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Abstract 

Background: In bioinformatics, interactions are modelled as networks, based 
on graph models. Generally, these support a single-layer structure which incorporates 
a specific entity (i.e., node) and only one type of link (i.e., edge). However, real-world 
biological systems consisting of biological objects belonging to heterogeneous enti-
ties, and these operate and influence each other in multiple contexts, simultaneously. 
Usually, node similarities are investigated to assess the relatedness between biological 
objects in a network of interest, and node embeddings are widely used for studying 
novel interaction from a topological point of view. About that, the state-of-the-art 
presents several methods for evaluating the node similarity inside a given network, 
but methodologies able to evaluate similarities between pairs of nodes belonging 
to different networks are missing. The latter are crucial for studies that relate different 
biological networks, e.g., for Network Alignment or to evaluate the possible evolution 
of the interactions of a little-known network on the basis of a well-known one. Exist-
ing methods are ineffective in evaluating nodes outside their structure, even more 
so in the context of multilayer networks, in which the topic still exploits approaches 
adapted from static networks. In this paper, we presented pyMulSim, a novel method 
for computing the pairwise similarities between nodes belonging to different mul-
tilayer networks. It uses a Graph Isomorphism Network (GIN) for the representative 
learning of node features, that uses for processing the embeddings and computing 
the similarities between the pairs of nodes of different multilayer networks.

Results: Our experimentation investigated the performance of our method. Results 
show that our method effectively evaluates the similarities between the biologi-
cal objects of a source multilayer network to a target one, based on the analysis 
of the node embeddings. Results have been also assessed for different noise levels, 
also through statistical significance analyses properly performed for this purpose.

Conclusions: PyMulSim is a novel method for computing the pairwise similarities 
between nodes belonging to different multilayer networks, by using a GIN for learning 
node embeddings. It has been evaluated both in terms of performance and validity, 
reporting a high degree of reliability.

Keywords: Node similarity, Multilayer network, Network analysis, Embeddings, 
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Background
Biological systems are comprised of a multitude of individual objects (e.g., molecules, 
genes, cells, organisms, or entire ecosystems) connected among them. Network theory 
models biological objects as nodes, while the related interactions (or relationships) as 
edges. It is a part of graph theory, which defines a network as a graph, where vertices 
(nodes) and links (edges) possess attributes.

Usually, the terms graph and network are used interchangeably, however, graph tends 
to be more common in formal areas (e.g., mathematics, computer science) while network 
in fields of a more applicative nature (e.g., biology, bioinformatics). In this paper, we will 
use network to identify the model that represents biological interactions, and graph to 
refer to its formal structure. Similarly, the terms biological entity and biological object are 
often used interchangeably, in bioinformatics and related contexts. In detail, an entity 
refers to any living or non-living component within a biological system, while an object 
is somewhat more specific and is often used to describe a tangible or well-defined item 
within a biological system. We will not stick to this subtle differentiation in our paper, 
conforming to the interchangeability of terminologies.

Biological interactions are generally studied to investigate essential processes, such 
as: gene regulation, disease propagation, drug effectiveness, evolutionary pathways, 
and biological interactions [1, 2]. Traditionally, these are represented by using single-
layer networks which support an only specific type of entities and interactions (e.g., 
protein-protein interactions, gene-gene interactions, drug-drug interactions). However, 
real-world biological systems consisting of biological objects belonging to heterogene-
ous entities that operate and influence each other in multiple contexts, simultaneously, 
since any biological function is rarely taken into consideration as an isolated element in 
the overall system. Therefore, a (typical) static representation on a single layer does not 
allow evaluating the heterogeneity of the interactions that occur in a biological system, 
limiting the overall vision.

In this context, multilayer networks are establishing as a novel model for the intricate 
and heterogenous interactions among (as many heterogeneous) biological objects. These 
allow representing complex systems as a collection of interconnected layers, referring 
each one to the biological entity to which a set of objects belongs.

In network science, node similarity represents a particularly relevant research area. 
Regardless of the network model, nodes with similar features can be clustered in com-
munities, whose internal and external interactions are driven by the effect of homoph-
ily and heterophily. We may denote these as follows: when interactions between nodes 
belonging to the same cluster occur more often than expected, the network is consid-
ered as homophilic; otherwise, a network is considered as heterophilic when interactions 
between nodes belonging to different clusters occur more often than expected. As for 
our interest, it is important to specify that homogeneous biological networks are homo-
philic, therefore these are driven by the general principle “similarity breeds connections” 
[3]. However, a multilayer network may represent an exception if its own objects consists 
of heterogeneous entities, as the heterophily will be essential for the definition of the 
interlayer edges and cannot be omitted in the similarity analysis; by extension, the same 
issue concerns heterogeneous networks. It is evident as the evaluation of node simi-
larity is strongly affected by the network model (e.g., static, temporal, heterogeneous, 
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multilayer), as well as the context in which the analysis takes place: within the network 
or between networks. Briefly, it is enough to understand that a method for evaluating 
node similarity cannot ignore the model, hence the use of a method for a static model on 
a multilayer network may lead to misleading results.

In recent years, Graph Neural Network (GNN) [4] have proven to be a relevant tool in 
research on interaction networks for purposes related to the prediction and classifica-
tion of graph-based structures, based on node similarity [5]. For instance, GNNs have 
demonstrated efficiency and robustness in tasks for the identification of candidate gene-
disease associations [6], and for inferring drug-target interactions [7] or protein-protein 
interactions [8], as well as for integrating the close relations between molecular interac-
tion networks and functional genomics data [9].

The most common GNN architectures are: Graph Convolutional Network (GCN) [10], 
Graph SAmple and aggreGatE (GraphSAGE) [11], Graph Attention Network (GAN) 
[12], and Graph Isomorphism Network (GIN) [13].

In the context of our interest mainly focused on the topological analysis of a multi-
layer network and the representation learning for node embedding, the GIN stand out 
as a compelling choice for several issues, of which we briefly describe the key-points as 
follows. A GIN offers an end-to-end learning, wherein both node- and graph- level fea-
tures can be seamlessly integrated and optimized jointly via its own holistic approach, 
which ensures that relevant information from both local and global structures is effec-
tively captured for a more robust and accurate prediction. All this translates in its abil-
ity to capture and leverage topological similarities between node of multiple networks, 
deeply investigating the structure of the underlying graphs [14]. Unlike traditional archi-
tectures that only support simplistic network representations, a GIN offers a data-driven 
approach that can adapt to the inherent complexity and variability of real-world network 
data, effectively accommodating to node connectivity and to the size of the network. 
Furthermore, compared to other architectures, a GIN exhibits remarkable flexibility and 
expressive power [15]. GIN exhibited high representational power, outperforming other 
GNNs in terms of accuracy, classification benchmarks, and performance. According to 
Xu et al. [16], the GIN almost perfectly fits the training data, proving an (empirically) 
high representational power, while the other GNN architectures severely underfit the 
training data, in a comparative analysis. This aspect leads to consider the GIN as the 
most powerful GNN architecture in terms of discriminative power, as well as the most 
suitable architecture in tasks where discriminating entities in the presence of noise is 
fundamental [17]. For our purpose, this versatility represents a further advantage, espe-
cially if we take into consideration that the scope of our application is biological net-
works, which by nature exhibit intricate patterns and relationships. From the point of 
view of scalability as the number of nodes increases, GINs adapt efficiently to large-scale 
networks in tasks concerning node classification, clustering, and link prediction [18]. 
Ultimately, we cannot leave it out the incorporation of insights from isomorphism test-
ing [19] enhances the discriminative capabilities of GINs, enabling these to discern sub-
tle structural similarities that might evade traditional methods.

As just described, we have designed the proposed method by incorporating a GIN, 
as we considered it the most suitable for learning node embeddings from multilayer 
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networks, where nodes belonging to different layers that exist in an interlayer can 
deviate the similarity calculation, acting as noise.

Node embedding is widely used for exploiting the topological structure within bio-
logical networks. For instance, Wilson et al. [20] took advantage of “multi-node2vec” 
[21] for studying multilayer functional networks modelled from Functional Mag-
netic Resonance Imaging scans. Their algorithm seeks to maximize the log-likelihood 
objective function by approximating the continuous node feature representations 
within a multilayer network. It bases the processing on a second-order random walk 
sampling procedure that explores multilayer neighbourhoods from the inter- and 
intra-layer ties. Similarly, Saxena et al. [22] proposed a method for node embedding 
able to capture both similarities between the nodes and the community structure, 
while learning the low-dimensional representation of the network.

It is evident how the evaluation of node similarities is a crucial task in network 
analysis. It is almost always applied within the same network structure, but what has 
been described so far is also an advantage when applied to the determination of simi-
larities between different networks. In the first case, it allows identifying influential 
nodes, selecting features of interest, predicting candidate links as well as determining 
novel interactions or associations, recognizing patterns, detecting overlapping nodes 
[23]. Between different networks, it is crucial to perform Network Alignment (NA) 
via node mapping [24], in addition to what has already been described for the other 
case.

Furthermore, several measures exist to evaluate similarities among nodes within a 
given network, trivially the analysis of neighbours or its links close to the node of 
interest [25–27].

This has a completely different relevance when comparing two different networks 
that do not share links with each other, and whose analyses are carried out indepen-
dently. To overcome this issue, it is essential to be able to obtain a sort of signature of 
the node in the source structure, so that this can be evaluated in the target structure. 
However, the state-of-the-art presents several methods for evaluating the similarity 
between the nodes of a network, while the cross-network analysis of node similarity 
in a multilayered topology is missing.

For a more formal definition, without explicitly extending its use to the bioinfor-
matics field, the similarity measure proposed by Mollgaard et al. [28] is worth men-
tioning. This is a tunable measure for analysing the similarity of nodes across different 
link weights within a multilayer network. Similarly, Yuvaraj et al. [29] presented a per-
spective on multilayer network clustering, using the machinery of topological data 
analysis to group nodes based on how similar their local neighbourhoods are at vari-
ous resolution scales, without learning or considering the pairwise connectivity pat-
terns or relationships.

As described, methodologies that allow evaluating the similarity between pairs of 
nodes of different multilayer networks are missing. The latter is crucial in all those 
methodologies that relate different multilayer networks, e.g., to carry out NA. Exist-
ing methods are ineffective in evaluating nodes outside their structure, even more 
so in the context of multilayer networks, in which the topic still exploits approaches 
adapted from static networks. It can be seen that, from a careful and in-depth 
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investigation into the state of the art relating to the use of GNNs, or its declinations 
(e.g., GINs), for comparative purposes between different multilayer networks, at the 
moment no method or tool is capable of solving this problem.

Our Contribution The computation of node similarities plays a relevant role in 
bioinformatics, being a powerful tool for knowledge extraction from complex biologi-
cal data, e.g., modelled as a network. In network science, node similarities are investi-
gated to assess the relatedness between biological objects (i.e., nodes), by supporting 
several tasks in their own development; for instance, these are used in NA, as well as 
for functional annotation, disease gene prioritization, and other applications having 
significant implications for understanding of biological systems [30], and more gen-
erally, for healthcare [31]. Therefore, the computation of node similarities, and the 
related measures, allow exploiting information within biological networks, by also 
supporting the correlated tasks (e.g., NA).

Recently, we proposed MultiGlobAl [32] and Dante [33], for the pairwise global NA 
of multilayer networks and dynamic networks, respectively. These build the similarity 
matrix from two given networks of interest, seeking to globally produce the optimal 
mapping between their nodes. The similarity are evaluated based on node embedding, 
that are computed by using an ad-hoc extended version of Node2Vec [34]. Node2Vec 
in turn uses the Skip-Gram model of Word2Vec [35] based on an Artificial Neural 
Network (ANN).

However, we had to design and implement several improvements to adapt it in com-
puting node similarity between different networks; it was originally designed (like the 
others mentioned methods for embedding) to only work within the same network. 
Briefly, we have extended its design to process information over the layers or time 
points for multilayer networks or dynamic networks, respectively, by also evolving 
the original node processing.

On this basis and given the state of the art in the field of node similarity assessment 
between different networks is not consolidated, and that the topic of multilayer net-
works is rapidly growing and therefore presents several gaps in this and other issues.

Furthermore, given the existing methods have focused on the evaluation of node 
similarity within the same network, and that the evaluation of the similarity between 
nodes of different networks currently represents a gap in literature.

In this paper, we present pyMulSim, a method designed specifically for the topic 
of interest, overcoming the limitations and issues of the method mentioned above. It 
allows computing the pairwise similarities between nodes belonging to different mul-
tilayer networks, based on a GIN for the representative learning of node features. It is 
able to carry out an analysis of the latter even if they belong to different networks, in 
order to evaluate their similarity in the form of a similarity matrix.

Our main contribution aims in computing the similarities which allows measuring 
how much each node in a source multilayer network is similar to the nodes of a target 
one, allowing also to identify it in a specific layer and, more generally, in a precise 
region of the latter. These may be modelled as a similarity matrix, or nested lists of 
pairwise similarities, indifferently. We addressed this problem by using a model based 
on GIN and the resulting embeddings computed by this one. Briefly, it allows learning 
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low-dimensional embeddings of nodes both in source and target networks, for subse-
quent similarity computation.

Materials and methods
Problem definition

The key-issue addressed in our work concerns how much each node in a source multi-
layer network is similar to a node of a target one, maintaining the layered structure in 
which these may coexist. More exhaustively, the analysis has to occur layer-on-layer in 
that heterogeneous entities must not be mixed in processing. This last issue was in fact 
considered in our experimentation as the occurrence of a de facto false positive. Briefly, 
nodes belonging to different entities are different by nature, as the context of interest 
concerns the biological networks; to give a non-exhaustive but nevertheless explanatory 
example: a gene cannot therefore be similar in any way to a drug or a disease, beyond the 
relationship (e.g., interaction, association) that it has with this.

Before proceeding with the formal definition of the problem, we briefly introduce the 
basic notations that we will use.

Formally, a multilayer network can be described as GM = (VM ,EM) , where VM and EM 
are a set of nodes and edges, respectively [36].

Referring to GM , let us denote a generic intralayer by Ga and a generic interlayer by Gb , 
consisting of its own set of edges Ea (i.e., intralayer edges) and Eb (i.e., interlayer edges), 
respectively:

with α and β the arrays of elementary layers, and (u, v) a generic pair of nodes. Note that 
in the proposed model, edges are undirected.

For a given multilayer network, its input data consists of a set of tuples (u, v,  l) (i.e., 
edges list with attributes), where u and v are two nodes affecting the edge of interest, and 
l is the layer identifier on which the latter insists. Note that layer identifiers are also used 
to discriminate intralayers and interlayers edges, and these must be provided as input; 
alternatively, a further attribute may be implemented to report the type of edge (e.g., 
{id : l, edge_type : intralayer|interlayer}).

Figure 1 shows a non-exhaustive example for a (toy) multilayer network, for illustrative 
purpose only.

Based on this formulation, we describe the problem definition below.
Let us denote two multilayer networks as G1 = (V1,E1) and G2 = (V2,E2) , with n lay-

ers; G1 and G2 must have the same number of layers (n).
The task consists in evaluating the node similarity between G1 and G2 , across the same 

layers. First, it involves computing node embeddings layer-on-layer, as vector of vec-
tors (or matrix). Subsequently, it measures the similarity between corresponding node 
embeddings in each one, by using a proximity measurement.

Let X1 and X2 be the node embedding matrices for G1 and G2 , respectively, each row 
of X1 and X2 corresponds to the embedding of a node in the respective network, with 
|X1| = |X2| = |V |.

(1)Ga =(VM ,Ea) : Ea = ((u,α), (v,β)) ∈ EM |α = β

(2)Gb =(VM ,Eb) : Eb = EM/Ea
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Graph isomorphism network model

In this section, we explain the key components of our GIN’s model implementation.
Firstly, we formally describe the three main steps on the basis of which a GIN car-

ries out its own processing: Initialization, Aggregation, and Embedding.
Initialization (Eq. 3): each node, in the input network G, is assigned an initial fea-

ture vector.

where InitialFeatures is a set of possible relevant information (i.e., features) associated 
to nodes initially given to the model. To give an example referred to a generic gene, it 
may include: type, regulation, other biological or topological properties, only such as the 
nearest and most relevant neighbours.

Aggregation (Eq. 4): information is aggregated from neighbouring nodes, and the 
model computes a novel representation for each node. This step is performed for K 
(predefined) iterations, to allow nodes to gather and propagate information from 
their local neighbourhoods.

where h(k)v  is the representation of node v at k-th iteration ( 1 ≤ k ≤ K  ), MLP(k) is the 
MultiLayer Perceptron (MLP), ǫ(k) and is a learnable parameter. MLP is an ANN, organ-
ized in at least three layers, consisting of fully connected (linear) neurons with a nonlin-
ear activation function.

Node Embeddings (Eq. 5): a low-dimensional vector representations (i.e., embed-
dings) of each node is computed by iteratively aggregating topological information 

(3)∀v ∈ V : h(0)v = InitialFeatures(v)

(4)h(k)v = MLP(k) 1+ ǫ(k) · h(k−1)
v +

u∈N (v)

h(k−1)
u

Fig. 1 A non-exhaustive example for a (toy) multilayer network consisting of two layers. The blue edges 
(i.e., intralayer edges) refer to the first layer, while the green edges (i.e., intralayer edges) to the second layer. 
Interlayer edges are depicted in red
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through exploration of each node and its neighbours. Specifically, embeddings are 
taken from the last aggregation step ( k = K ).

Therefore, h(final)v  is the learned feature vectors (i.e., node embeddings) for each node in 
the network, after multiple aggregation steps. Each embedding consists of the informa-
tion from the node’s local neighbourhood, as well as the overall network structure.

The resulting output is a vector consisting of vector embeddings referred to the 
nodes from the given network.

Summarizing what has been described so far, the GIN applied in our method com-
putes node embeddings, by iteratively aggregating information from neighbouring 
nodes, in accordance with the typical GIN architectures foreseen for such uses. The 
node embeddings represent the characterizations of the related node of interest, 
having been built on structural and contextual information in the graph.

We implemented the GIN’s layer through PyTorch Geometric for inheriting the 
graph neural network layers and message (i.e., features) passing; note that the fea-
tures pass from one node to its neighbours without modification. It performs mes-
sage aggregation in a layer via element-wise addition.

For each layer, based on MLP architecture (see Sect.  2.2), we used the Rectified 
Linear Unit (ReLU) as activation function.

Formally, ReLU can be defined as follows:
ReLU(x) = max(0, x)

It is used within MLP for producing node embeddings during the forward pass. 
Briefly, the latter applies the neural network to the input features and then passes 
the transformed information to neighbouring nodes. ReLU was applied between the 
two fully-connected (linear) layers of MLP.

Multiple instances of our layer were used to model the entire GIN; usually, the 
latter has at least three layers. Our task is limited to compute node embeddings, 
and it can be considered the first set of operations that are typically performed for 
more complex issues such as classification and prediction; consequently we limited 
ourselves to a rather simple model, in terms of number of layers, which therefore 
does not show unnecessary overloads of components. Therefore, our GIN’s model 
consists of an initial layer (conv1), multiple intermediate layers (convs), and a final 
layer (conv2). The model takes the input multilayer network and sequentially passes 
it through the layers. The intermediate layers (i.e., convs) are defined in accordance 
with the number of layers existing within the multilayer network of interest.

Our implementation defines a GIN for processing multilayer networks, and more 
generally, graph-structured data. Layers are the fundamental components that per-
form information propagation and transformation, and the GIN class combines 
these layers to create a complete neural network for graph-related tasks.

Fig.  2 shows a non-exhaustive representation of the GIN architecture used by 
pyMulSim.

(5)h(final)v = h(K )
v
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Preprocessing

The multilayer networks of interest are preprocessed to convert their own informa-
tion to a structure learnable by our GIN, passing by NetworkX [37]. Specifically, we 
carry data from a NetworkX object to a PyTorch Geometric’s Data one [38].

Fig. 2 We depicted the architecture of the GIN in pyMulSim, for illustrative purpose only. In terms of flow of 
data, it starts with input features (x) and passes through multiple layers (GINLayer): conv1, convs, and conv2, 
consisting of an MLP having two fully-connected (linear) layers and ReLU as activation function. Embeddings 
are output from the last layer (conv2)
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NetworkX does not support multilayer networks, therefore, we defined a multilayer 
network as a set of graphs where each one represent a layer, in order to import the 
described flat representation. Briefly, we dismember the initial structure so as not to 
lose information and reuse it in the next step. Eventually, the multilayer networks can be 
directly passed in this format, skipping reading from the file system.

We describe below the main steps of preprocessing, before introducing the prelimi-
nary data import and parsing, for completeness.

Data import and parsing It trivially reads the input data, specifically, two given multi-
layer networks stored in accordance with the model described in Sect. 2.1. Each network 
is imported as a NetworkX object, which creates a graph structure containing edges and 
associated data, for each layer. Our implementation is able to include information about 
the layer to which each edge belongs, in order to extend the support from simple net-
works to multilayer ones.

Preprocessing It is the core of what is described in the current section, and we can 
simplify its processing as follows:

• Each multilayer network in input is divided into its own individual layers, by keeping 
the reference to the interlayer edges, in order to evaluate the links between layers. 
Each layer is structured as a subgraph, to facilitate further processing.

• The function handles interlayer edges, which connect nodes between adjacent lay-
ers. These interlayer edges are added to both the current layer and the next layer to 
model relationships between nodes in different layers.

• Node features are investigated for each node, of each layer. The initial features are 
provided based on the nearest neighbours that each node reports in its topology.

• Node features are assigned to all nodes, including those involved in interlayer edges. 
The number of features assigned to each node is determined by the input channels 
parameter (default: 64).

• The graph data for all layers is converted in PyTorch Geometric’s Data object.

Ultimately, the resulting data object includes information about node features, edge 
indices, and interlayer edges, by making the data suitable for several deep learning mod-
els, including obviously our own GIN. This approach allowed us to describe heterogene-
ous graphs, holding multiple node and edge types in disjunct storage objects (layers).

At low-level, the data structure used in our implementation is a tensor, i.e., a multidi-
mensional matrix containing elements of a single data type. A tensor can be constructed 
from a list or sequence of objects, just as we did by dismembering and reconstructing 
the elements of the multilayer network, without loss of information.

Embedding‑based node similarity

Nodes that are structurally similar may end up with similar final embeddings. The 
behaviour of a given biological object, analysed on the basis of interactions, is indicative 
of its biological functionality, the latter being directly related to the type and modalities 
of the interactions that insist on it or that propagate from it.

For node-level tasks, we can directly use the node embeddings for classification, 
regression, or others, without the need for a global aggregation. Therefore, the proposed 
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method uses these for computing node similarities, directly. To give an example, com-
mon aggregation operations can include sum, mean, or max pooling over the node 
embeddings.

Firstly, our GIN (see Sect. 2.2) is used to produce the embeddings of each node, for the 
two multilayer networks of interest, based on preprocessed data (see Sect. 2.3); there-
fore, the latter is integrated with node embeddings.

For evaluating the similarities, we used the Jaccard’s similarity coefficient (Jc) [39], a 
well-known proximity measurement in the field of node similarity applied to network 
science.

Jc is formally described in Eq. 6.

with u and v the two nodes of interest, and Ŵ(u) the set of neighbours of u.
Jc assesses the Intersection-over-Union between the neighbours of two nodes by 

normalizing the size of the intersection by the size of the union. Therefore, the result-
ing similarity will be a value between 0 and 1, representing 0% and 100% of similarity, 
respectively, between two nodes of interest.

The choice to use Jc was motivated by a comparative evaluation carried out within 
the study proposed by CoÅŸkun et  al. [40]. The latter reported Jc as an appreci-
able asymmetric measure in terms of effectiveness, compared to well-known ones for 
evaluating the node similarity in biological networks by applying graph representation 
learning methods, such as: Common Neighbors, Adamic-Adar, ResourceAllocation, 
Hub-Depressed Index, Hub-Promoted Index, SÃ¸renson Index. Generally, Jc has been 
proved to be a proper metric by also satisfying crucial properties (e.g., equivalence clo-
sure, symmetry and triangle inequality), furthermore it has the advantage of being an 
asymmetric measure that goes well with the multilayer networks of our interest, as these 
are undirected [41, 42].

Experimentation
In this section, we report the main information about our experimentation, as well as the 
related results both on synthetic and real datasets.

Datasets

Our own dataset consists of 60 multilayer networks, constructed from the Multiplex 
Network of Human Diseases (MNHD) provided by Halu et al. [43].

MNHD has been constructed by projecting the bipartite networks of the Disease-
Symptom interactions and Gene-Disease interactions. Specifically, two datasets from 
Genome-wide Association Study (GWAS) and Online Mendelian Inheritance in Man 
(OMIM) catalogues, respectively, are released. These are almost equivalent even if based 
on different identifiers, therefore we arbitrarily chose the one with OMIM identifiers. 
MNHD consists of two layers: Gene-Gene interactions and Disease-Disease interactions, 
respectively; the interlayer edges are retrieved from the original bipartite networks.

Let us denote with m the number of (intralayer) edges with which a new node 
attaches to existing nodes, with p the probability that m new edges are added, with q the 

(6)Jc =
|Ŵ(u) ∩ Ŵ(v)|

|Ŵ(u) ∪ Ŵ(v)|
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probability that m existing edges are rewired to a random chosen edge and the related 
node; and with z the percentage of (interlayer) edges that are randomly created between 
two layers.

Zhong et  al. [44] investigated generative parameters for biological networks in their 
own experimentation, suggesting that n = 50 , m = 2 , p = 0.5 , and q = 0.4 allow pre-
venting the formation of high-density clusters that distort the original conformation of 
the network, as well as maintaining the interaction between the nodes as similar as pos-
sible to the real biological case. Therefore, we obtained the first 10 multilayer networks 
by applying the reported parameters on MNHD, by applying the methodology designed 
for Generator of Interconnected Networks [45], a software tool for constructing datasets 
of multilayer networks for bioinformatics.

Furthermore, to aggregate pairs of multilayer networks in samples consisting of known 
similarities and mappings for reliable and relevant results, we constructed our dataset by 
replicating the initial networks through the application of noise to the original topology. 
Specifically, we generated 5 noisy versions for each subnetwork by shuffling the 5% , 10% , 
15% , 20% , and 25% of the whole set of intralayer and interlayer edges, randomly.

The resulting dataset consisted of 60 multilayer networks from real-world biological 
data. Samples have been formed by pairing each initial multilayer subnetwork with its 
noisy counterparts.

In our experimentation, we refer to Ground Truth as the information that is known to 
be real or true, provided by direct measurement and empirical evidence. Dataset con-
struction is performed from real-world data, in accordance with Halu et al. [43], by ran-
domly extracting a set of subnetworks to increase the overall size for testing purposes, 
therefore the real/true similarity between the nodes of the source and target, respec-
tively, is known for empirical evidence. We also tested our method in a real-use case by 
computing the similarity matrices on which performing NA between the pairs in each 
sample. As described, the latter consist of a pair of multilayer networks in which one is 
the noisy counterpart of the other, therefore the node mapping is known since both ones 
contain the same set of nodes on the same layers. In this specific case, the Ground Truth 
was the True Node Mapping between the nodes of the source network and their coun-
terparts in the target network.

Results

We evaluated our method by using the following well-known Key Performance 
Indicator (KPI): accuracy, AUC, sensitivity, specificity, precision, F1-score. We also 

Table 1 The table reports the Key Performance Indicators (i.e., accuracy, AUC, sensitivity, specificity, 
precision, F1-score), from our experimentation

Accuracy 0.998

AUC 0.954

Sensitivity 0.690

Specificity 0.999

Precision 0.732

F1-score 0.710
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evaluate the performance in respect to the noise levels. Results are reported in 
Tables  1, 2, and 3. The latter (i.e., Wald test) is a non-parametric alternative to the 
t-test, which we did anyway (see Table 6).

Table 2 The table reports the confusion matrix from the overall classification of node similarities 
computed by pyMulSim in respect to the ones from Ground Truth

Predicted

Observed 1 % Correct

0 356698 269 99.925

1 330 735 69.014

Overall % Correct 99.833

Table 3 The table reports the results from the correct classification of node similarities computed 
by pyMulSim in respect to the ones from Ground Truth

Data are shown by noise level

SE: Standard Error of the Mean, df: Degrees of freedom

Noise level Estimate SE z Wald Statistic df p

5 −2.236 0.103 −21.610 467.000 1 < 0.001

10 −3.304 0.144 −22.889 523.902 1 < 0.001

15 −3.741 0.179 −20.890 436.400 1 < 0.001

20 −3.685 0.191 −19.296 372.354 1 < 0.001

25 −3.729 0.217 −17.169 294.771 1 < 0.001

Table 4 The table reports the Student’s t-test between the similarities computed by pyMulSim and 
Ground Truth

Student’s t-test. df: Degrees of freedom

Measure 1 Measure 2 t df p

pyMulSim similarities – Ground Truth −617.749 358031 < 0.001

Table 5 The table reports the descriptive statistics related to the results from the Student’s t-test 
(see Table 4)

N: Number of samples, SD: Standard Deviation, SE: Standard Error of the Mean, C: Coefficient of variation

N Mean SD SE C

pyMulSim 358032 0.008 0.075 1.252× 10
−4 8.883

Ground Truth 358032 0.250 0.239 3.994× 10
−4 0.955

Table 6 The table reports the results from the Wilcoxon Signed-Rank test, between the correct 
classification of a similarity by pyMulSim, in respect to the data from Ground Truth

The test concerned a use-case related to a binary classification task

Wilcoxon Signed-Rank test

Measure 1 Measure 2 W z p

pyMulSim - Ground Truth 180953.500 −52.111 < 0.001
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In addition, we evaluated the node similarities computed by the proposed method, 
statistically, in order to corroborate its own validity and effectiveness (see Tables 4, 
5, and 6).

Finally, we also tested our method in a real-use case related to NA, in terms of 
Node Correctness (NC). We aligned each (initial) multilayer network with its own 
noisy versions, from our dataset. This test was made possible by applying the Mul-
tiGlobAl’s objective function to node similarities computed by pyMulSim. Results 
have been normalized for an effective representation and interpretation, for both 
methods.

Alignments (i.e., node mappings) were obtained by applying the objective function 
of MultiGlobAl to the node similarities computed by pyMulSim. The results were 
compared with the ones performed by MultiGlobAl via its own in-house method 
based on node2vec.

Table 7 shows the descriptive statistics for the alignment performance (i.e., node 
mappings), in terms of NC, produced by MultiGlobAl and its own objective function 
applied to node similarities from pyMulSim. Furthermore, these are shown in Fig. 3.

Table 7 Real Use-Case. Descriptive Statistics for NC, from alignments (i.e., node mappings) 
computed by MultiGlobAl and pyMulSim; the latter inherits the objective function of the former

SD: Standard Deviation

Noise Mean SD Minimum Maximum

pyMulSim 5 0.828 0.137 0.672 1.000

10 0.797 0.140 0.639 0.917

15 0.759 0.143 0.594 0.911

20 0.675 0.096 0.583 0.826

25 0.600 0.142 0.471 0.826

MultiGlobAl 5 0.899 0.091 0.792 1.000

10 0.709 0.111 0.550 0.825

15 0.559 0.148 0.318 0.692

20 0.558 0.097 0.428 0.676

25 0.319 0.080 0.240 0.452

Fig. 3 NC computed for the alignments between each (initial) multilayer network and its own noisy versions, 
by using MultiGlobAl and its own objective function applied to node similarities computed by pyMulSim. 
Descriptive statistics has been reported in Table 7
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Discussion
In this section, we discuss the results reported in Sect. 3.

However, let us first introduce some preliminary aspects, relevant to understand-
ing the choices made for the experimentation. Foremost, we report below the reasons 
for exclusions of the solutions mentioned in the previous sections. The main limita-
tion that did not allow us to include multi-node2vec [21] in our experimentation was 
the possibility of evaluating the similarities between nodes within the same network, 
without lending itself to pairwise similarity between different networks. The same 
issue concerned NodeSim, which anyway does not support multilayer networks. Fur-
thermore, the similarity measure presented by Mollgaard et al. [28] is a formal defi-
nition used for the sole purpose of testing its validity; no implementation has been 
released, as well as any ready-to-use software tools. No methods specifically devel-
oped for the presented purpose are currently available.

We evaluated the performance of our solution by using several well-known KPI. 
Table 1 and the related Table 2 show that pyMulSim effectively calculate the similari-
ties between the biological objects of a multilayer network by using the features from 
the embeddings, computed by its own GIN.

The interpretation of the KPI of interest (i.e., accuracy, auc, sensitivity, specificity, 
precision, and F1-score) shows an overall good performance [46, 47], by corroborat-
ing the goodness in determining the similarities between pairs of nodes of different 
networks, as well as an outstanding discrimination among node pairs (see AUC).

These capabilities are also maintained at different noise levels, i.e., 5% , 10% , 15% , 
20% , and 25% . Therefore, the Wald test [48] shows a strong statistical significance 
( p < 0.001 ). The latter is a non-parametric alternative to the t-test, which we did any-
way (see Table 6).

For statistical assessment, we performed a student’s t-test [49] to analyses the sta-
tistical significance of pairwise similarities computed by pyMulSim, in respect to 
Ground Truth.

We further corroborated this issue by conducing a binary classification task, in 
which a similarity can be considered as correctly identified (i.e., true, or 1), or no (i.e., 
false, or 0); the benchmarks of this analysis are evaluated in respect to the Ground 
Truth. Specifically, we applied a threshold equal to 0.95: the similarity between two 
nodes is correctly recognized, if and only if it falls within a 95% confidence interval 
(as per conventional criteria). Data were analysed by using the Wilcoxon Signed-Rank 
test [50], a non-parametric statistical hypothesis test which allows us to assess the 
correct identification of a similarity in a binary classification task, as described.

By conventional criteria, the results (see Table 4 and Table 6) proved to be in line 
with expectations, reporting an actual statistical significance ( p < 0.001 ), which dem-
onstrated how the similarities obtained from our solutions are to be considered valid 
and effective. The coefficient of variation of pyMulSim (see Table 5) was found to be 
higher than one processed from the Ground Truth. The latter is intrinsic to the way 
our method operates: it is obviously not able to detect any biological or homological 
similarity among objects that do not share substructures or interactions, its analysis 
being exclusively performed from a topological point of view.
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Finally, we applied pyMulSim to a real-use cases related to NA. This test shows that 
node similarities computed by pyMulSim allows improving by an average of 20.185% 
(see Table 7), the alignments (i.e., node mappings) in terms of NC. Furthermore, this test 
also shows a better noise tolerance compared to the comparison methodology.

Conclusions
The network’s interactions allow representing essential functional processes of a real-
world biological system. However, the latter evolve through multiple layers, which may 
represent different types of relationships or entities, as well as different temporal points 
of its evolution. In network science, node embeddings are widely used for exploit-
ing the topological structure within biological networks, and deep learning techniques 
and models are used for their own representative learning. In this paper, we presented 
pyMulSim, a novel method for computing pairwise similarities between nodes belonging 
to different multilayer networks (source and target, respectively), exploiting the embed-
dings computed through a GIN architecture. We investigated the performance of our 
method in an in-depth and dedicated experimentation, where pyMulSim showed a high 
degree of reliability. Statistical assessment and the performance evaluation effectively 
corroborate the validity of resulting node similarities. In addition, the tests have been 
conducted on several noise levels, in source and target topologies. The results proved to 
be statistically significant, demonstrating the goodness of the data (i.e., the similarities of 
the nodes) calculated by our method.

Finally, pyMulSim has been used to address a real-use case, concerning the NA. In this 
test, it showed its own node similarities can improve NA between multilayer networks 
by an average of 20.185% (Table 7), in terms of NC, by also showing a good robustness in 
the presence of noise.

The main noteworthy limitation found in our experimentation is intrinsic to the topo-
logical similarity approach itself: our method is obviously not able to detect any bio-
logical or homological similarity among objects that do not share substructures or 
interactions, its analysis being exclusively performed from a topological point of view. 
About this, in hypothetical future works, we do not rule out extending support to other 
similarity coefficients, also incorporating homological measures.

Availability and requirements

Project name: pyMulSim. Project home page: https:// github. com/ pietr ocina glia/ pymul 
sim (accessed on 02 May 2024). Operating system(s): Platform independent. Program-
ming language: Python 3. Other requirements: https:// github. com/ pietr ocina glia/ pymul 
sim/ blob/ main/ requi remen ts. txt (accessed on 02 May 2024). Licence: the software is 
provided AS IS, under MIT Licence. Any restrictions to use by non-academics: none.
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