uses a threshold that we would find if we used 
the hidden information from the test set.

Conclusions
We introduce a novel biophysically-inspired model designed for the prediction of the 
viability of Adeno-associated virus (AAV) capsids. Leveraging information from Deep 
Mutational Scanning (DMS) experiments, as elaborated in [16], the model learns the 
phenotypes of genetic variants within the CAP region of the AAV2 capsid protein.

(11)g-means(ps) =
√

true positive rate(ps)× (1− false positive rate(ps))

Fig. 8 The blue curves are the same ROCs showed in Fig. 5a, b just for the biophysical model in this case, 
on top of them are plotted the two working points of the binary classification, both in case in which the 
threshold is fitted by the inferred energies distribution (unsupervised) and in the case in which the threshold 
is obtained using the labels of the test sequences (biased). a The model is trained on experiment-1 and tested 
on experiment-2. b The model is trained on experiments 1 and 2 and tested on experiment-3 
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To assess the model’s efficacy, three datasets were employed, encompassing diverse 
variant libraries engineered to explore different facets of the mutational landscape. Our 
exploration of the biophysical model’s generalization capabilities focused on two pri-
mary objectives: (i) delivering quantitative forecasts for the log-selectivity of variants 
and (ii) deploying it as a binary classifier, categorizing sequences into viable and non-
viable classes.

The model employs a probabilistic framework describing three distinct phases of the 
experiment: amplification, selection, and sampling. This framework defines the likeli-
hood of observing a variant as the selection process proceeds. Crucial to this is the para-
metrization of the sequence-to-fitness map, linking a variant’s genotype to its ability to 
form a capsid, i.e., viability. The sequence-to-fitness map is parametrized using a Neural 
Network (NN) trained to maximize the likelihood of the entire experiment. Notably, the 
training follows an unsupervised approach, excluding the viability label as part of the 
training data. Post-training, the model can classify sequences based on the sequence-to-
fitness map.

To benchmark our model’s ability, we compare it to a binary classifier distinguishing 
between viable and non-viable outcomes. This classifier employs a dense Neural Net-
work with the same architectural framework as the biophysical model but undergoes 
supervised training, enhancing its precision in classifying sequences.

An outstanding feature of the DMS library in [16] is its inclusion of insertions, not just 
mutations, in the wild-type sequence. This results in libraries, depicted in Fig.  7, con-
taining fragments of variable lengths. To effectively handle non-aligned sequences, both 
models integrate some convolutional layers that process the amino-acid sequence input 
before feeding it to the dense ones.

In conclusion, our results support the introduction of a biophysical model that pro-
vides a robust and interpretable computational framework to model the intricate 
mutational landscape characteristic of DMS experiments. The model proves useful in 
predicting and selecting viable AAV2 capsids, demonstrating high generalization power 
to predict out-of-sample test variants with considerable sequence diversity from the 
training set.

The model could be employed to generate novel variants predicted to produce viable 
capsids with high sequence diversity compared to the wildtype. In our future outlook, 
we envision leveraging the physics-informed machine learning approach to generate 
variant sequences, optimizing critical molecular properties like viability. Furthermore, 
this methodology holds significant potential for integration with other models aimed at 
optimizing diverse properties, including tropism. This presents a compelling pathway for 
engineering viral capsids tailored for use as viral carriers.

Furthermore, while the constraints to engineering a suitable vector and maintaining a 
live viral reservoir are evidently different, the design of AAV2 vectors is still likely to be 
informed/influenced by what we know about the natural evolution of the virus. A pos-
sible further development in this line is twofold. First, one could compare using some 
dimensionality reduction based analysis a la PCA how naturally evolving sequences 
compare with artificial ones. Second, and perhaps more interesting, would be to add to 
the training dataset, the set of natural homologs present in the databases (e.g. PFAM) 
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that display mutations to the reference WT in the segment artificially mutated to see if 
and how our model predictions improve.
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