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Abstract 

Background: Single‑cell RNA sequencing (sc‑RNASeq) data illuminate transcrip‑
tomic heterogeneity but also possess a high level of noise, abundant missing entries 
and sometimes inadequate or no cell type annotations at all. Bulk‑level gene expres‑
sion data lack direct information of cell population composition but are more robust 
and complete and often better annotated. We propose a modeling framework to inte‑
grate bulk‑level and single‑cell RNASeq data to address the deficiencies and leverage 
the mutual strengths of each type of data and enable a more comprehensive inference 
of their transcriptomic heterogeneity. Contrary to the standard approaches of factor‑
izing the bulk‑level data with one algorithm and (for some methods) treating single‑
cell RNASeq data as references to decompose bulk‑level data, we employed multiple 
deconvolution algorithms to factorize the bulk‑level data, constructed the probabilistic 
graphical models of cell‑level gene expressions from the decomposition outcomes, 
and compared the log‑likelihood scores of these models in single‑cell data. We term 
this framework backward deconvolution as inference operates from coarse‑grained 
bulk‑level data to fine‑grained single‑cell data. As the abundant missing entries in sc‑
RNASeq data have a significant effect on log‑likelihood scores, we also developed 
a criterion for inclusion or exclusion of zero entries in log‑likelihood score computation.

Results: We selected nine deconvolution algorithms and validated backward 
deconvolution in five datasets. In the in‑silico mixtures of mouse sc‑RNASeq data, 
the log‑likelihood scores of the deconvolution algorithms were strongly anticor‑
related with their errors of mixture coefficients and cell type specific gene expres‑
sion signatures. In the true bulk‑level mouse data, the sample mixture coefficients 
were unknown but the log‑likelihood scores were strongly correlated with accuracy 
rates of inferred cell types. In the data of autism spectrum disorder (ASD) and normal 
controls, we found that ASD brains possessed higher fractions of astrocytes and lower 
fractions of NRGN‑expressing neurons than normal controls. In datasets of breast 
cancer and low‑grade gliomas (LGG), we compared the log‑likelihood scores of three 
simple hypotheses about the gene expression patterns of the cell types underlying 
the tumor subtypes. The model that tumors of each subtype were dominated by one 
cell type persistently outperformed an alternative model that each cell type had 
elevated expression in one gene group and tumors were mixtures of those cell types. 
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Superiority of the former model is also supported by comparing the real breast cancer 
sc‑RNASeq clusters with those generated by simulated sc‑RNASeq data.

Conclusions: The results indicate that backward deconvolution serves as a sen‑
sible model selection tool for deconvolution algorithms and facilitates discerning 
hypotheses about cell type compositions underlying heterogeneous specimens such 
as tumors.

Keywords: Single‑cell RNASeq data, Deconvolution, Probabilistic graphical models, 
Heterogeneity

Introduction
Transcriptomic heterogeneity is probed by RNA sequencing data at bulk and single-
cell levels. Each type of data has its merits and shortcomings. Bulk-level RNASeq data 
fail to directly disclose subpopulation variability in a heterogeneous sample, but are 
less vulnerable to measurement noise and missing values and often better annotated. 
Single-cell RNASeq (sc-RNASeq) data directly manifest cellular heterogeneity, but 
also suffer from high measurement noise and dropouts, and sometimes lack proper 
annotations. Integrating bulk-level and single-cell RNASeq data by leveraging their 
complementary merits can address these deficiencies and provide a more comprehen-
sive understanding of the heterogeneous cell types and their compositions in samples.

A standard approach for unveiling heterogeneity from bulk-level data is deconvolu-
tion. Denote an n×m matrix E the expression data of n genes and m bulk samples. 
Assume each bulk sample comprises cells from k types, and the expression data of a 
sample is the weighted sum of the expression profiles of the k cell types. Under these 
assumptions E is approximately factorized into the product of two matrices:

Q is an n× k signature matrix denoting the expression profiles of n genes in k cell 
types, and P is a k ×m mixture coefficient matrix denoting the proportions of k cell 
types in m samples, where the P entries in each column are nonnegative and sum to 1, 
and the Q entries are nonnegative as well.

Numerous deconvolution algorithms have been proposed (see reviews [1, 2]), and 
they fall into two general categories. Complete deconvolution methods simultane-
ously solve Q and P from E by imposing various constraints on the inferred matrices 
[3, 4]. Incomplete deconvolution methods take one matrix either as given or inferred 
from external sources and optimize the other matrix. Very few incomplete decon-
volution methods fix P and optimize Q [5], and the majority of the methods fix Q 
and optimize P [6–11].  Q is either explicitly given as an input [12], constructed from 
cell type specific marker genes [13], derived from the reference expression profiles 
at bulk-level [7] or single-cell RNASeq data [14–18]. Several benchmark studies also 
extensively compared multiple deconvolution methods in a wide range of experimen-
tal datasets and performance settings [1, 19, 20].

Despite diversity and richness of these methods, integration of bulk-level and sin-
gle-cell data (if undertaken) is solely achieved by utilizing the single-cell data as a ref-
erence to infer the composition of the bulk-level data.

(1)E ≈ Q · P.
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Inference from single-cell to bulk-level data directly matches the goal of deconvolu-
tion as the signature matrix Q can be directly derived from the single-cell data. Hence we 
term this inference direction forward deconvolution. However, forward deconvolution 
may be infeasible or misleading as single-cell data are sparse, noisy and sometimes unan-
notated. A prominent example is cancer transcriptomics data. Tumor subtypes have 
distinct expression patterns in their bulk-level RNASeq data [21–23]. Yet in the single-
cell data the cancer cell types are often unannotated and the data quality is substantially 
inferior, as indicated in prior studies [24, 25] and our analysis on the data of breast can-
cer and low grade gliomas in the Results section. Therefore, prior deconvolution meth-
ods using single-cell RNASeq data as a reference are not applicable in certain contexts.

To fix these caveats of forward (single-cell → bulk-level data) deconvolution, we 
propose a backward deconvolution framework to integrate bulk-level and single-cell 
RNASeq data and simultaneously infer (1) signature expression profiles of cell types, (2) 
mixture coefficients of cell types in each bulk sample, (3) relations between expression 
profiles of bulk-level sample subtypes and cell types, (4) cell type assignments in sin-
gle-cell RNASeq data. Backward deconvolution employs several forward deconvolution 
algorithms to the bulk-level data and derives the probabilistic graphical models of single-
cell gene expressions from the deconvolution results. It then evaluates the log-likelihood 
scores of these models in the single-cell data and selects the best model according to its 
log-likelihood score.

Representation of sc-RNASeq data as a probabilistic graphical model has been pro-
posed since the early stage of single-cell technology development. The most common 
approach is to borrow topic models or Latent Dirichlet Allocation (LDA) in text analysis 
[26] to the sc-RNASeq data. LDA models word distributions per topic and topic dis-
tributions per document with two nested Dirichlet distributions. There is a direct cor-
respondence from documents, words and latent topics in text analysis to cells, genes 
and cell functions in sc-RNASeq data. LDA is now widely used in dimension reduction 
[27, 28] and clustering [29] of sc-RNASeq data alone. A more relevant approach uni-
fies bulk-level and single-cell RNASeq data with a more general probabilistic graphical 
model (URSM [10]). Our work shares a common spirit of a hierarchical probabilistic 
representation of the data generation process but substantially differs from them in sev-
eral important aspects. Most LDA studies on gene expression data apply to single-cell 
RNASeq data only and fail to integrate both single-cell and bulk-level data. Although 
URSM tackles integration of both types of data, the graphical model is based on one set 
of particular assumptions about the data. In contrast, backward deconvolution directly 
tackles bulk-level and single-cell data integration and allows multiple modeling assump-
tions encoded by different forward deconvolution algorithms. These features are unique 
in our approach.

We justified backward deconvolution by selecting nine deconvolution algorithms and 
applying the framework to five single-cell and bulk-level datasets: (1) the sc-RNASeq 
data of mouse gene expressions and its in-silico mixtures as the virtual bulk-level data, 
(2) the true bulk-level and single-cell RNASeq data of mouse gene expressions, (3) the 
bulk-level and single-cell RNASeq data of the brains of ASD patients and normal con-
trols, (4) the breast cancer bulk-level and single-cell RNASeq data, (5) the low-grade 
gliomas bulk-level and single-cell RNASeq data. In the mouse datasets with cell type 
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annotations, the log-likelihood scores were aligned with several common performance 
metrics such as the accuracy rate of predicted cell type assignments, similarity between 
true and inferred signature matrices, and similarity between true and inferred mixture 
coefficients matrices. In the ASD data, backward deconvolution outcomes indicated 
that ASD brains possessed higher fractions of astrocytes and lower fractions of NRGN-
expressing neurons. In the cancer datasets with no cell type annotations, we compared 
three simple hypotheses about cell type expression patterns and found the model that 
cancer cells of each subtype were dominated by one cell type was superior to other mod-
els. The results indicate that backward deconvolution (1) is a sensible model selection 
tool for deconvolution algorithms and (2) facilitates discerning hypotheses about cell 
type compositions underlying heterogeneous specimens.

Materials and methods
Overview of the backward deconvolution framework

The objective of backward deconvolution is to simultaneously infer the gene expression 
signatures of the underlying cell types and their compositions in selected sample types 
from both bulk-level and single-cell RNASeq data. The outcome of a standard decon-
volution algorithm (forward deconvolution) is a decomposition of bulk-level data as in 
Eq. 1. Our method converts the decomposition outcome into a probabilistic graphical 
model for single-cell gene expressions, and applies the model to fit single-cell data. We 
term this method backward deconvolution as inference is undertaken from bulk-level 
to single-cell data. Rather than incurring one algorithm to perform decomposition, 
backward deconvolution compares several forward deconvolution algorithms on their 
goodness of fit to the single-cell data and selects the best one. Therefore, it should be 
viewed as a framework of constructing and selecting models from multiple deconvolu-
tion algorithms.

Figure 1A illustrates the backward deconvolution framework. The inputs include (1) 
bulk-level RNASeq data of samples labeled with subtypes, (2) single-cell RNASeq data 
of samples from the same bulk-level subtypes (but not necessarily from the same spec-
imens of the bulk-level RNASeq data), (3) a subset of marker genes pertaining to the 
sample subtypes, and group labels of the marker genes whose expression profiles distin-
guish sample subtypes, (4) a number of forward deconvolution algorithms. The outputs 
include (1) transcription signatures of gene markers for each cell type, (2) mixture coef-
ficients of cell types in each bulk sample, (3) the probabilistic graphical model of the 
deconvolution algorithm that best fits the single-cell data, (4) cell type assignments in 
sc-RNASeq data. Briefly, it consists of the following steps. First, we generate a reference 
signature matrix and a reference signature distribution from single-cell or bulk-level 
RNASeq data. A reference signature matrix comprises the mean marker gene expres-
sions of each cell type. A reference signature distribution specifies the expression distri-
bution of each marker gene group in each cell type. Second, we employ multiple forward 
deconvolution algorithms to factorize the bulk-level data (Eq. 1). Third, from the out-
come of each deconvolution algorithm we construct a probabilistic graphical model for 
single-cell gene expressions. Finally, we evaluate the marginal log-likelihood scores of 
all models in the single-cell data and select the best model based on the log-likelihood 
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scores. In each model we also assign each cell to a cell type according to its posterior 
probabilities of cell types given the sc-RNASeq data.

Fitting single‑cell gene expression data with probabilistic graphical models constructed 

from forward deconvolution outcomes

The major highlight contrasting backward deconvolution with canonical forward decon-
volution approaches is to employ the deconvolution outcomes of the bulk-level data to 
fit the single-cell gene expression data. Here we give a brief preview of this approach 
and provide details of each step in subsequent sections. We assume both single-cell 
and bulk-level RNASeq data are generated from the same process which can be repre-
sented by a probabilistic graphical model with a hierarchical structure. Samples in the 
data are drawn from several subtypes (e.g., different tissue types or cancer subtypes). 
Each sample constitutes cells belonging to several cell types where the cell type compo-
sition depends on the sample subtype. Cells of each type possess a specific expression 
signature of selected marker genes. Furthermore, the marker genes are categorized into 
several groups where members of each gene group possess similar expression patterns 
across cell types. Single-cell RNASeq data are noisy measurements of the marker gene 
expressions of individual representative cells from the process. Bulk-level RNASeq data 
are measurements of the marker gene expressions of mixtures of the representative cells.

More precisely, denote t, s,π , γ , x random variables of sample identities, sample sub-
types, cell types, gene group labels, and individual gene expressions, respectively. The 
probabilistic graphical model constitutes two families of parameters: P(π |s) ’s specify the 
conditional probabilities of cell types given sample subtypes, and P(x| γ ,π) ’s specify the 
conditional probabilities of marker gene expressions given gene group labels and cell 
types. A complete model should also include prior probabilities P(s) and P(γ ) . These 
priors are discarded here as the sample subtypes are determined by the sample identities 
t and the gene group labels are determined by gene identities. All these variables have 
subscript indices denoting individual genes, cells or bulk samples. The joint likelihood of 
observing the sc-RNASeq data becomes:

where indices i, j, l are over samples, cells and genes respectively. Evaluation of the joint 
likelihood resembles the sampling process and can be concisely represented by a plate 
notation illustrated in Fig. 1B. Multiplications of the terms over the three indices ( l, j, i ) 
are represented as nested boxes inside out. The term P(si|ti) is deterministic as the sub-
type of each sample is unique and known.

Forward deconvolution can be viewed as inference of these model parameters from 
the bulk-level (and single-cell) RNASeq data. Complete methods infer Q and P from the 
bulk-level data, and we can derive P(x| γ ,π) and P(π |s) accordingly. Incomplete methods 
infer P from the bulk-level data and reference single-cell data, and we can derive P(π |s) 
according to P and directly construct P(x| γ ,π) from the reference single-cell data. Once 
these parameters are decided, we plug them into Eq. 2 and evaluate the likelihood score 
of the sc-RNASeq data.

(2)L(T , S,�,X) =

i

P(si|ti)

j

P πij|si
l

P(xijl |γl ,πij).
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In some applications cell type labels are unobserved. For instance, in tumor data typi-
cally normal cells are annotated but cancer cells are not since there are few standard 
ways to delineate cancer cell subtypes. To cope with this scenario we evaluate the mar-
ginal likelihood function over possible cell type labels:

The log (marginal) likelihood score quantifies the goodness of fit of a deconvolution 
model to the sc-RNASeq data but does not take model complexity into account. We add 
a regularization term to the log-likelihood value and evaluate the Bayesian Information 
Criterion (BIC) score [30]:

N  is the number of cells in the sc-RNASeq data and D is the degree of freedom in the 
model.  D is determined by the number of independent entries in P(π |s) and P(x| γ ,π).

The backward deconvolution framework applies several existing forward deconvolu-
tion algorithms to the bulk-level RNASeq data and uses the BIC scores (Eq. 4) to meas-
ure the goodness of the inferred parameters to fit the sc-RNASeq data. Despite the 
counterintuitive inference direction from bulk-level to single-cell data, this approach has 

(3)L(T , S,X) =
∏

i

P(si|ti)
∏

j

∑

πij

P
(
πij|si

)∏

l

P(xijl |γl ,πij).

(4)LB(T , S,X) = logL(T , S,X)−
D

2
logN .

Fig. 1 A Overview of the backward deconvolution framework. Single‑cell and bulk‑level RNASeq data are 
used to generate reference signature matrix and distribution. Nine deconvolution algorithms decompose 
the bulk‑level data into Q · P . For six incomplete methods Qref  and GPref  are derived from the single‑cell 
data. The deconvolution outcomes are converted into probabilistic graphical models. Finally, these models 
are employed to the sc‑RNASeq data to evaluate log‑likelihood scores. The model with the highest score 
is selected. B The probabilistic graphical model of cell‑level gene expressions. It is represented by a plate 
notation.  t , s,π , γ , x denote bulk sample identity, sample subtype, cell type, gene group index, and gene 
expression respectively. The three boxes from outside in denote individual bulk samples, cells within each 
sample, and gene expressions within each cell. The terms pertaining to an interior box are repeated multiple 
times for each instance pertaining to an exterior box. Within each sample the term P(π |s) is repeated for 
each cell. Within each cell the term P(x|γ ,π) is repeated for each gene. The likelihood of the joint model is 
depicted in Eq. 2
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several advantages. The framework can be treated as an ensemble learning method if we 
want to deconvolve bulk-level data by combining multiple forward deconvolution algo-
rithms, or a model selection criterion if we want to compare the performance of multi-
ple deconvolution methods. It also offers a more robust way to integrate both bulk-level 
and single-cell expression data since it allows multiple assumptions about the relations 
between bulk-level and single-cell data and can tolerate noisy and missing entries as well 
as lack of annotations in single-cell data.

Generating reference signature matrices and distributions from the single‑cell data

A reference signature matrix specifies the mean expression value of each marker gene 
in each cell type. A reference distribution specifies the expression distribution of each 
marker gene group in each cell type. Both are derived from single-cell or bulk-level data. 
In this section, we describe the procedures of deriving these quantities from the single-
cell data if the sc-RNASeq data have cell type annotations and reliable quality.

For incomplete deconvolution algorithms, the reference signature matrix Qref  ( Q in 
Eq. 1) is directly obtained from the sc-RNASeq data. Denote X an n× Nc matrix of sc-
RNASeq data with n genes and Nc cells, and τ a 1× Nc vector of k cell type annotations 
of the Nc cells. The reference signature matrix Qref  is an n× k matrix where 
Qref

(
i, j
)
= 1

Nj

∑
{l:τ(l)=j} Xil is the average expression of gene i over type j cells in X ( Nj 

is the number of type j cells).
Qref  collapses the expression levels of a gene over multiple cells of the same cell type 

into one mean value. A more precise quantification of single-cell gene expression val-
ues is to infer their distributions. To simplify the model of single-cell gene expressions, 
we make two explicit assumptions. First, marker genes in the single-cell data are sub-
divided into groups. Second, the normalized expressions of marker genes in the same 
group are drawn from the same distribution. Both assumptions are valid as marker genes 
are selected according to the criteria that they are expressed in specific sample types or 
cell types. These assumptions enable us to estimate the expression value distributions of 
a small number of gene groups rather than all the marker genes separately. The reference 
signature distribution GPref  is an ng × k × I tensor for ng gene groups, k cell types and I 
intervals of gene expression values.  GPref (i, j, l) specifies the probability that the expres-
sion values of gene group i in cell type j fall in the lth interval. It is inadequate to directly 
estimate GPref  from X because marker genes in the same group may have quite different 
scales of expression levels. To make the expression levels of all marker genes compara-
ble, we rank-transformed the expression values of each gene and normalized the ranks 
into cumulative distribution function (cdf ) values. In the normalized sc-RNASeq data 
matrix Xcdf  , all entries take values in [0,1] and the orders of entry values in each row 
are preserved from X .  GPref (i, j, :) specifies the probability mass function of normalized 
expression values of gene group i and cell type j in the interval [0,1] . We subdivided [0,1] 
into I intervals, identified genes �i belonging to group i and cells Sj belonging to type j , 
and collected the corresponding Xcdf  entries Xcdf (�i, Sj) .  GPref (i, j, :) was obtained from 
Xcdf (�i, Sj) by kernel density estimation. To avoid minus infinity values of log-likelihood 
scores in the subsequent steps, all entries in GPref  need to be positive. We replaced zero 
entries in GPref (i, j, :) with a small value ǫ and renormalized GPref (i, j, :) to make them 
sum to 1 ( ǫ = 0.001 in our analysis).
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Constructing reference signature matrices and distributions from the bulk‑level data

When the sc-RNASeq data are absent, unannotated or of poor quality (such as the 
breast cancer and LGG data used in the present study), we have to construct the ref-
erence signature matrices and distributions from the bulk-level data alone. Complete 
deconvolution algorithms infer the signature matrix Q and the mixture coefficients P 
from the bulk-level data E (Eq. 1). The reference signature matrix Qref  is the inferred sig-
nature matrix Q , yet the reference signature distributions GPref  cannot be obtained from 
the deconvolution outcomes. For incomplete deconvolution methods, both Qref  and 
GPref  need to be constructed from the bulk-level data before launching deconvolution. 
To construct Qref  and GPref  for incomplete methods we have to impose stronger hypoth-
eses about the relations between the expression patterns of bulk-level sample subtypes 
and cell types. Below we describe the procedure of constructing the reference signature 
matrix Qref  and distribution GPref  of three simple models from the bulk-level RNASeq 
data of breast cancer or low-grade glioma.

Any model specifying the relations between sample subtypes and cell types has to cal-
culate each entry in Qref  and GPref  from a subset of samples in the bulk-level data. To 
establish the bases of all possible models we derived three quantities from the bulk-level 
data: (1) partition of the normalized bulk-level data into a grid of gene groups and sam-
ple subtypes, (2) the mean expression value of each grid component, (3) quantization of 
the grid component mean expression matrix. Denote an n×m matrix E the bulk-level 
RNASeq data of n genes and m samples. The first step is to normalize E into a matrix 
Ecdf  by evaluating the cdf values of each row of E . This step is identical to the construc-
tion of Xcdf  from X . The second step is to partition Ecdf  into a grid of ng gene groups 
(row partition) and ns sample subtypes (column partition). Denote a 1× n vector Ŵ the 
gene group labels and a 1×m vector � the sample subtype labels, and �i ≡ {g : Ŵg = i} 
and Sj ≡ {s : �s = j} the gene group i members and sample subtype j members respec-
tively. Each component Ecdf (�i, Sj) of the grid contains the entries of Ecdf  belonging to 
gene group i and sample subtype j . The breast cancer bulk-level data comprises three 
gene groups and four sample subtypes (basal, Her2-enriched, luminal A and luminal B), 
and the LGG data comprises three gene groups and three sample subtypes (Idh1 muta-
tion with chromosome 1p/19q co-deletion, Idh1 mutation without the co-deletion, and 
wild type). The third step is to construct a grid-level expression data by taking the aver-
age of Ecdf  entries in each grid component: denote G an ng × ns matrix and 
Gij ≡

1
|�i||Sj |

∑
a∈�i ,b∈Sj

Ecdf (a, b) . The fourth step is to quantize G to an ng × ns matrix C 

of trinary values indicating whether each grid component is up/down regulated or nei-
ther. For each gene group 1 ≤ i ≤ ng , we extracted the Ecdf  entries belonging to gene 
group i : Ecdf (�i, :) ≡

{
Ecdf (a, b) : a ∈ �i, 1 ≤ b ≤ m

}
 , and calculated their mean µgi 

and standard deviation σgi .  Cij = +1 if Gij ≥ µgi + σgi ,  Cij = −1 if Gij ≤ µgi − σgi , and 
Cij = 0 otherwise. This quantization specifies whether the mean value of each grid com-
ponent significantly deviates from the global mean value of the same gene group in posi-
tive or negative directions.

We then constructed the three models about the gene expression patterns underlying 
the unobserved cell types. These models are illustrative examples of simple hypotheses 
about the relations between sample subtypes and cell types but by no means an 
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exhaustive list of possible gene expression patterns of cell types.  M1 stipulates that 
tumors of each subtype is dominated by one unique cell type, hence the gene expression 
profiles of cell types resemble the bulk-level data. For breast cancer data, M1 assumes 
that the bulk samples of each subtype (basal-like, Her2-enriched, luminal A, luminal B) 
are dominated by one cell type. Hence the reference signature matrix and distribution of 
a cell type are estimated from the bulk-level data of the corresponding cancer subtype. 
The bulk-level expression data (METABRIC) are treated as the reference sc-RNASeq 
data to construct Qref  and GPref  (Fig. 4A, left panel). Entries in the signature matrix Qref  
are the average of the corresponding entries of (gene, sample subtype) combinations in 
E : Qref

(
i, j
)
= 1

|Sj |

∑
b∈Sj

E(i, b) . Entries in GPref  are estimated by the corresponding 

entries of (gene group, sample subtype) combinations in Ecdf  . For gene group i and sam-
ple subtype j , we extracted the Ecdf  entries Ecdf (�i, Sj) ≡

{
Ecdf (a, b) : a ∈ �i, b ∈ Sj

}
 . 

We then applied kernel density estimation to Ecdf (�i, Sj) and assessed the probability 
mass function pM(x) on intervals 0 : 1

I : 1 .  pM is a 1× I vector and 
pM(x) ≡ Pr( x−1

I ≤ y ≤ x
I ) for y ∈ Ecdf (�i, Sj) . To avoid zero probability values in GPref  , 

we replaced zero values in pM with a small but nonzero value ǫ ( ǫ = 0.001 in our analy-
sis) and renormalized pM to make the components sum to 1. Finally, we substituted the 
vector pM in GPref (i, j, :) . This estimation treats the bulk-level data as the single-cell data 
and equates sample subtypes and cell types. Hence the assumption of M1 holds.
M2 stipulates that each cell type has high expressions in one gene group and low expres-

sions in other gene groups. Therefore, we identified the bulk-level grid components corre-
sponding to up or down regulation and assigned them to proper positions to assess Qref  and 
GPref  . For breast cancer, M2 assumes that there are three cell types. Each cell type has high 
expression values of one marker gene group and low expressions of the other two marker 
gene groups, and the three marker gene groups are enriched with cell cycle control, immune 
response, and estrogen response respectively. We then quantized the grid of bulk-level 
expression data of (gene groups, sample subtypes) into trinary values. To estimate the refer-
ence signature matrix and distribution of a marker gene in a gene group (for instance, cell 
cycle control) in the corresponding cell type (the cell type with high expressions of cell cycle 
control genes), we solicited the sample subtypes with high expressions of the marker gene 
group (basal-like, Her2-enriched, and luminal B) and estimated Qref  and GPref  from the 
selected bulk samples (Fig. 4A, left panel). Similarly, Qref  and GPref  of a cell cycle gene in a 
cell type with low expression of the cell cycle gene group are estimated from the bulk samples 
with low expressions of the cell cycle gene group (luminal A samples). For a gene group i , we 
identified two subsets of sample subtypes where the quantized grids C had + 1 and − 1 val-
ues: H+

i ≡ {j : C
(
i, j
)
= 1} , H−

i ≡ {j : C
(
i, j
)
= −1} . We then identified the samples whose 

subtypes belonged to H+
i  and H−

i  respectively: S+i ≡
{
s : �s ∈ H

+
i

}
, S−i ≡

{
s : �s ∈ H

−
i

}
.  

For each gene g ∈ �i and sample subtype j , Qref

(
g , j

)
= 1

|S+j |

∑
{s∈S+j }E(g , s) if j = i , and 

Qref

(
g , j

)
= 1

|S−j |

∑
{s∈S−j }E(g , s) if j  = i . In other words, Qref

(
g , j

)
 is the average of gene g 

expressions over the up-regulated entries for cell type i and the average of gene g expressions 
over the down-regulated entries for other cell types. Similarly, the distribution 
GPref (i, j = i, :) was estimated from the entries of gene group i ( �i ) and the up-regulated 
samples S+i  : Ecdf

(
�i, S

+
i

)
: {Ecdf (a, b) : a ∈ �i, b ∈ S+i } , and GPref (i, j  = i, :) was esti-

mated from �i and the down-regulated samples S−i  : 
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Ecdf
(
�i, S

−
i

)
: {Ecdf (a, b) : a ∈ �i, b ∈ S−i } . Therefore, GPref (i, j = i, :) assigns high proba-

bility mass to high expression values and GPref (i, j  = i, :) assigns high probability mass to 
low expression values, which meets the assumption of M2.
M3 serves as a negative control of M1 as the two models have the same number of cell 

types and M3 is obtained from M1 by rearranging rows and columns to maximize the 
difference. In breast cancer data, we permuted entries in each row of G independently 
and exhausted all 243 = 13824 permutations. Each permutation ψ induced a matrix Gψ . 
We then exhausted all 24 column permutations of Gψ and  found the best alignment with 
G . The resulting grid matrix Ĝ yields the max–min L2-norm difference from G:

ψ denotes a combination of independent permutations of entries in each row, φ 
denotes a column permutation, and φ ◦ ψ denotes a composition of independent row 
entry permutations followed by a column permutation. The optimal permutation φ̂ ◦ ψ̂ 
assigns a grid component in G to another grid component in Ĝ . Therefore, we redefined 
Sj for sample subtype j and S+i  and S−i  for gene group i according to φ̂ ◦ ψ̂ and re-calcu-
lated Qref  and GPref  following the procedure for constructing M1.

In LGG data, we found that Ĝ yielded one column of low expressions for all gene 
groups. This column (cell type) can fit many cells with sparse nonzero entries, hence will 
distort the log-likelihood scores and make M3 more favorable. To circumvent this distor-
tion, we manually re-assigned grids in G to form Ĝ such that each cell type consisted of 
at least one up-regulated gene group and one down-regulated gene group. The M3 signa-
ture matrix of the LGG data is displayed in Supplementary file 3: Figure S3A.

Deconvolving bulk‑level gene expression data

A (forward) deconvolution algorithm factorizes a bulk-level gene expression matrix E 
into the product of the cell type signature matrix Q and the sample mixture coefficient 
matrix P (Eq.  1). Incomplete algorithms require Q as explicitly given or derived from 
an external source. We used Qref  generated from Sect. "Generating reference signature 
matrices and distributions from the single-cell data" or "Constructing reference signa-
ture matrices and distributions from the bulk-level data". Complete algorithms return 
both Q and P . Here we selected nine deconvolution algorithms: DeconRNASeq [12], lsfit 
[31], DWLS [14], NMF [3], two versions of deconf (original and fast) [32, 33], bMIND 
[34], RADs [35], and Scaden [36]. Scaden was a supervised deep learning algorithm that 
required labels of sc-RNASeq data, hence was not applicable for our cancer datasets due 
to lack of cancer cell type annotations. The first and last three are incomplete methods 
and the remaining three are complete methods. An R package CellMix [33] includes 
deconf and lsfit implementations, and the remaining algorithms have their own R or 
Python packages. The complete methods differ in their respective cost functions (e.g. 
Euclidean distance between the target matrix and the NMF estimate in deconf original 
and Kullback–Leibler divergence in Brunet’s NMF), their algorithms (multiplicative or 
least squares based), stopping criteria, and the ways the non-negativity and scaling con-
straints are enforced onto the signature and the mixture coefficient matrices. Thus, two 
algorithms (Brunet’s NMF and deconf) represent two significantly different methods 

(5)Ĝ = arg max
ψ

min
φ

|G − Gφ◦ψ |2.
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while the two versions of deconf represent the class of similar methods. All the incom-
plete methods are variations of non-negative least squares optimization algorithm and 
have different approaches to estimating cell proportions from signatures. This combina-
tion of both similar and dissimilar methods can offer additional insights into the perfor-
mance of the backward deconvolution framework.

Constructing probabilistic graphical models of single‑cell gene expressions

As mentioned in Sect. "Fitting single-cell gene expression data with probabilistic graphi-
cal models constructed from forward deconvolution outcomes", the sc-RNASeq data 
generation process is represented as a probabilistic graphical model with two families 
of conditional probabilities P(π |s) and P(x| γ ,π) . We propose a procedure to construct 
P(π |s) and P(x| γ ,π) from the forward deconvolution outcome based on the following 
assumptions: (1) expressions from the same gene group and cell type are drawn from 
the same underlying distribution, (2) samples of the same subtype possess similar cell 
type compositions, (3) each reference or inferred signature vector (a column in Q ) can be 
viewed as the expression profile of a virtual bulk sample; after rescaling the reference sig-
nature value of each gene is in the expression value range of the same gene in the bulk-
level data, (4) the expression patterns in the bulk-level and single-cell RNASeq data are 
preserved after conversion into cdf values. Assumptions 1 and 2 simplify the models by 
collapsing the parameters pertaining to members of a gene group and a sample subtype. 
They are sensible if adequate marker genes of each cell type or subtype are selected from 
data. Assumption 3 ensures we can reasonably infer P(x| γ ,π) by comparing rescaled Q 
values with bulk-level data values. It is sensible since bulk-level samples typically have 
small variations in the L2-norms of their expression profiles. Assumption 4 ensures we 
can employ the models inferred from the bulk-level data to calculate the log-likelihood 
scores of single-cell data even though the two datasets may have very different scales. 
It is valid since the expression patterns are largely preserved after rank transformation 
[37].
P(π |s) is directly estimated from the mixture coefficient matrix P . Denote Si the bulk 

samples belonging to subtype i , then P
(
π = j|s = i

)
=

∑
l∈Si

Pjl∑
j′=1−k ,l∈Si

Pj′l
.

Complete algorithms report signature matrices Q , and incomplete algorithms take the 
reference signature matrices as inputs ( Q = Qref ).

The signature matrix Q reports the average expression value of each gene in each cell 
type.  P(x| γ ,π) reports the distribution of expression values conditioned on a gene 
group and cell type. Direct estimation of P(x| γ ,π) from Q is not stable due to the small 
number of entries to assess cdf values. Each gene in Q has only a small number (the 
number of cell types) of expression values. Hence the rank transform of rows in Q gives 
a very crude quantization of signature matrix values. To mitigate this problem, we calcu-
lated the cdf values of Q entries in terms of a much larger pool E (the bulk-level RNASeq 
data) rather than Q itself. In other words, the cdf value of an entry Qij was calculated by 
comparing Qij with the entries in the ith row of E , rather than the entries in the ith row of 
Q . The rank-transformed matrix of Q was used to estimate P(x| γ ,π) . However, entries 
in Q and E are not necessarily comparable since Q may be derived from the single-cell 
RNASeq data which often has a very different scale than E . We adopted assumption (3) 
in Sect.  "Constructing probabilistic graphical models of single-cell gene expressions" 
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to rescale each Q column by the median column norm of E , and rank-transformed the 
rescaled Q into cdf values. The following procedure was executed.

1. Rescaled each column of Q separately to make the signature matrix entries have 
comparable values as the bulk expression data E . Calculated the L2-norm of each col-
umn in E and denoted them Z = {z1, · · · , zm} , and the L2-norm of each column in Q 
and denoted them Y = {y1, · · · , yk} . Denoted the median of Z as z . Rescaled column 
j of Q by multiplying it by a factor rj = z

yj
 : Q̂∗,j = rj · Q∗,j . Each column of the rescaled 

signature matrix Q̂ had an identical L2-norm z as median L2-norm over all bulk-level 
samples, implying that the cell type gene expression profiles were comparable to the 
bulk sample gene expression profiles after rescaling.

2. Normalized the rescaled signature matrix into cdf values. For each entry Q̂ij in Q̂ 
(gene i and cell type j ), found row i in E (expressions of gene i in all bulk samples) 
and denoted it as Ei,∗ . Calculated the cdf value of Q̂ij in Ei,∗ as the fraction of Ei,∗ 
entries with values ≤ Q̂ij , and denoted its value as Wij . Repeated the same procedure 
for all genes and prototypes and completed the signature cdf value matrix W  .  W  
entry values range in [0,1] and have dimension n× k.

3. Estimated P(x| γ ,π) from W  . Each column in W  denoted the normalized expression 
profile of a cell type. For each γ = i and π = j , solicited the W  entries for gene group 
i and cell type j .  P(x| γ ,π) was the density estimate of the selected entries. Similar 
to prior procedures, we subdivided [0,1] into I equal intervals 0 : 1

I : 1 and applied 
kernel density estimation to calculate the probability value of each interval. We also 
replaced zeros in P(x| γ ,π) with a small value ǫ and re-normalized the entries to 
make them legitimate conditional probabilities.

The input Qref  of each incomplete algorithm is often accompanied with a reference 
signature distribution GPref  . We also use GPref (γ ,π , :) as a more precise model of P(x| 
γ ,π) . Consequently, each incomplete algorithm reports two types of P(x| γ ,π) : PQ(x| 
γ ,π) derived from Q and PGPref

(x| γ ,π) derived from GPref  , while each complete algo-
rithm reports only PQ(x| γ ,π).

Comparing the deconvolution algorithms in fitting sc‑RNASeq data

Once the parameters of P(π |s) and P(x| γ ,π) were inferred from the deconvolution out-
comes of bulk-level RNASeq data, we substituted them into Eqs.  2–4 to evaluate the 
joint likelihood, marginal likelihood, and BIC score of the sc-RNASeq data respectively. 
For each incomplete method we had two sets of estimated P(x| γ ,π) tables ( PQ(x| γ ,π) 
and PGPref

(x| γ ,π) ) to evaluate the likelihood and BIC scores.
The degree of freedom D in the BIC score (Eq. 4) is determined by the number of inde-

pendent entries in P(π |s) and P(x| γ ,π) . For instance, in breast cancer data there are 4 
sample subtypes ( s values), 3 gene groups ( γ values), and 10 intervals of gene expression 
values ( x values). The two models described in Sect. "Constructing reference signature 
matrices and distributions from the bulk-level data" have 4 and 3 cell types ( π values) 
respectively. Therefore, model 1 has 4 × 3+ 3× 4 × 9 = 120 free parameters, and 
model 2 has 4 × 2+ 3× 3× 9 = 89 free parameters. Complexity penalty is not needed 
when all models in a dataset have the same degree of freedom.
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Single-cell RNASeq data is filled with many zero entries. Abundant zero entries impli-
cate their dominant contribution to the BIC scores. We propose a simple criterion for 
inclusion or exclusion of zero entries in log-likelihood score computation according to 
the concentration or depletion of zero entries in the grids of (gene group, sample sub-
type) combinations. The procedure and decision for zero entry inclusion/exclusion of 
the datasets are reported in Sect.  "Handling zero entries in calculating log-likelihood 
scores of the sc-RNASeq data".

For incomplete methods in annotated sc-RNASeq data, backward deconvolution uses 
the single-cell data to both infer the models and evaluate the log-likelihood scores. To 
avoid double usage of the single-cell data, we split sc-RNASeq data into the sets for con-
structing the reference signature matrix and distribution (training data) and evaluating 
the log-likelihood score of the model (test data). In our experiments we assigned the 
same number of cells to the training and test data.

We selected the deconvolution model that yielded the highest BIC score on the sin-
gle-cell data and reported Q,P,P(π |s),P(x|γ ,π) , and the cell type assignments in the 
single-cell data. To infer the type of a cell  j , we calculated the posterior likelihood score 
conditioned on each possible cell type:

where s
(
j
)
 denotes the sample subtype of cell j , index l is over all genes, and xjl denotes 

the normalized expression of gene l in cell j . Cell j is assigned to the cell type of the 
highest posterior likelihood.

Handling zero entries in calculating log‑likelihood scores of the sc‑RNASeq data

Correctly handling the missing values in the sc-RNASeq data is crucial to ensure the 
reliability of downstream analyses. There are two general approaches handling dropout 
(zero) entries in the sc-RNASeq data. The first approach imputes the dropout entries. 
Numerous imputation techniques based on clustering, deep learning algorithms, or fit-
ting various statistical models underlying the observed expression values have been pro-
posed [38–40]. The imputation approach infers zero entries with information of nonzero 
entries hence suffers from two shortcomings: the imputed values are based on specific 
assumptions of the data, and the information of zero entries is discarded. The second 
approach treats missing values as informative biological signals, hence uses them for 
inferring relevant information for downstream analyses. It was shown that the distribu-
tion of dropout entries can be used for cell type identification and trajectory inference 
[41, 42], feature selection tasks [43], data projections [44], and others. In line with the 
second approach, we proposed a simple criterion for including or excluding zero entries 
in computing the log-likelihood scores of a sc-RNASeq dataset. Intuitively, if zero entries 
are strongly enriched or depleted in specific (gene group, cell type) combinations, then 
they likely reflect low or high values in the gene expression signatures hence should 
be included in log-likelihood calculation. Conversely, if zero entries are not strongly 
enriched in specific (gene group, cell type) combinations, then they likely reflect random 
noise due to dropouts hence should be discarded. This intuitive criterion is translated 
into the following procedure. First, the sc-RNASeq data was subdivided into a grid of 

(6)L
(
πj = u|s

(
j
)
= σ ,X

)
∝ P(π = u|s = σ)

∏

l

P(xjl |γ = γl ,π = u).
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gene groups and cell types. If cell types were not annotated, then cells were subdivided 
by the subtypes of their bulk samples. Second, in each grid component we counted the 
number of zero entries. Third, we randomly permuted cells in the data 10,000 times and 
counted the number of zero entries in each grid component and each random permuta-
tion. Fourth, in each grid we calculated the mean and standard deviation of zero entry 
counts over 10,000 random permutations. Fifth, we counted the grid components whose 
zero entry counts were above or below the confidence interval of six standard devia-
tions from the mean in the permuted data. Sixth, if the number of grid components with 
enriched or depleted zero entries constituted a substantial fraction of the total num-
ber of grid components (0.25 in our study), then we included zero entries in computing 
log-likelihood scores. Otherwise we excluded zero entries in computing log-likelihood 
scores.

Supplementary file 4: Table S1 reports the numbers of grids with enriched or depleted 
zero entries in each sc-RNASeq dataset. All but the two breast cancer datasets con-
tain more than 25% of grids with enriched or depleted zero entries. Hence we excluded 
zero entries in log-likelihood score computation for the two breast cancer datasets and 
included zero entries for all other datasets.

Selecting marker genes and cells from four single‑cell and bulk‑level datasets

We validated the backward deconvolution framework in five transcriptomic datasets: (1) 
the mouse sc-RNASeq data of 5 cell types and artificial mixtures of these data as the 
virtual bulk-level data, (2) the mouse bulk-level and single-cell RNASeq data of 4 tissue 
types and the 9 constituting cell types, (3) one bulk-level and one single-cell RNASeq 
datasets of human brain regions from Autism Spectrum Disorder (ASD) subjects and 
normal controls, (4) one bulk-level and two single-cell RNASeq datasets of breast can-
cer, (5) one bulk-level and one single-cell RNASeq datasets of low-grade gliomas (LGG). 
Below we describe the procedure of selecting marker genes of each dataset.

In‑silico mixture of mouse sc‑RNASeq data

We generated bulk level in-silico mixtures from single-cell RNASeq data of a mouse 
gene expression database [45]. We selected cells from five different cell types—oligoden-
drocytes, T cells, lung endothelial cells, hepatocytes, and fibroblast cells—along with the 
genes that were differentially expressed in those cell types, which we denoted as marker 
genes. These cell types were chosen primarily because their numbers of cells were rela-
tively abundant and their expression patterns were relatively distinct. A marker gene of 
a cell type meets two criteria: (1) it has nonzero expressions in at least 75% of the cells 
of the target cell type and in at least 60 cells of each of the remaining cell types, and (2) 
it has a p-value < 0.05 for the one-tailed unpaired t-test between the target cell type and 
each of the remaining cell types. In total, we selected 226, 163, 92, 84, and 78 marker 
genes (for a total of 643) and 713, 375, 324, 196, and 1,082 cells (for a total of 2,690) for 
each cell type, respectively.

Mouse bulk‑level and single‑cell RNASeq data

The bulk-level and single-cell RNASeq data from the Tabula Muris Senis database were 
used [46]. We selected four tissue types: fat, heart, limb, and liver, and solicited cells from 
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the same tissue types in the mouse single-cell RNASeq data. The four tissue types con-
stituted nine cell types: endothelial cells, fibroblast/mesenchymal cells, epithelial cells, 
immune cells, smooth muscle cells, skeletal cells, endocardial cells, Schwann cells and 
hepatocyte cells. The diverse family of immune cells (e.g., T cells, B cells, macrophages, 
etc.) was collapsed into one cell type in order to reduce the number of cell types and 
hence simplify deconvolution. Fibroblast and mesenchymal cells were also collapsed into 
one cell type as they had very similar expression profiles.

For each gene, we extracted the cells of each type and calculated the mean and stand-
ard deviation of their sc-RNASeq data in the nine cell types. The signal-to-noise ratio 
between cell types i and j was the difference of their mean values mi and mj normalized 
by their standard deviations σi and σj : SNRij =

2(mi−mj)

(σi+σj)
.  A gene was selected as a marker 

gene of cell type i if its SNRij ≥ 0.5 for all j  = i . There were totally 4439 marker genes 
and 33,777 cells in the single-cell RNASeq.

ASD bulk‑level and single‑cell RNASeq data

The bulk-level and single-cell RNASeq data of brain regions from ASD patients and nor-
mal controls were from distinct sources. The sc-RNASeq data [47] comprises 104,559 
cells from ASD and normal subjects of two brain regions: anterior cingulate cortex 
(ACC) and prefrontal cortex (PFC). Together these cells belong to 15 simplified cell 
types: IN-PV, IN-SST, IN-SV2C, IN-VIP, L2/3, L4, L5/6, L5/6-CC, Neu-NRGN, Neu-
mat, Microglia, Astrocytes (AST), Endothelial, Oligodendrocyte Progenitor Cells (OPC), 
and mature Oligodendrocytes. Two types of astrocytes were combined into one astro-
cyte cell type, and two types of Neu-NRGN cells were combined into one Neu-NRGN 
cell type. The first 10 cell types are neuron cells and the remaining 5 are supporting cells. 
The bulk-level RNASeq data [48] comprises 104 samples from ASD and normal subjects 
of three brain regions: Brodmann areas 10 (decision making), 19 (vision processing) and 
44 (motor aspect of speech).

We identified the marker genes with differential expressions in each of the 15 cell types 
in the sc-RNASeq data. Velmeshev et al. [47] reported the differentially expressed genes 
between diagnostic phenotypes (ASD vs. normal), brain regions and individuals. We 
collected these genes as the candidates for the marker genes. For each candidate gene, 
we calculated the mean expression values over the cells of each type and sorted the cell 
types accordingly. The overwhelming score of a gene was the mean expression value of 
the top cell type minus the sum of mean expression values of all other cell types. We 
selected the genes whose overwhelming scores ≥ 0 . If a cell type had less than 20 marker 
genes according to this condition, we then relaxed the criterion and selected the top-
ranking genes according to their overwhelming scores. 500 marker genes were selected 
accordingly.

The brain regions covered in the single-cell and bulk-level data are not identical. To 
make likelihood evaluation feasible we have to establish a mapping between bulk-level 
sample subtypes and single-cell sample subtypes. There are four sample subtypes in the 
sc-RNASeq data (two phenotypes multiply two brain regions) and six sample subtypes 
in the bulk-level data (two phenotypes multiply three brain regions). We exhausted all 
6 possible assignments from three brain areas in the bulk-level data to two brain areas 
in the single-cell data. For each possible assignment, we evaluated the L2 scores of 6 
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incomplete methods, and identified the assignment which gave the highest L2 scores 
in most of the methods. The assignment ACC → BA19, PFC → BA44 was chosen 
accordingly.

Breast cancer bulk‑level and single‑cell RNASeq data

We extended the PAM50 genes [49] with a procedure described in Tiong et al. 2022 [50]. 
The PAM50 genes were divided into three groups by k-means clustering on the META-
BRIC gene expression data. The three groups were enriched in cellular functions related 
to cell cycle control, immune responses, and estrogen receptors respectively. To extend 
the PAM50 gene list, we calculated correlation coefficients of other genes in TCGA-
BRCA and METABRIC data with the PAM50 genes, and averaged the correlation coef-
ficients over the members of each PAM50 group. Candidate genes were sorted by the 
maximum of group-level average correlation coefficients in each dataset (TCGA-BRCA 
and METABRIC) separately. A total of 200 genes were selected (intersection of genes 
sorted by the maximum group-level average correlation coefficients from both datasets), 
and further filtered down to 127 genes after selecting for genes having > 70% valid entry 
in the single cell data.

The breast cancer sc-RNASeq datasets contain non-cancer cells and cancer cells with 
sparse valid (nonzero) entries. We cleaned the data by considering only cancer cells with 
≥ 1

3 of the valid entries among the marker genes since the proportions of normal cells in 
single-cell RNASeq data were unlikely those from tumors. There were 281 and 12,019 
selected cancer cells in the two single-cell RNASeq datasets respectively. In addition, 
Supplementary file 4: Table S1 indicates that the breast cancer sc-RNASeq datasets have 
more disperse distributions of zero entries. Therefore, zero entries were discarded when 
evaluating the log-likelihood scores. Penalty terms of model complexity in Eq.  4 were 
added since the models had different numbers of parameters.

To provide more direct evidence supporting superiority of M1 to fit the breast can-
cer sc-RNASeq data, we compared the clustering outcomes of an independent breast 
cancer sc-RNASeq dataset with those of two virtual sc-RNASeq datasets simulated 
from M1 and M2 . We downloaded the GSE161529 data comprising 305,157 tumor cells 
from 45 patients [51]. Due to hardware limitations, a total of 50,000 cells (cells with the 
most non-zero entries) from 33 patients were initially selected for our analysis. Seurat 
preprocessing pipeline [52] further filtered out the cells to the final number of 14,004 
cells, which were subsequently used for clustering and t-SNE visualization. The virtual 
sc-RNASeq data of 40 patients (10 patients for each subtype, 1000 cells for each patient) 
were generated by sampling from the probabilistic graphical models (Eq. 2).  P(x| γ ,π) ’s 
were inferred from the  M1 or M2 signature matrix, and P(π | s) ’s were estimated from 
the METABRIC bulk-level data by DWLS. The simulated cells were also clustered using 
Seurat.

Low‑grade glioma bulk‑level and single‑cell RNASeq data

Marker genes for glioma were derived based on our previous observation [50, 53] that 
3 LGG subtypes: IDH-mutant with chromosome 1p19q co-deletion (CoDel), IDH-
mutant with no chromosome 1p19q co-deletion (NoCoDel), and IDH wildtype (WT) 
possess highly expressed genes in three gene groups. Corresponding MSigDB gene sets 
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of the enriched cellular functions were tested for subtype-specific differential expres-
sion (t-test) in TCGA LGG gene expression data, further narrowed down to genes hav-
ing > 70% valid entry in the single cell data, resulting in a final list of 61 genes.

Introducing variations to artificial mixtures bulk‑level data

One dataset in our analysis is in-silico mixture of mouse sc-RNASeq data: the virtual 
bulk-level data was computationally generated by sampling and mixing the experimental 
single-cell data. A straightforward process of generating the in-silico bulk-level data is to 
fix the mixture coefficients and exert no additional noise beyond the experimental sin-
gle-cell data. However, since the mouse sc-RNASeq data was relatively clean, nearly all 
deconvolution algorithms we picked successfully decomposed the virtual data generated 
from this process. To test the capacity of the deconvolution algorithms, we introduced 
two types of variations from the aforementioned artificial mixtures: fluctuations of the 
mixture coefficients vector and additive noise to the virtual bulk expression data. Denote 
−→µ ≡ (µ1, · · · ,µ5) the ideal mixture coefficient vector of a sample subtype. Each vec-
tor has five components indicating the mixture coefficient of five cell types. We created 
variations of the mixture coefficient vectors from −→µ  by sampling the mixture coefficient 
vectors 

−→
�  from a Dirichlet distribution:

Parameters −→µ  and η specify the mean mixture coefficient vector and scale of con-
centration around the mean, and Z

(−→µ , η
)
 is a normalization constant. A large η makes 

−→
�   narrowly concentrated around the mean, and a small η makes 

−→
�  disperse in a wide 

range.
After 

−→
�  was sampled from Eq.  7 we sampled ([�1N ], · · · , [�5N ]) cells from the sc-

RNASeq data with replacement and calculated the average expression profile of the 
marker genes over the sampled cells. Denote −→x  this average expression profile vector. 
We then introduced nonnegative noise to the virtual bulk sample by augmenting −→x  with 
a random value sampled from a gamma distribution. The noisy expression of gene i in 
the virtual bulk sample is:

ǫi was sampled from a gamma distribution with shape parameter α = 0.1xi , rate param-
eter β = 0.1 and mean α

β
= xi , and the noise ǫi was diminished by a factor δ .  f (i,−→µ ) 

is an indicator function of the condition that gene i is a marker gene of the dominant 
cell type(s) of the ideal mixture coefficients vector −→µ  . This noise is more challenging for 
deconvolution algorithms as it lifts the expression values of non-target cell types only 
and hence blurs the differential expressions between target and non-target cell types. 
The level of noise was controlled by the diminishing factor δ . We considered two η val-
ues 50, 3 and two δ values 0, 0.7, hence generated 4 sets of artificially mixed bulk data. 
The data of η = 50, δ = 0 has no fluctuation of mixture coefficients vectors and no arti-
ficial noise of expression data, hence should be accurately deconvolved by most reason-
able algorithms. The data of η = 3, δ = 0.7 has the highest levels of mixture coefficient 

(7)P
(−→
� |−→µ , η

)
≡

1

Z
(−→µ , η

)
5∏

i=1

�
ηµi−1
i .

(8)yi = xi + f
(
i,−→µ

)
δǫi, ǫi ∼ Ŵ(0.1xi, 0.1).
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fluctuation and gene expression noise, hence will yield different results from different 
deconvolution algorithms.

Results
We validated backward deconvolution using nine forward deconvolution algorithms 
(Sect. "Deconvolving bulk-level gene expression data") and four single-cell and bulk-level 
transcriptomic datasets (Sect.  "Selecting marker genes and cells from four single-cell 
and bulk-level datasets"). In the two datasets of mouse tissues and the dataset of ASD 
brains, the cell types were annotated and the accuracy rates of cell type assignments 
were calculated. Consequently, we demonstrated validity of backward deconvolution by 
showing that the log-likelihood scores of nine deconvolution algorithms were correlated 
with several existing accuracy metrics. In the two datasets of human tumors, only nor-
mal cells were annotated with cell types (stromal cells, T cells, etc.), but cancer cells were 
not further annotated with refined cell types. Since our analysis focused on cancer cells, 
the accuracy rates of cell type assignments were inaccessible. Therefore, we adopted 
both indirect and direct approaches to validate backward deconvolution in cancer data. 
We proposed three simple hypotheses specifying the relation between tumor subtypes 
(which were annotated) and cancer cell types (which were not annotated), employed 
these hypotheses to construct the reference signature matrices and distributions, and 
compared their BIC scores of nine deconvolution algorithms. Intriguingly, one hypothe-
sis was persistently superior across the deconvolution algorithms and datasets. Further-
more, we clustered and visualized an independent breast cancer sc-RNASeq dataset and 
compared the clustering results with those of two virtual datasets simulated from two 
models. The virtual data simulated from the superior model of the indirect approach 
also better resembled the real sc-RNASeq data compared to an alternative model. The 
results didn’t truly substantiate the favorable hypothesis but at least indicated it better fit 
the single-cell data in our analysis.

In‑silico mixture of mouse sc‑RNASeq data

We downloaded the single-cell RNASeq data of the Tabula Muris database [45], selected 
2690 cells from five cell types—oligodendrocytes, T cells, lung endothelial cells, hepato-
cytes, and fibroblast cells—and 643 marker genes which were differentially expressed in 
one cell type (see Sect. "Selecting marker genes and cells from four single-cell and bulk-
level datasets" for the criteria of selecting marker genes and cells). We first constructed 
virtual bulk-level data by sampling and mixing the sc-RNASeq data in silico. Because 
both cell type annotations in the single-cell data and mixture coefficients of bulk-level 
data were available, we could directly relate accuracies in these two aspects with the log-
likelihood scores derived from backward deconvolution.

We considered 16 mixture coefficient vectors (subtypes) of the 5 cell types (Supple-
mentary file 1: Figure S1A, top-left panel). Five vectors had one dominant cell type (90%) 
and equal proportions for other cell types. Ten vectors had two dominant cell types (45% 
each). One vector had an equal proportion of each cell type. Each subtype constituted 
100 bulk samples, and each sample was mixed from N = 1000 randomly selected cells 
of the sc-RNASeq data. We introduced two types of variations to the artificial mixtures: 
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fluctuations of the mixture coefficient vector (parametrized by scale of concentration η ) 
and additive noise to the virtual bulk expression data (parametrized by noise diminish-
ing factor δ ). The procedure of introducing variations to artificial mixtures is described 
in Sect. "Introducing variations to artificial mixtures bulk-level data". We considered two 
η values 50, 3 and two δ values 0, 0.7, hence generated 4 sets of artificially mixed bulk 
data.

We calculated the log-likelihood scores for nine deconvolution algorithms. For each 
incomplete method, we calculated two log-likelihood scores of the models derived from 
Q ( L1 ) and GPref  ( L2 ). For each complete method, we calculated L1 only.

Table  1 reports the log-likelihood scores for nine deconvolution algorithms on the 
four in-silico mixture datasets. We also report the sums of L2-norms of the differences 
between the true and inferred mixture coefficient vectors, and those between the con-
ditional probabilities P(x| γ ,π) constructed from the reference signature distribution 
( PGPref

(x| γ ,π) ) and from the signature matrix ( PQ(x| γ ,π) ). These two metrics reflect 
deviations from the ground truth in two aspects of decomposition (mixture coefficients 
and signature matrices/distributions).

Two observations are salient. First, all L2 scores are considerably higher than all L1 
scores, indicating superiority of GPref  to Q in capturing the distribution of expression 
patterns. Second, for L1 scores incomplete methods are generally superior to two com-
plete methods. However, deconf_original is a complete method but has the best L1 in 
three datasets (50,0), (3,0), (3,0.7), and NMF is a complete method but has the best L1 in 
one dataset (50,0.7). The six incomplete methods have similar L1 scores which are lower 
than the best complete method but higher than the remaining two complete methods.

Since the log-likelihood scores were jointly determined by both mixture coefficients 
and signature matrices (or distributions), it may be misleading to directly correlate the 
log-likelihood scores with each aspect of decomposition. It is more sensible to correlate 
the L1 (and L2 ) scores with the differences of mixture coefficient vectors among the six 
incomplete methods, and with the differences of P(x| γ ,π) terms among the three com-
plete methods, since the incomplete methods have identical P(x| γ ,π) terms.  L1 scores 
are strongly anti-correlated with P(x| γ ,π) errors among complete methods. In contrast, 
correlations of the log likelihood scores and the mixture coefficient vector errors among 
incomplete methods are less clear. By removing the outlier values of bMIND, L2 scores 
are strongly anti-correlated with the mixture coefficient vector errors. Yet L1 scores are 
positively correlated with the mixture coefficient vector errors in the two datasets with 
δ = 0.7 , indicating that L1 scores are sensitive to the additive noise.

Supplementary file 1: Figure S1A-B displays the mixture coefficients of the ground 
truth and six incomplete methods in two virtual bulk datasets ((50,0), (3,0.7)). In both 
datasets, DWLS has among the top three L1 scores and the lowest deviation from the 
true mixture coefficients. Supplementary file 1: S1C-D displays the signature matrices of 
three complete methods in the same virtual datasets. In both datasets, deconf_original 
has the highest  L1 scores and the lowest deviation from the true P(x| γ ,π) distribution 
among the complete deconvolution methods.
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Table 1 Inference results on four in‑silico mixture datasets of mouse gene expressions

Each dataset is specified by parameters(η, δ) . The models derived from nine algorithms are employed to evaluate log-
likelihood scores.  L1 and L2 denote the log-likelihood scores using Q and GPref  to estimate P(x|γ ,π) . mixcoeffdiff denotes 
the sum of square errors between true and estimated mixture coefficients. GPdiff denotes the sum of square errors between 
true and estimated P(x|γ ,π) tables derived from GPref  and Q respectively. corr(L1,mixcoeffdiff) and corr(L2,mixcoeffdiff) 
denote the correlation coefficients between L1 ( L2 ) scores and mixcoeffdiff among the six incomplete methods. The values 
in the parentheses denote the correlation coefficients calculated by removing the outlier values of bMIND. corr(L1,GPdiff) 
denotes the correlation coefficient between L1 scores and GPdiff among the three complete methods. The three correlation 
scores are placed in the first row of each dataset and are not tied to DeconRNASeq

Dataset Algorithm L1 L2 Mixcoeffdiff GPdiff Corr ( L1 , 
mixcoeffdiff)

Corr ( L2 , 
mixcoeffdiff)

Corr ( L1 , 
GPdiff)

50,0 DeconR‑
NASeq

− 249,393,951 − 224,086,862 268.2334 4.7404 − 0.53410 
(− 0.9843)

− 0.13078 
(− 0.9763)

− 0.99937

lsfit − 248,591,799 − 223,776,456 37.8378 4.7404

DWLS − 248,589,313 − 223,776,154 31.4589 4.7404

bMIND − 248,752,114 − 223,697,645 434.8860 4.7404

RADs − 248,573,045 − 223,758,072 72.7437 4.7404

Scaden − 248,592,714 − 223,786,648 45.5412 4.7404

NMF − 253,602,492 86.3161 4.8995

deconf_
original

− 247,489,589 221.4328 4.3261

deconf_
fast

− 252,928,470 326.5905 4.8154

50,0.7 DeconR‑
NASeq

− 241,681,325 − 223,623,107 97.3704 2.9296 0.62184 
(0.9745)

− 0.33375 
(− 0.9998)

− 0.79777

lsfit − 241,677,422 − 223,623,064 101.1241 2.9296

DWLS − 241,646,421 − 223,621,886 77.6873 2.9296

bMIND − 241,799,095 − 224,015,260 302.5663 2.9296

RADs − 241,680,501 − 223,622,941 97.8673 2.9296

Scaden − 241,509,933 − 223,718,001 805.0240 2.9296

NMF − 240,774,724 989.7428 2.0442

deconf_
original

− 243,807,979 855.6803 2.9779

deconf_
fast

− 245,313,037 906.7191 2.6817

3,0 DeconR‑
NASeq

− 254,944,515 − 223,865,618 223.8699 4.1406 − 0.02364 
(− 0.9403)

0.54718 
(− 0.8879)

− 0.96092

lsfit − 254,870,022 − 223,822,966 35.2018 4.1406

DWLS − 254,869,417 − 223,823,925 30.0576 4.1406

bMIND − 254,842,203 − 223,749,266 410.4809 4.1406

RADs − 254,856,595 − 223,808,415 67.3426 4.1406

Scaden − 254,860,336 − 223,825,788 55.6792 4.1406

NMF − 261,474,788 93.1494 4.2554

deconf_
original

− 249,225,745 249.5048 4.1188

deconf_
fast

− 263,147,812 263.7308 4.2307

3,0.7 DeconR‑
NASeq

− 240,404,254 − 223,702,592 95.0107 2.4743 0.99382 
(0.9941)

− 0.99560 
(− 0.9997)

− 0.99976

lsfit − 240,402,966 − 223,702,534 98.4294 2.4743

DWLS − 240,392,342 − 223,702,650 81.3453 2.4743

bMIND − 240,373,460 − 223,718,322 315.6408 2.4743

RADs − 240,404,875 − 223,701,840 69.7891 2.4743

Scaden − 240,287,880 − 223,791,143 941.3429 2.4743

NMF − 250,257,532 1078.3727 2.9945

deconf_
original

− 239,159,412 1012.1345 2.7048

deconf_
fast

− 243,543,274 996.3748 2.8248
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Mouse bulk‑level and single‑cell RNASeq data

Beyond in-silico mixtures, we also assessed how backward deconvolution gauged the 
performance of deconvolution algorithms on true mouse bulk-level data. We down-
loaded and processed the mouse bulk-level and single-cell RNASeq data from Tabula 
Muris Senis [46], selected 4439 marker genes, 164 bulk samples from four tissue types 
(fat, heart, limb, and liver), and 33,777 cells from nine cell types (endothelial cells, fibro-
blast/mesenchymal cells, epithelial cells, immune cells, smooth muscle cells, skeletal 
muscle cells, endocardial cells, Schwann cells, and hepatocyte cells). The procedure of 
selecting and processing the data is reported in Sect. "Selecting marker genes and cells 
from four single-cell and bulk-level datasets".

Table  2 reports the log-likelihood scores for nine deconvolution algorithms on the 
subset of the mouse sc-RNASeq data. Similar to the in-silico mixtures, each incomplete 
method has a superior L2 than L1 . However, unlike in-silico mixtures the six incomplete 
methods yield superior L1 scores than most of three complete deconvolution algorithms 
(with one exception that NMF (a complete method) is superior to lsfit (an incomplete 
method)). Scaden, DWLS and RADs are the best in terms of both L1 and L2 scores.

The sample mixture coefficients in the true bulk-level data are unknown. Instead of 
comparing inferred mixture coefficients with ground truth, we predicted cell types in 
the test sc-RNASeq data according to each model (Eq. 6) and calculated their accuracy 
rates. Intriguingly, the accuracy rates for both Q and GPref  models are highly correlated 
with L1 and L2 . Moreover, Scaden, DWLS and RADs possess the highest L1 and L2 as 
well as the best accuracy rates for both Q and GPref  models. Figure 2 visualizes the bulk-
level and single-cell data and the true and predicted cell types from each model. The 
GPref  models of Scaden, DWLS and RADs offer near 83% accurate predictions on cell 
types, indicating that these three methods are indeed the best algorithms in this dataset.

The strong correlations between the log-likelihood scores and various error met-
rics inspired us to examine the relations of these quantities in a semi-formal 
way. Assume the sc-RNASeq data were generated by the aforementioned model. 
Denote θ∗ ≡ (Pθ∗(π |s),Pθ∗(x|γ ,π)) the true parameter values of the model, and 

Table 2 Inference results on a true bulk‑level mouse RNASeq dataset. celltypeaccuracy1 and 
celltypeaccuracy2 denote the accuracy rates of cell type assignments in single‑cell RNASeq data in 
terms of the P(x| γ ,π) models derived from Q and GPref  respectively

The correlation coefficients between L1 and celltypeaccuracy1 and between L2 and celltypeaccuracy2 are also reported in 
the two last columns

Algorithm L1 L2 Celltypeaccuracy1 Celltypeaccuracy2 Corr(L1

,celltypeaccuracy1)
Corr(L2

,celltypeaccuracy2)

DeconRNASeq − 126,652,924 − 70,722,794 0.159334 0.446563 0.81920 0.935071

lsfit − 127,418,320 − 75,076,458 0.144117 0.231097

DWLS − 124,996,556 − 68,933,318 0.345136 0.830008

bMIND − 126,171,077 − 71,343,524 0.224643 0.450234

RADs − 125,051,051 − 68,943,491 0.345491 0.826988

Scaden − 124,988,528 − 68,889,855 0.347090 0.828883

NMF − 127,306,451 0.053171

deconf_origi‑
nal

− 132,632,460 0.004914

deconf_fast − 132,569,233 0.086151
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θ ≡ (Pθ (π |s),Pθ (x|γ ,π)) the undetermined parameter values which are formulated as 
random variables in a Bayesian framework. Assume an infinite amount of data were gen-
erated from θ∗ , then the likelihood score asymptotically approximates the KL divergence 
between θ∗ and θ:

We then derive the approximation error of the bulk-level data deconvolution. Equa-
tion 1 gives the true deconvolution outcomes. Suppose Q̂ and P̂ are the approximated 
signature and mixture coefficients matrices respectively, then the reconstructed bulk-
level gene expression data becomes:

Each bulk-level expression vector is the average of a collection of single-cell expres-
sion vectors sampled from P(x|θ∗) . If P(x|θ∗) is given, then Q is obtained from the 

(9)L(x; θ) → Ex∼P(x|θ∗)[logP(x|θ)] = −DKL

(
θ∗ � θ

)
.

(10)Ê = Q̂ · P̂.

Fig. 2 A Single‑cell RNASeq data from selected tissue types in the Tabula Muris database, and true and 
predicted cell types inferred from multiple deconvolution algorithms. The lower portion visualizes the sorted 
sc‑RNASeq data of four tissues and nine cell types. Genes (rows) are sorted by the marker gene groups of 
each cell type. Cells (columns) are sorted by first tissue types and second cell types. Yellow vertical lines mark 
the boundaries of cells belonging to each tissue. Red and green colors indicate high and low expressions. For 
instance, fat tissues comprise endothelial, fibroblast and immune cells, which have elevated expressions in 
the marker genes of the corresponding groups. The upper portion visualizes the true and predicted cell types 
derived from each deconvolution algorithm. The bottom row indicates the true cell types of the sorted cells. 
Red: endothelial cells, green: fibroblast cells, blue: epithelial cells, yellow: immune cells, cyan: smooth muscle 
cells, magenta: skeletal muscle cells, orange: endocardial cells, green–blue: Schwann cells, purple: hepatocyte. 
The remaining rows indicate the predicted cell types from each deconvolution algorithm. For six incomplete 
methods (DeconRNASEq, lsfit, DWLS, bMIND, RADs, Scaden), we report the predicted cell types according to 
to L1 ( Qref  ) and L2 (whole). B Bulk‑level RNASeq data of the same tissue types. Genes (rows) follow the same 
order as Fig. 2A, and samples (columns) are sorted by the four tissue types
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mean sampled from P(x|γ ,π) , and P is P(π |s) . Hence Q · P is the mean of the expres-
sion data sampled from P(x|θ∗) . The approximation error then becomes the variance 
of the expression values.

If the true distribution P(x|θ∗) is not given, but instead the parameters θ are esti-
mated from finite data, then the approximation error becomes:

The first term indicates the variance from the true distribution, and the second term 
indicates the bias between the true and estimated distributions.

Finally, the errors on Q̂ and P̂ are approximated as:

For incomplete methods, in a relaxed condition Pθ∗(x|γ ,π) is given from the refer-
ence signature matrix or distribution. There is a close relation between the KL diver-
gence (Eq. 9) and square error (Eq. 14) of the mixture coefficients pertaining to θ and 
θ∗ . For complete methods such as NMF, −DKL(θ

∗ � θ) has the composite effect of 
both Q and P . Hence the relation between the KL divergence and each of the approxi-
mation error terms (Eqs. 13 and 14) is less obvious.

Bulk‑level and single‑cell brain RNASeq data of autism spectrum disorder (ASD) subjects

The two datasets in Sects. "In-silico mixture of mouse sc-RNASeq data"-"Mouse bulk-
level and single-cell RNASeq data" are considered as simple problems for deconvolu-
tion as the cells and bulk samples from the selected tissue types possess quite distinct 
gene expression patterns among the selected marker genes. To justify the utility of 
backward deconvolution in more challenging scenarios, we downloaded and pro-
cessed bulk-level and single-cell RNASeq data of brains of distinct regions from ASD 
patients and normal subjects. This is a more challenging dataset as the differences of 
cell type composition and gene expression signatures are much subtler between sam-
ples of different brain regions or diagnosis than between samples of different organs. 
Here we employed backward deconvolution to demonstrate that human brains exhib-
ited different cell type compositions between ASD patients and normal controls as 
well as between distinct brain regions.

Figure  3 displays the ASD data of 500 selected marker genes. Cells belonging to 
the four sample subtypes (control-ACC, control-PFC, ASD-ACC, ASD-PFC) com-
prise 15 cell types including various types of neuron cells and supporting cells such 
as microglia and astrocytes. The four sample subtypes possess different cell type com-
positions in sc-RNASeq data by visual inspection (Fig. 3A), yet these differences can 
be attributed to biases in sampling cells from the prepared tissues. The bulk-level data 

(11)Ex∼P(x|θ∗)[x − Ex∼P(x|θ∗)x]
2 ≡ varx∼P(x|θ∗)x.

(12)
|E−Q̂ ·P̂|2 ≡ Ex∼P(x|θ∗)[x−Ex∼P(x|θ)x]

2 = varx∼P(x|θ∗)x+(Ex∼P(x|θ∗)x−Ex∼P(x|θ)x)
2.

(13)|Q∗ − Q̂|2 ∝ |Pθ (x|γ ,π)− Pθ∗(x|γ ,π)|
2.

(14)|P∗ − P̂|2 ∝ |Pθ (π |s)− Pθ∗(π |s)|
2.
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look even less informative than the sc-RNASeq data (Fig. 3B). To answer the afore-
mentioned question (whether brains possess different cell type compositions between 
phenotypes and/or brain regions), we applied the backward deconvolution frame-
work to the dataset and compared the inferred mixture coefficients of the top-ranking 
forward deconvolution methods.

Table 3A reports the log-likelihood scores of nine deconvolution algorithms. Similar 
to the results on other datasets, the incomplete methods have superior likelihood scores 
than the complete methods, L2 scores are superior to L1 scores, and the cell type predic-
tion accuracy rates are highly correlated with the log likelihood scores. The three best 
methods according to both L2 and cell type prediction accuracy rates are Scaden, RAD, 
and DWLS.

We then examined the inferred P(π |s) tables of the three best methods (Table  3B). 
Intriguingly, for two of the top three methods (Scaden and DWLS) ASD samples have 
higher fractions of astrocytes than control samples conditioned on the brain regions. In 
other words, P

(
π = astrocyte|s = ASD,ACC

)
> P

(
π = astrocyte|s = control, ACC

)
 , 

and P
(
π = astrocyte|s = ASD, PFC

)
> P

(
π = astrocyte|s = control, PFC

)
 . In addition, 

ASD samples have lower fractions of NRGN-neurons than control samples conditioned 
on both brain regions. Finally, ACC samples have higher fractions of oligodendrocytes 
than PFC samples conditioned on the phenotypes (ASD or control).

Breast cancer bulk‑level and single‑cell RNASeq data

Breast cancers are classified into four subtypes [54]: basal, Her2-enriched, luminal A and 
luminal B. We expanded the well-known PAM50 genes [49] to 127 genes and catego-
rized them into three gene groups (Sect.  "Selecting marker genes and cells from four 
single-cell and bulk-level datasets" and [50]). The bulk-level samples of the four subtypes 

Fig. 3 A Single‑cell RNASeq data of 104,559 cells from 15 cell types and the samples of two brain regions 
(ACC and PFC) of ASD patients and normal controls. Cells (columns) are sorted by first sample subtypes 
and second cell types. Marker genes (rows) are sorted by the 15 gene groups. B Bulk‑level RNASeq data of 
90 samples from two brain regions (BA19 and BA44) of ASD patients and normal controls. BA19 and BA44 
are matched to ACC and PFC according to the L2 scores of the three best deconvolution methods (DWLS, 
Scaden and RADs) linking bulk‑level and single‑cell data. The genes (rows) follow the same order as in Panel A
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possess distinct combinatorial expression patterns on the three gene groups (Fig.  4A, 
left panel). However, it is unclear whether the combinatorial expression pattern of each 
PAM50 subtype is dominated by one cell type or attributed to a mixture of several com-
mon cell types.

To answer this question, we employed backward deconvolution to one bulk-level 
breast cancer RNASeq dataset (METABRIC, [55]) and two single-cell RNASeq 
datasets (GSE75688, [56]; GSE176078, [57]), and focused on cancer cells in the two 
sc-RNASeq datasets. We termed GSE75688 and GSE176078 small and large data-
sets as they comprised 281 and 12,019 cancer cells respectively after processing 
(Sect. "Selecting marker genes and cells from four single-cell and bulk-level datasets"). 
For each incomplete method, we proposed three simple hypotheses about the expres-
sion patterns of the cell types underlying the PAM50 subtypes. Hypothesis 1 ( M1 ) 
stipulates that the tumors of each subtype are dominated by one cell type (Fig.  5A, 
panel 1).  M2 stipulates that tumors of each subtype are mixtures of three cancer 
cell types which have elevated expressions in one gene group each (Fig. 5A, panel 2).  
M3 serves as a negative control of M1 by rearranging the sample subtypes and gene 
groups from the bulk-level data to maximize the difference from M1 (Fig. 5A, panel 
3). We checked whether certain models consistently outperformed other models in 
the two sc-RNASeq datasets.

Fig. 4 A Expressions of marker genes on one bulk‑level (METABRIC) and two single‑cell (GSE75688 and 
GSE176078) breast cancer datasets. Genes (rows) are sorted by three marker gene groups, and tumors/
cells (columns) are sorted by the four breast cancer subtypes. Red and green colors indicate high and low 
expressions, and white color indicates missing entries. B Their corresponding t‑SNE 3D projections of the data 
in Fig. 3A. Each point represents the expression data of one tumor/cell (a column in Fig. 3A). The colors of 
points indicate their breast cancer subtypes
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Figure  4A displays marker gene expressions on three datasets. Combinatorial 
expression patterns of PAM50 subtypes are salient in METABRIC and deteriorated in 
single-cell datasets. Figure 4B displays the t-SNE projections of samples in the three 
datasets. METABRIC samples of the four subtypes are clearly separated, but cells in 
the two single-cell datasets are clustered primarily by patient identities (annotations 
not shown) rather than PAM50 subtypes.

Table 4 reports the 21 L1 scores and 15 L2 scores on breast cancer data, and Fig. 5 
visualizes the signature matrices and inferred mixture coefficients of the bulk-level 
data. Similar to the mouse data, each incomplete method has a superior L2 than L1 
in all three datasets. BIC scores on bulk-level data serve as sanity check as the true 
model of the expression patterns of sample subtypes ( M1 ) is given. Indeed, for each 
incomplete method both L1 and L2 scores follow the order M1 > M2 > M3 , and for 
two complete methods the model of K = 4 outperforms the model of K = 3 , but their 
scores are inferior to those of incomplete methods. A complete method NMF is the 
only anomaly, as it has the L1 score comparable to the L1 scores of the best incom-
plete methods, and the model of K = 3 is superior to the model of K = 4.

Fig. 5 A Signature matrices and B Conditional probability matrices P(π |s) generated for breast cancer data. 
In each panel of (A), each row indicates a gene, and each column indicates an inferred cell type. Genes are 
sorted by their marker gene groups as in Fig. 4. The first three panels display the signature matrices of the 
reference models M1 −M3 manually constructed from the bulk‑level data. The remaining panels display the 
signature matrices inferred from three complete deconvolution algorithms with K = 3 and K = 4 . In each 
panel of B, each row indicates an inferred cell type, and each column indicates a breast cancer subtype. 
For five incomplete algorithms (DeconRNASeq, DWLS, lsfit, bMIND, RADs), we applied the three reference 
signature matrices M1 −M3 to infer the mixture coefficients and derived the P(π |s) matrices. The results are 
displayed in 3× 3 panels. For three complete algorithms (deconf_original, deconf_fast, NMF), we set K = 3 
and K = 4 and displayed the inferred P(π |s) matrices in 1× 6 panels
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The L1 scores on sc-RNASeq datasets are largely congruent with expectation.   M1 
has superior scores than M2 and M3 for all incomplete methods, and complete meth-
ods are generally inferior to the M1 scores of incomplete methods (except NMF). 
The L2 scores on sc-RNASeq datasets are also compatible with expectation. On the 
small sc-RNASeq data, the L2 scores of each incomplete method follow the order 
M1 > M3 > M2 . On the large sc-RNASeq data, they follow the order M1 > M2 > M3.

The superior log likelihood scores of M1 offer indirect evidence supporting the 
strength of M1 to fit the data. To provide direct evidence supporting the strength of 
M1 , we found another independent breast cancer sc-RNASeq dataset [57], clustered 
the cells and annotated their PAM50 subtypes, and then compared the clustering out-
comes with those of two virtual sc-RNASeq datasets simulated from M1 and M2 . Fig-
ure  6 visualizes the clustering outcomes of the real breast cancer sc-RNASeq data 
(Fig. 6A) and those of the two virtual datasets simulated from M1 and M2 (Fig. 6B). 
Supplementary file 5: Table S2 reports the confusion tables of clustering outcomes of 
the real breast cancer sc-RNASeq data (Table S2A) and those of the M1 and M2 simu-
lated data (Table S2B and S2C). Intriguingly, the M1 data resembles the real data more 
closely than the M2 data. In the real sc-RNASeq data, cells are clustered primarily by 
their PAM50 subtypes. This clustering pattern is nearly reproduced in the M1 data. In 
contrast, in the M2 data cells are clustered by the three hidden cell types rather than 
their PAM50 labels. Consequently, the model M1 better describes the breast cancer 
sc-RNASeq data than an alternative model M2.

Table 4 Inference results on breast cancer RNASeq dataset

The regularized L1 and L2 scores of 21 models on the bulk-level dataset and two single-cell datasets are reported

Algorithm Bulk L1 Bulk L2 Small sc L1 Small sc L2 Large sc L1 Large sc L2

DeconRNASeq M1 − 581,501 − 487,260 − 59,963 − 53,452 − 1,930,048 − 1,694,837

DeconRNASeq M2 − 619,231 − 504,911 − 68,157 − 54,586 − 2,146,903 − 1,712,380

DeconRNASeq M3 − 622,655 − 525,474 − 65,928 − 54,398 − 2,119,167 − 1,726,796

lsfit M1 − 581,512 − 487,250 − 59,967 − 53,451 − 1,930,248 − 1,694,759

lsfit M2 − 611,947 − 504,469 − 66,077 − 54,440 − 2,107,018 − 1,706,659

lsfit M3 − 620,176 − 521,745 − 65,889 − 53,995 − 2,111,609 − 1,713,069

DWLS M1 − 581,532 − 487,250 − 59,970 − 53,451 − 1,930,361 − 1,694,823

DWLS M2 − 610,417 − 504,692 − 65,585 − 54,417 − 2,092,453 − 1,706,134

DWLS M3 − 620,539 − 521,886 − 65,974 − 54,007 − 2,114,633 − 1,715,287

bMIND M1 − 581,606 − 487,253 − 59,976 − 53,445 − 1,930,604 − 1,694,717

bMIND M2 − 611,036 − 504,584 − 65,838 − 54,488 − 2,097,675 − 1,705,636

bMIND M3 − 620,246 − 522,259 − 65,931 − 54,108 − 2,113,414 − 1,719,336

RADs M1 − 581,752 − 487,734 − 59,863 − 53,389 − 1,926,330 − 1,692,877

RADs M2 − 610,387 − 504,721 − 65,683 − 54,453 − 2,091,412 − 1,705,257

RADs M3 − 621,098 − 521,355 − 66,002 − 53,726 − 2,111,351 − 1,701,333

NMF S3 − 595,958 − 61,424 − 1,970,872

NMF S4 − 605,731 − 63,171 − 2,016,043

deconf_original S3 − 631,875 − 65,098 − 2,088,872

deconf_original S4 − 616,722 − 64,338 − 2,044,264

deconf_fast S3 − 620,474 − 63,701 − 2,052,652

deconf_fast S4 − 612,236 − 63,228 − 2,024,205
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Low‑grade glioma bulk‑level and single‑cell RNASeq data

Low-grade glioma (LGG) patients in The Cancer Genome Atlas (TCGA) data were clas-
sified into three subtypes according to the mutation states of Idh1 gene and chromo-
some 1p/19q co-deletion [58]: Idh1 mutation with or without co-deletion and wild type. 
We identified 61 marker genes and labeled them to three gene groups enriched with 
neuron development, cell cycle, and immune response, respectively.

Supplementary file 2: Figure S2A displays expressions of the marker genes on LGG 
bulk-level [58] and single-cell [59] datasets, and Supplementary file 2: Figure S2B dis-
plays the t-SNE projections of samples in the two datasets. Similar to the breast cancer 
data, it is difficult to discern the underlying cell types from the gene expression visualiza-
tion and t-SNE projections alone.

We considered the same three hypotheses M1 −M3 and checked which hypothesis 
better fit the sc-RNASeq data. Supplementary file 6: Table S3 reports the 18 L1 scores 
and 15 L2 scores on one bulk-level and one single-cell LGG data, and Supplementary 
file 3: Figure S3 visualizes the signature matrices and inferred mixture coefficients 
of the bulk-level data. Similar to Sects.  "In-silico mixture of mouse sc-RNASeq data"-
"Breast cancer bulk-level and single-cell RNASeq data", the L2 scores are higher than 
the L1 scores of all models in both datasets.  M2 has the best L1 for each incomplete 

Fig. 6 (A) 3D t‑SNE projection of the breast cancer sc‑RNASeq data from [57]. Cells are colored by the 
subtypes of the samples they belong to. TNBC corresponds to the basal‑like subtype, and ER + corresponds 
to luminal A and B subtypes. B 3D t‑SNE projections of the breast cancer virtual cells simulated from the two 
models M1 and M2 respectively. Cell clusters correspond to the hidden cell types, and cell colors denote the 
PAM50 subtypes of their samples
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method, and the three complete methods have superior L1 than incomplete methods. 
In contrast, in the bulk-level data the L2 scores of incomplete methods follow the order 
M1 > M2 > M3 . In the single-cell data the L2 scores of incomplete methods follow the 
order M1 > M3 > M2 . Consequently, the M1 models derived from GPref  yield the best 
BIC scores.

Discussion
We propose a backward deconvolution framework to infer cell type gene expression sig-
natures and compositions by integrating both bulk-level and single-cell RNASeq data. It 
has several unique benefits. First, it compares and selects a decomposition model from 
multiple candidates rather than sticking to one particular decovolution algorithm and/
or hypothesis. Second, it handles the sc-RNASeq data with high-level noise, abundant 
zero entries, and no cell type annotations by constructing the reference signature matrix 
and distribution from bulk-level data with stronger hypotheses. Third, the log-likelihood 
scores provide a common metric for the joint effect of signature matrices (or distribu-
tions) and mixture coefficients in fitting the sc-RNASeq data. Fourth, the log-likelihood 
scores can be evaluated without knowing bulk sample mixture coefficients or single-cell 
annotations, hence can be applied in a wider range of datasets.

Several important discoveries are drawn from the analysis of five datasets. First, there 
is no universally superior deconvolution algorithm over all datasets, as each dataset 
has its best performing algorithm. Nevertheless, overall three incomplete deconvolu-
tion algorithms—DWLS, RADs and Scaden—tend to be superior to other algorithms 
in most datasets. Second, in the mouse data where the single cell annotations and/or 
bulk sample mixtures are provided, the log-likelihood scores of nine deconvolution 
methods are largely compatible with the deviations of mixture coefficients, gene expres-
sion conditional probabilities, or cell type assignments from the ground truth. Third, in 
the human brain data ASD samples tend to possess higher fractions of astrocytes and 
lower fractions of NRGN-expressing neurons than control samples. The first observa-
tion was reported in the study of the ASD sc-RNASeq data [47], and both observations 
were manifested in both bulk-level and single-cell data. Fourth, in the cancer data with 
no single-cell annotations and abundant zero entries, the model that tumors of each sub-
type are dominated by one cell type ( M1 ) outperforms an alternative model that each 
cell type possesses elevated expressions on one gene group and low expressions on the 
remaining gene groups ( M2 ). Moreover, in an independent breast cancer sc-RNASeq 
dataset, cells were clustered primarily by their sample subtypes (PAM50 subtypes). By 
comparing with the sc-RNASeq data simulated by the two hypothetical models, we 
found that the clustering patterns of the real data resembled M1 the most. The results 
are not definitive since we have not tested M1 against many alternative models. Nev-
ertheless, superiority of M1 to M2 has supporting evidence from prior studies. Tumors 
of the four breast cancer subtypes have similar expression profiles as the cell types in 
normal breast epithelium. It is thus widely hypothesized that the four breast cancer 
subtypes may arise from distinct normal cell types [60] or mutations or genetic rear-
rangements occurring in different populations of stem cells and progenitor cells [61]. 
Tumors of the three LGG subtypes are likely derived from the subclones arising from 
Idh1 mutations and chromosome 1p/19q co-deletion events [62]. Therefore, cancer cells 
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of a tumor subtype likely inherit the expression signatures from their tissues of origin 
or founder cells, and are relatively homogeneous. Heterogeneity is present primarily in 
the interactions between cancer cells and different types of normal cells such as multi-
ple families of immune cells, stromal cells, fibroblasts, and others [63]. By contrast, even 
though a tumor may comprise multiple subclones, cancer cells of these subclones are 
likely derived from the same cell type. Thus the cancer cells from the same tumor sub-
types may share the common expression patterns on the marker genes. This postulation 
by no means claims that cancer cells are homogeneous. Rather, we think homogeneity/
heterogeneity is relative to the examined features (gene expressions). Expressions of 
cancer cells from multiple subclones are likely heterogeneous in the genes involved in 
the molecular alterations segregating these subclones (sequence mutations, copy num-
ber variations, structural variations, etc.), but homogeneous among the marker genes 
selected from bulk-level data analysis. Fifth, all the L2 scores are superior to all the L1 
scores, and L2 often better matches anticipation than L1 . This suggests that Q is less reli-
able to estimate P(x|γ ,π) compared to GPref  .  Q collapses the entries of each gene in the 
cells of each type into one number by taking an average, but GPref  retains the entries of 
all the cells of each type. Hence the latter estimates P(x|γ ,π) from far more entries than 
the former and is more accurate.

The analysis of each dataset possesses some customized procedures. Most of these 
procedures pertain to selection of marker genes, gene groups, sample subtypes and cell 
types in the data. These procedures facilitate deconvolution operations and make the 
results more interpretable, but are strictly speaking not part of the backward deconvolu-
tion framework. These variables are treated as given in the framework. Users interested 
in applying the backward deconvolution programs into their data can ignore our cus-
tomized procedures and directly provide sample subtypes, cell types, and gene group 
labels of their data.

Several open problems remain in the present study. When sc-RNASeq data have 
poor quality or no annotations, the models underlying signature matrices and dis-
tributions are manually constructed from the bulk-level data. Manual construction 
is preferable currently as we aim to compare a few simple and interpretable hypoth-
eses about cancer cell type heterogeneity. However, in the long run it is desirable to 
have an algorithm capable of generating simple and sensible hypotheses for backward 
deconvolution. Although the log-likelihood scores combine the joint effects of mix-
ture coefficients and cell type specific gene expression patterns, the downside is that 
these two effects are entangled. Better statistical methods are required to disentangle 
the contributions of the two factors. In the current formulation of marginal likelihood 
function (Eq. 3), the effect of P(x| γ ,π) often outweighs that of P(π | s) because in each 
cell the former term multiplies over all marker genes yet the latter term appears only 
once. Hence differences in estimated mixture coefficients are likely overwhelmed by 
estimated cell type specific gene expression distributions. Similar problems arise in 
topic models of natural language processing, and several techniques have been pro-
posed to correct the asymmetric contributions [64, 65]. We plan to adopt some of 
these methods in the future development of backward deconvolution. Albeit we 
proposed a probabilistic graphical model in generating the sc-RNASeq data, we did 
not adopt a fully Bayesian approach to evaluate the likelihood scores. Instead of 
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integrating over the possible conditional probability P(π |s) and P(x| γ ,π) values, we 
estimated their values from the bulk data deconvolution outcomes and plugged the 
estimated values into the likelihood function. A fully Bayesian approach is conceiv-
able if we introduce proper prior distributions of P(π |s) and P(x| γ ,π) and employ 
standard Bayesian inference methods to evaluate the marginal likelihood scores over 
both cell type values and parameter values.
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