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Abstract 

Background:  Survival analysis has been used to characterize the time-to-event 
data. In medical studies, a typical application is to analyze the survival time of specific 
cancers by using high-dimensional gene expressions. The main challenges include 
the involvement of non-informaive gene expressions and possibly nonlinear relation-
ship between survival time and gene expressions. Moreover, due to possibly imprecise 
data collection or wrong record, measurement error might be ubiquitous in the sur-
vival time and its censoring status. Ignoring measurement error effects may incur 
biased estimator and wrong conclusion.

Results:  To tackle those challenges and derive a reliable estimation with efficiently 
computational implementation, we develop the R package AFFECT, which is referred 
to Accelerated Functional Failure time model with Error-Contaminated survival Times.

Conclusions:  This package aims to correct for measurement error effects in survival 
times and implements a boosting algorithm under corrected data to determine 
informative gene expressions as well as derive the corresponding nonlinear functions.
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Background
Survival analysis has been a useful tool to analyze time-to-event data. In applications of 
medical studies, researchers are interested in a specific cancer and wish to understand 
the failure time and survivor pattern of a specific cancer among all observations in a 
study. Typically, gene expressions from subjects are usually taken as covariates and are 
used to characterize the time-to-event responses (e.g., [20]). In the framework of sur-
vival analysis, the accelerated failure time (AFT) model is one of popular approaches, 
which is formulated in the parametric setting in most applications (e.g., [16]). In the lit-
erature, a large body of methods has been proposed to deal with the AFT model, such 
as [1, 23], and [36]. However, the covariates are possibly nonlinear with respect to the 
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survival time, then using conventional parametric AFT models may incur model mis-
specification. To relax the linear constraint, nonparametric approaches should be taken 
into account to address the nonlinear estimation between the survival time and the 
covariates. In recent years, a boosting method, one of statistical learning approaches, has 
been popular to address nonparametric estimation. The basic idea is to fit base learner 
many times on reweighed data to boost the performance, and the final estimator is 
formed by the linear combination of the multiple estimates. In the framework of survival 
analysis, several approaches have been proposed under various models, such as [3, 10, 
12, 18, 19, 33].

The other challenging feature in datasets is measurement error, which indicates that 
the observed variables do not reflect what they should be. In applications, this phenom-
enon is usually caused by imprecise data collection or wrong records. In the existing 
literature, measurement error in covariates has been widely discussed and a large body 
of methods has been developed (e.g., [5–8]). However, as discussed in [25], the survival 
time might be subject to measurement error. To address this issue, [25] proposed the 
regression calibration method to correct for measurement error effects and developed 
the raking method to derive the estimator. However, their approach might ignore pos-
sibly misclassified censoring status and cannot be used to address nonlinear functions 
between the survival time and covariates.

From the perspective of the computational implementation, some R packages have 
been developed to fit the AFT model, including aftgee [13], penAFT [22], spsurv 
[26], and survival [29]. However, those approaches considered the simplest scenario 
without measurement error and nonlinear effects on covariates taken into account. In 
contrast, to deal with the complex structures, some R packages have been available to 
deal with either nonlinear functions or measurement error effects but not both. For 
example, the R packages [17, 24, 34], and [37] are used to deal with measurement error 
in covariates. However, those approaches rely on linear predictors, and except for [34], 
most packages can not handle survival outcome. On the other hand, the R packages [2, 
11], and [32] implement boosting methods to deal with estimation of nonlinear func-
tions, but they are not able to handle measurement error effects. With variable selection 
and measurement error effects taken into account simultaneously, [9] developed the R 
package SIMEXBoost. However, this package primarily focuses on parametric models 
and measurement error in covariates. To the best of our knowledge, rare computational 
software has been available to address nonlinear estimation and measurement error in 
the survival time under the survival model.

Consequently, to tackle those challenges simultaneously and provide potential users 
a conveniently computational implementation to derive a reliable estimate, we develop 
the R package AFFECT, which refers to Accelerated Functional Failure time model with 
Error-Contaminated survival Times. Here "functional" reflects nonlinear functions 
between the failure time and the covariates. We aim to correct for measurement error 
effects in the survival time and then employ the boosting algorithm to identify poten-
tially important covariates and estimate their corresponding unknown functions. In the 
literature, a recent work [3] also considered the AFT model with nonlinear functions on 
covariates, but their approach is different from ours. For example, [3] primarily derived 
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the likelihood function under the given distribution for the noise term in the AFT model 
and then applied the package xgboost [11] to obtain the estimator; on the other hand, 
the package AFFECT is based on the estimation function derived by the Buckley-James 
method, which is different from [3] and does not require to specify the distribution of 
the noise term. In addition, the other obvious feature is that the package AFFECT is able 
to deal with measurement error effects but [3] does not take measurement error effects 
into account.

The remainder is organized as follows. In the section "Data structure and regression 
models", we introduce the data structure and relevant regression models. In the section 
"Methodology", we outline the estimation steps and the algorithm to derive the estima-
tor. In the  section "Illustration of the package AFFECT", we introduce the R package 
AFFECT, including the functions, the arguments, and the outputs. In the section "Simu-
lation studies", we conduct simulation studies to assess the performance of the method 
in the package. In the section "Analysis of gene expression data", we apply the package to 
analyze a gene expression dataset. Finally, a general discussion is summarized in the sec-
tion "Conclusion".

Data structure and regression models
Survival data

Let n denote the sample size. For subject i = 1, ..., n , let T̃i and C̃i be the non-nega-
tive failure and the censoring times of a specific cancer, respectively. Due to the pur-
pose of analysis, we consider the log transformation: Ti � log(T̃i) and Ci � log(C̃i) . 
Based on Ti and Ci , define Yi � min{Ti,Ci} as the observed survival time and denote 
δi � I(Ti < Ci) as the censoring indicator, where I(·) is an indicator function. Moreover, 
let Xi = (Xi1,Xi2, ...,Xip)

⊤ be a p-dimensional vector of covariates or gene expressions. 
We impose the standard assumption that Ti and Ci are independent, given Xi . Therefore, 
a typical survival data structure is given by {(Yi, δi,Xi) : i = 1, 2, ..., n}.

The main interest in survival analysis is to characterize the relationship between the 
failure time and covariates. In our development, we consider the following accelerated 
failure time (AFT) model:

where εi is the noise term with E(εi) = 0 and has an unknown survivor function Sε(·) , 
and fj ∈ F  is a unknown function of interest with F  being a class of continuous smooth 
functions. (1) shows that, among all p gene expressions, there are only q gene expres-
sions informative to the failure time, where q is a positive integer and is smaller than p.

Ideally, if Ti is fully observed for all i = 1, ..., n , then one can consider the following 
least squares function

(1)
Ti =F(Xi)+ εi

�f1(Xi1)+ f2(Xi2)+ ...+ fq(Xiq)+ εi,

(2)
n∑

i=1

{Ti − F(Xi)}
2,
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and F(·) can then be estimated by minimizing (2) via some nonparametric methods. 
However, in the presence of right-censoring, Ti is incomplete and one has Yi in the data-
set. Directly using Yi in (2) may lead to biased estimator of F(·) . Moreover, the other 
challenge is that dimension p in the gene expression data is usually larger than q, yielding 
that most gene expressions are possibly non-informative to the time-to-event response. 
As a result, detecting informative gene expressions is a crucial issue as well.

Measurement error models

In addition to the challenge from the complex regression model, measurement error is 
the other challenging and ubiquitous feature from the dataset, which is usually caused 
by imprecise measurement or wrong record. While we cannot examine whether vari-
ables are contaminated by measurement error, the key spirit is that we relax an “implicit” 
assumption that variables in the dataset are precisely measured. In most situations, 
measurement error in covariates has been widely explored. As commented by [25], how-
ever, survival times and censoring status are also possibly subject to measurement error. 
Specifically, let Y ∗

i  and δ∗i  denote the surrogate version of unobserved survival time Yi and 
censoring status δi , respectively.

First, to characterize the error-prone survival time Y ∗
i  and the unobserved survival 

time Yi , we modify the classical additive measurement error model (e.g.,[4, 35]) and fol-
low an idea in [25] to consider the following measurement error model:

where ηi is assumed to follow a distribution with E(ηi) = 0 and var(ηi) = σ 2
η  , and is 

independent of Xi , γ0 and γ 1 are parameters.
Next, to characterize the misclassified censoring status, we let πikl = P(δ∗

i
= k|δi = l,Xi) 

denote the conditional probability that links the observed censoring status k with the 
covariates and the unobserved censoring status l for k , l ∈ {0, 1} . By the law of total prob-
ability, one can express two probabilities P(δ∗i = 1|Xi) and P(δ∗i = 0|Xi) as

with �i =

[
πi11 πi10

πi01 πi00

]
 being a 2× 2 misclassification matrix. Moreover, as commented 

by [35] (Ch8), we impose the non-differentiable mechanism, which says that

for k , l ∈ {0, 1} . As a result, in the following development, we will take (5) in our infer-
ence procedure. From now on, we respectively replace πikl and �i by πkl and � with the 
subscript i removed due to the assumption (5) and the independence of subject i.

Noting that parameters γ0 and γ 1 in (3) as well as � (4) are usually unknown in appli-
cations. If the auxiliary information, such as the validation data, is available, then those 
parameters in (3) and (4) can be estimated. Otherwise, one may require prior knowl-
edge and past experience for parameters γ0 , γ 1 , and � or conduct sensitivity analyses, 
where the latter approach says that one can specify various values for those unknown 

(3)Y ∗
i = Yi + γ0 + γ⊤

1 Xi + ηi � Yi + ωi,

(4)
[
P(δ∗i = 1|Xi)

P(δ∗i = 0|Xi)

]
= �i

[
P(δi = 1|Xi)

P(δi = 0|Xi)

]

(5)πikl = P(δ∗i = k|δi = l)
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parameters based on background knowledge or under reasonable ranges to examine the 
impact of different magnitudes of measurement error effects and see whether the esti-
mation method is robust with the change of parameter values in (3) and (4).

Methodology
Overview of the estimation procedure

In the presence of measurement error, the observed data are given by 
D∗ �

{
{Y ∗

i , δ
∗
i ,Xi} : i = 1, · · · , n

}
 , and the goal is to estimate F(·) under the model (1). To 

tackle the challenges of measurement error and estimation of nonlinear functions, we pro-
pose the strategy that is summarized in Fig. 1.

According to the workflow in Fig. 1, we are first given a collected dataset D∗ with relax-
ing an implicit assumption that the survival time in dataset is precisely measured, and we 
characterize error-prone survival data and the censoring status by two measurement error 
models (3) and (4), respectively. The next step in Fig. 1 is to correct for measurement error 
effects. We adopt the regression calibration method to create the corrected survival time, 
and employ the insertion method to obtain the corrected censoring status. Detailed dis-
cussions are deferred to the subsection "Correction of measurement error effects".  

After correcting for measurement error effects, we then adopt the corrected sur-
vival time and censoring status to the boosting procedure, as shown in the last step in 
Fig. 1. To address the censoring effect, we employ the Buckley-James (BJ) estimator 
to create a corrected and pseudo response, such that its expectation can be recovered 
to the expectation of the failure time. Based on the corrected BJ response, we imple-
ment the boosting algorithm with the cubic spline estimation being the base learner. 
Through finite iterations, the potentially informative gene expressions as well as their 
estimated functions can be obtained simultaneously. Detailed descriptions are sum-
marized in the subsection "Boosting for estimation of nonlinear functions".  

Correction of measurement error effects

To correct for error-prone survival time, we first observe from (3) and take the conditional 
expectation, given Xi , to obtain that

Fig. 1  A workflow of the package AFFECT 
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which implies that Y ∗
i − E(ωi|Xi) can be used to recover Yi since they have the same 

expectation. To deal with the conditional expectation E(ωi|Xi) , we adopt regression cali-
bration [5], which is given by

where µω is the expectation of ωi , �ωX is the covariance matrix of ωi and Xi , �XX is the 
covariance matrix of Xi , and µX is the expectation of Xi . When µω , �ωX , �XX and µX 
are estimated empirically, then (7) can be estimated by ̂E(ωi|Xi) , yielding the “corrected” 
survival time

The validity of (8) can be justified by [25].
Next, we deal with measurement error in the censoring status. Provided that � is invert-

ible, (4) can be re-written as

which gives that

Thus, the “corrected” censoring indicator status is defined as

which satisfies E(δ̂i|Xi) = E(δi|Xi) . Therefore, (8) and (10) give the “corrected” survival 

data D �

{
(Ŷi, δ̂i,Xi) : i = 1, 2, ..., n

}
.

Boosting for estimation of nonlinear functions

Given the corrected dataset D , we present the boosting procedure that is summarized as 
the pseudo code in Algorithm 1.

Specifically, to adjust the censoring effect in the survival time, we implement the BJ esti-
mator in (11) under the corrected data D . To implement the boosting method and estimate 
F(·) , we first set zero as the initial value for the function F(·) . In each iteration, we take the 
cubic spline estimation as the weak learner for each covariate and select an index of the 
gene expression j∗ that satisfies the smallest square error loss (12). Here the cubic spline 
estimation can be computed by the function smooth.spline in the existing R package 
stats [29]. After that, we compute the increment and update the estimated function in 
Steps 3 and 4, respectively. Finally, we continue the computations in Steps 1-4 with K times 
repetitions, and we can derive the final estimator F̂(·) and a set S(K ) containing all informa-
tive gene expressions.

(6)E(Yi|Xi) = E{Y ∗
i − E(ωi|Xi)|Xi},

(7)E(ωi|Xi) = µω +�ωX�
−1
XX

(Xi − µX),

(8)Ŷi � Y ∗
i − ̂E(ωi|Xi).

(9)
[
P(δi = 1|Xi)

P(δi = 0|Xi)

]
= �−1

[
P(δ∗i = 1|Xi)

P(δ∗i = 0|Xi)

]
,

P(δi = 1|Xi) =
P(δ∗i = 1|Xi)− π10

1− π10 − π01
.

(10)δ̂i �
δ∗i − π10

1− π10 − π01
,
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Algorithm 1  AFFECT

Illustration of the package AFFECT
To make the implementation of Algorithm 1 available for public use, we develop the R 
package AFFECT. Two functions in this package are used to implement the estimation 
method in section "Methodology".    The first function ME_correction is used to do 
correction for error-prone response and misclassified censoring status, and the second 
function Boosting is used to estimate the function F(·) under the model (1).

ME_correction

This function aims to correct for measurement error in the survival time and misclas-
sification in the censoring status. The key strategy in the function ME_correction 
includes regression calibration (8) for survival time under the model (3) and the unbi-
ased conditional expectation approach for censoring status (10) under (4). With infor-
mation of parameters in measurement error models implemented, this function will give 
outputs with corrected survival time and censoring status.

The implementation of ME_correction is given by

where the arguments include

•	 pi_10: Misclassifcation probability πi10 in (5).
•	 pi_01: Misclassifcation probability πi01 in (5).
•	 gamma0: A scalar γ0 in the model (3).

�����		�����������������������������������	�����	���������	�
�
������	�����,
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•	 gamma1: A p-dimensional vector γ 1 in the model (3).
•	 cor_covar: A p× p covariance matrix of a p-dimensional vector of covariates.
•	 indicator: A n-dimensional vector of censoring status.
•	 yast: A n-dimensional vector of survival times.
•	 covariate: A n× p matrix of covariates.

The first two arguments pi_10 and pi_01 refer to misclassification probabilities in (4) 
for characterizing misclassified censoring status. The middle three arguments gamma0, 
gamma1, and cor_covar are parameters in the measurement error model (3) for 
error-prone survival time. Finally, the last three arguments indicator, yast, and 
covariate are observed censoring status, survival time, and covariates, respectively. 
The function ME_correction provides a flexible implementation. If one believes that 
censoring status or survival time is free of measurement error, then arguments can be 
specified as pi_10 = pi_01 = 0 or gamma0 = gamma1 = cor_covar = 0 . Given 
those arguments, the function provides the corrected survival time and the corrected 
censoring status, which are given by

•	 correction_data: A n× 2 data frame. This first column is the corrected sur-
vival time, and the second column is the corrected censoring indicator.

Boosting

With the function smooth.spline in existing R package stats [29] equipped, the 
function Boosting aims to implement Algorithm  1 to select informative covariates 
under the model (1) and estimate their corresponding functional forms with survival 
time. The implementation of Boosting is given by

where the arguments include

•	 data:A n× (p+ 2) dimension of data. The first column is survival time, the second 
column is censoring status, and the other columns are covariates.

•	 iter: The number of iterations K in Algorithm 1. The default value is 50 and the 
iteration will stop when the absolute value of increment of every estimated value is 
small than 0.01.

The first argument data is a dataset D with the first and second columns being the sur-
vival time and the censoring status, respectively, and the remaining columns are gene 
expressions. iter is a user-specific iteration number. If users do not input the value 
to the argument iter, then the algorithm will automatically run 50 iterations. On the 
other hand, larger value of iter may incur longer computation time. In this case, the 
function Boosting can make iteration stop early if the criterion

Boosting(data, iter),

(13)||F (k)(Xi)− F (k−1)(Xi)||∞ ≤ τ
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is satisfied, where F (k)(Xi) is the updated function at the kth step, 
�F(x)�∞ � max

i=1,··· ,n
|F(xi)| is the infinity norm, and τ is a threshold value, which is speci-

fied as 0.01 in this function.
This function gives us the following outcome:

•	 results: A list that contains the informative covariates with respect to the fail-
ure time ($covariates) and their corresponding estimated functional curves 
($function_forms). In addition, predicted failure time based on (1) as well as the 
estimated survivor curve are provided by using $predict_failure_time and 
$survival_curve, respectively.

Simulation studies
In this section, we conduct simulation studies to assess the performance of the proposed 
method and demonstrate the implementation of the package AFFECT.

Simulation setup

Let n = 400 denote the sample size, and let p = 3, 10, 100 denote the dimension of 
covariates. For i = 1, ..., n and j = 1, ..., p , we independently generate the covariates Xij 
from the uniform distribution with an interval [−1, 1] . Given Xi = (Xi1, ...,Xip)

⊤ , we 
independently generate εi from the standard normal distribution N(0, 1), and use (1) to 
independently generate T̃i for i = 1, 2, ..., n , where q = 3 is considered and functions fj(·) 
with j = 1, 2, 3 are specified as

When p = 3 , the model (1) says that all covariates are informative; otherwise, F(·) 
reflects that the first three covariates are nonlinearly informative to Ti and the remaining 
p− 3 covariates are irrelevant.

Next, we first generate the censoring status δi for i = 1, ..., n by

Given T̃i and δi , the survival time is defined as Yi = log T̃i if δi = 1 and Yi = log C̃i if 
δi = 0 , where the censoring time is defined as C̃i = T̃i − exp(0.003).

Finally, we generate error-prone data by treating (Yi, δi) as unobserved survival times. 
For i = 1, 2, ..., n , Y ∗

i  is generated by (3), where γ0 = 1 , γ 1 = (1, 0⊤p−1)
⊤ with 0p being 

the p-dimensional zero vector, and ηi is independently generated by the normal distri-
bution N (0, σ 2

η ) with σ 2
η = 0.25, 0.5 and 0.75 reflecting various magnitudes of meas-

urement error effects. For the observed censoring status, we generate δ∗i  by (4) with 
π10 = π10 = 0.1 or π10 = π10 = 0.9 . For each simulation setting, we run 100 repetitions. 
The following programming code demonstrates the data generation:

f1(Xi1) = 4X2
i1, f2(Xi2) = cos(6Xi2), and f3(Xi3) = arcsin(Xi3).

P(δi = 1|Xi) =
eXi

1+ eXi
.
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Simulation results

Given a simulated dataset, we implement the proposed method to estimate F(·) , derive 
the predicted failure time and estimate the survivor function. The implementation code 
is summarized as follows:

To see the performance of variable selection, we use #X1, #X2 and #X3 to record the 
frequency of selecting Xi with i = 1, 2, 3 among the repetition of simulations, and we use 
Pa to represent the frequency that variables X1-X3 are simultaneously selected in each 
simulation. Numerical results are summarized in Table 1. Meanwhile, for the visualiza-
tion, we display estimated curves by using the command $function_forms as well as 
the true functions for X1-X3 in Fig. 2. In general, all informative covariates X1-X3 can be 
selected regardless of values of p and σ 2

η  . According to the observation in Fig. 2, we can 
see that the estimation method is able to capture the pattern of the true functions.

In addition, when   the nonlinear functions of covariates are estimated, the func-
tion Boosting also produces the estimated survivor curve, which is obtained by the 

Table 1  Simulation results: report of variable selection of the package AFFECT under various 
settings

p Criteria π01 = π10 = 0.9 π01 = π10 = 0.1

σ 2
η = 0.25 σ 2

η = 0.5 σ 2
η = 0.75 σ 2

η = 0.25 σ 2
η = 0.5 σ 2

η = 0.75

3 #X1 1.000 1.000 1.000 1.000 1.000 1.000

#X2 1.000 1.000 1.000 1.000 1.000 1.000

#X3 1.000 1.000 1.000 1.000 1.000 1.000

#Pa 1.000 1.000 1.000 1.000 1.000 1.000

10 #X1 1.000 1.000 1.000 1.000 1.000 1.000

#X2 1.000 1.000 1.000 1.000 1.000 1.000

#X3 1.000 1.000 1.000 1.000 1.000 1.000

#Pa 1.000 1.000 1.000 1.000 1.000 1.000

100 #X1 1.000 1.000 1.000 1.000 1.000 1.000

#X2 1.000 1.000 1.000 1.000 1.000 1.000

#X3 1.000 1.000 1.000 1.000 1.000 1.000

#Pa 1.000 1.000 1.000 1.000 1.000 1.000



Page 12 of 20Chen and Huang ﻿BMC Bioinformatics          (2024) 25:265 

command $survival_curve and is displayed in Fig. 3. We can see that the esti-
mated survivor curve is sharply decreasing.

To assess the performance of predicted failure time obtained by the function 
Boosting, we apply the following commonly used criteria: 
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Fig. 2  Simulation results for estimating functions in the AFT model. The first row shows curves of the true 
functions for variables X1 , X2 , and X3 . The second row displays estimated curves for variables X1 , X2 , and X3 , 
which are printed by the command $function_forms 
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Fig. 3  Simulation results for estimating survivor curves based on the AFT model, which are printed by the 
command $survival_curve 
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(a)	 The integrated Brier Score (IBS): 

 where ymax = max{Ŷi : i = 1, · · · , n} and 

 where Ĝ(t) is the estimated survivor function for the censoring time and Ŝ(t|Xi) is 
the estimated survivor function of the failure time based on the model (1).

(b)	 The mean absolute error (MAE): 

(c)	 The Concordance index (C-index): 

To emphasize the advantage of the package AFFECT under the AFT model, we com-
pare the performance of the package AFFECT with some existing packages: aftgee 
[13], penAFT [22], spsurv [26], survival [29], and xgboost [11]. After using those 
packages to obtain the estimators, we then apply the R package SurvMetrics to com-
pute the criteria (a)–(c).

Table 2 reveals that the criteria (a)-(c) obtained by our package give reasonable values 
for the estimated failure time, suggesting that our estimation method provides satisfac-
tory performance of deriving accurate prediction when the measurement error effects 
can be corrected. Compared with existing packages, we can see that IBS and MAE val-
ues from other packages are greater than ours, and C-index values from other packages 
are smaller than ours. In addition, the performance of existing packages seems worse 
as the dimension p becomes large. It might be due to that most existing packages are 
based on parametric models and may not be valid to address variable selection. While 
the package xgboost can handle the estimation of nonlinear functions in covariates, it 
cannot deal with measurement error effects; that is why the performance of [3] is slightly 
worse than our method, and its biases are induced by measurement error.

Analysis of gene expression data
In this section, our research interest lies on the survival data for the breast cancer, which 
is the most frequent cancer among women and causes the greatest number of cancer-
related deaths among women. The motivating dataset comes from the Molecular Tax-
onomy of Breast Cancer International Consortium (METABRIC) database, which was 
a Canada-UK Project containing targeted sequencing data of primary breast cancer 

IBS = {ymax}
−1

∫ ymax

0
BS(t)dt,

BS(t) =
1

n

n∑

i=1

[{
Ŝ(t|Xi)

}2
I

(
Ŷi ≤ t, δ̂i = 1

) 1

Ĝ(Ŷi)
+

{
1− Ŝ(t|Xi)

}2
I

(
Ŷi > t

) 1

Ĝ(t)

]
,

∑

i:δ̂i=1

∣∣∣F̂(Xi)− Ŷi

∣∣∣.

∑
j<k

I(Ŷj < Ŷk)I(F̂(Xj) > F̂(Xk))δ̂j + I(Ŷj > Ŷk)I(F̂(Xj) < F̂(Xk))δ̂k

∑
j<k

I(Ŷj < Ŷk)δ̂j + I(Ŷj > Ŷk)δ̂k
.
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Table 2  Simulation results under various settings: report of evaluating criteria under various R 
packages

p Criteria Method π01 = π10 = 0.9 π01 = π10 = 0.1

σ 2
η = 0.25 σ 2

η = 0.5 σ 2
η = 0.75 σ 2

η = 0.25 σ 2
η = 0.5 σ 2

η = 0.75

3 C-index AFFECT 0.712 0.704 0.708 0.710 0.795 0.764

survival 0.471 0.396 0.530 0.610 0.609 0.633

aftgee 0.514 0.501 0.389 0.570 0.629 0.633

penAFT 0.488 0.387 0.403 0.561 0.625 0.621

spsurv 0.584 0.499 0.528 0.615 0.694 0.665

xgboost 0.327 0.309 0.311 0.387 0.394 0.458

MAE AFFECT 5.223 4.472 2.261 4.175 2.104 2.953

survival 16.887 13.936 17.987 26.021 36.507 24.146

aftgee 27.038 18.079 15.268 27.603 37.652 22.076

penAFT 24.774 40.022 26.738 22.261 20.627 29.529

spsurv 20.498 22.595 20.344 22.925 21.965 31.814

xgboost 17.112 20.909 11.764 18.639 41.214 23.623

IBS AFFECT 0.119 0.134 0.170 0.117 0.168 0.183

survival 0.383 0.393 0.346 0.352 0.358 0.336

aftgee 0.358 0.372 0.378 0.344 0.353 0.350

penAFT 0.385 0.399 0.392 0.374 0.348 0.344

spsurv 0.346 0.360 0.382 0.353 0.338 0.317

xgboost 0.459 0.447 0.481 0.418 0.435 0.341

p Criteria Method π01 = π10 = 0.9 π01 = π10 = 0.1

σ 2
η = 0.25 σ 2

η = 0.5 σ 2
η = 0.75 σ 2

η = 0.25 σ 2
η = 0.5 σ 2

η = 0.75

10 C-index AFFECT 0.732 0.719 0.718 0.706 0.729 0.798

survival 0.303 0.312 0.313 0.613 0.627 0.646

aftgee 0.323 0.347 0.353 0.567 0.572 0.596

penAFT 0.304 0.311 0.323 0.548 0.607 0.569

spsurv 0.464 0.350 0.362 0.502 0.604 0.545

xgboost 0.305 0.333 0.293 0.332 0.299 0.326

MAE AFFECT 9.322 9.985 10.774 1.716 7.557 3.254

survival 17.663 15.578 15.002 15.324 20.603 22.176

aftgee 18.897 18.340 16.341 22.065 23.048 26.711

penAFT 14.897 21.502 24.003 20.362 21.307 22.051

spsurv 32.963 20.280 17.944 25.092 22.909 18.207

xgboost 17.811 20.065 23.402 22.326 21.038 23.467

IBS AFFECT 0.079 0.102 0.119 0.088 0.112 0.129

survival 0.412 0.406 0.391 0.329 0.340 0.337

aftgee 0.387 0.395 0.403 0.367 0.368 0.368

penAFT 0.394 0.407 0.394 0.359 0.355 0.344

spsurv 0.364 0.395 0.371 0.372 0.349 0.371

xgboost 0.453 0.424 0.424 0.439 0.444 0.409

p Criteria Method π01 = π10 = 0.9 π01 = π10 = 0.1

σ 2
η = 0.25 σ 2

η = 0.5 σ 2
η = 0.75 σ 2

η = 0.25 σ 2
η = 0.5 σ 2

η = 0.75

100 C-index AFFECT 0.754 0.723 0.725 0.773 0.706 0.782

survival 0.240 0.242 0.230 0.525 0.539 0.602

aftgee 0.212 0.231 0.208 0.554 0.510 0.573

penAFT 0.318 0.310 0.270 0.465 0.459 0.467

spsurv 0.241 0.275 0.303 0.590 0.560 0.544
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samples and was collected by Cambridge Research Institute and the British Columbia 
Cancer Centre in Canada [27]. The full dataset and all variables’ names are publicly avail-
able on the Kaggle website (https://​www.​kaggle.​com/​datas​ets/​ragha​dalha​rbi/​breast-​can-
cer-​gene-​expre​ssion-​profi​les-​metab​ric). The dataset has 1422 patients with censoring 
rate 74.965%. In addition, there are 331 gene expressions, which are continuous random 
variables and are recorded as m-RNA levels Z-score:

In our study, we take a variable “overall_survival_months” as the survival time, which 
is defined as duration from the time of the intervention to death. In addition, we take 
“overall_survival” as the censoring status because it reflects whether the patient is alive 
of dead. Moreover, gene expressions are taken as the covariates and are used to charac-
terize the failure time. However, among 331 gene expressions, it is possible that a few of 
gene expressions are informative to the failure time, and the relationship between the 
gene expressions and the failure time is possibly nonlinear. On the other hand, as dis-
cussed in the section "Background" and existing literature (e.g., [15, 30]), survival time 
and the censoring status might be collected with error caused by wrong record or impre-
cise machines in laboratory. Consequently, taking measurement error effects and esti-
mation of nonlinear functions into account is required.

To tackle the challenges and derive the reliable estimator, we adopt the pack-
age AFFECT to analyze this dataset. Since this dataset has no additional information 
to determine parameters in (3) and (4), to examine the impact of measurement error 
effects and see the robustness of the estimation result, we conduct sensitivity analyses. 
In our study, we consider three scenarios: Scenario I for minor effect ( σ 2

η = 0.15 and 
π10 = π01 = 0.05 ), Scenario II for moderate effect ( σ 2

η = 0.3 and π10 = π01 = 0.1 ), and 
Scenario III for severe effect ( σ 2

η = 0.5 and π10 = π01 = 0.15 ). For the parameters γ0 and 
γ 1 , we specify γ0 = 0 and γ 1 = (1, 0⊤330)

⊤ as demonstrated in our package manual [14], 

expression in tumor sample − mean expression in reference sample

standard deviation of expression in reference sample
.

Table 2  (continued)

p Criteria Method π01 = π10 = 0.9 π01 = π10 = 0.1

σ 2
η = 0.25 σ 2

η = 0.5 σ 2
η = 0.75 σ 2

η = 0.25 σ 2
η = 0.5 σ 2

η = 0.75

xgboost 0.274 0.301 0.271 0.356 0.329 0.298

MAE AFFECT 6.279 5.614 4.583 8.993 10.240 13.327

survival 25.632 23.899 25.470 16.544 15.786 18.724

aftgee 19.155 21.986 27.203 28.004 13.899 17.829

penAFT 31.110 17.761 19.449 19.878 15.948 21.581

spsurv 28.418 18.524 22.804 23.069 16.354 13.203

xgboost 19.586 12.940 26.352 13.596 26.456 21.429

IBS AFFECT 0.128 0.141 0.152 0.166 0.116 0.145

survival 0.424 0.422 0.413 0.377 0.367 0.329

aftgee 0.461 0.439 0.426 0.355 0.390 0.346

penAFT 0.405 0.424 0.432 0.386 0.400 0.381

spsurv 0.457 0.413 0.403 0.346 0.334 0.359

xgboost 0.462 0.457 0.435 0.388 0.457 0.444

https://www.kaggle.com/datasets/raghadalharbi/breast-cancer-gene-expression-profiles-metabric
https://www.kaggle.com/datasets/raghadalharbi/breast-cancer-gene-expression-profiles-metabric
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where 0p is a p-dimensional zero vector. We first implement those values to the function 
ME_correction to derive the corrected survival time and censoring status, and then 
implement them and gene expressions to the function Boosting to obtain the result. 
The demonstration of the programming code is given below:

The resulting estimated function and selected gene expression are displayed in Fig. 4. 
With measurement error correction accommodated, analysis results show that a gene 
expression “ccnd1” (known as Cyclin D1 and labelled as X30) is only selected regardless 
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Fig. 4  Selected covariates and its estimated curves under Scenario I ( σ 2
η = 0.15 and π10 = π01 = 0.05 ), 

Scenario II ( σ 2
η = 0.3 and π10 = π01 = 0.1 ), and Scenario III ( σ 2

η = 0.5 and π10 = π01 = 0.15 ). X30 is a variable 

label, reflecting the gene expression “ccnd1”
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of different scenarios. The estimated curves of a gene expression “ccnd1” under different 
scenarios are nonlinear, which shows that the boosting procedure enables us to detect 
gene expressions with nonlinear relationship to the survival time. Interestingly, “ccnd1” 
was discussed to have the association with high histopathological grade, high prolifera-
tion, and Luminal B subtype (e.g., [21, 31]). Moreover, [28] also pointed out that “ccnd1” 
was associated with a good breast cancer prognosis. In general, the result shows that 
the gene expression selected by our package with measurement error correction accom-
modated is as important as findings in some scientific results, which justifies that taking 
measurement error into account seems necessary in this data analysis.

With the functions of selected gene expressions estimated, we further estimate survi-
vor curves for the failure time under the AFT model (1), and we display the estimated 
survivor curves under three different scenarios in Fig. 5. We can see that the estimated 
curves look smooth and are (almost) strictly decreasing to zero.

Finally, when estimated failure times under the AFT model (1) are obtained, we fol-
low the discussion in the  section "Simulation results" to compute C-index, IBS, and 
MAE, and assess the performance of the estimation methods. In addition to the pack-
age AFFECT, we also examine the existing packages listed in the  section "Simulation 
results", and then summarize numerical results in Table  3. We can see that IBS and 
C-index obtained by the package AFFECT are almost the same regardless of the specifi-
cation of π10 , π01 , and σ 2

η  , but MAE values become large when measurement error effect 
is more severe. For the implementation of the existing packages, the package spsurv 
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Fig. 5  Estimated survivor curves derived by the boosting method. A black solid curve is obtained under 
Scenario I ( σ 2

η = 0.15 and π10 = π01 = 0.05 ); a red dash curve is obtained under Scenario II ( σ 2
η = 0.3 and 

π10 = π01 = 0.1 ); a green dot curve is obtained under Scenario III ( σ 2
η = 0.5 and π10 = π01 = 0.15)

Table 3  Real data analysis result: evaluation criteria for estimation methods. Scenario I is the minor 
effect ( σ 2

η = 0.15 and π10 = π01 = 0.05 ); Scenario II represents the moderate effect ( σ 2
η = 0.3 and 

π10 = π01 = 0.1 ); and Scenario III reflects the severe effect ( σ 2
η = 0.5 and π10 = π01 = 0.15)

C-index MAE IBS

AFFECT-Scenario I 0.679 5.023 0.333

AFFECT-Scenario II 0.679 9.076 0.333

AFFECT-Scenario III 0.679 14.785 0.333

survival 0.109 118.672 0.397

aftgee 0.120 118.674 0.394

penAFT 0.250 118.390 0.394

spsurv − − −
xgboost 0.492 118.399 0.383
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cannot produce the analysis result; while other packages provide comparable values of 
MAE and IBS, which are generally greater than values obtained by our package. In addi-
tion, the C-index value from our method is greater than values from other packages. 
This finding is consistent with simulation results in the section "Simulation results", and 
these results may be incurred by nonlinear functions of informative covariates as well as 
measurement error effects in survival times simultaneously.

Conclusion
In this paper, we introduce the R package that aims to deal with measurement error in 
survival times and simultaneously detect important covariates and nonparametrically 
estimate unknown functions by a boosting procedure. The function smooth.spline 
in the existing R package stats is only equipped to our package and is used to imple-
ment the nonparametric estimation, but the main contribution of our package is to deal 
with incomplete responses caused by the censoring effects and measurement error in 
the survival time simultaneously. Those complex features can not be addressed by the 
existing R packages, such as stats or xgboost. The output produced by the function 
includes a list of selected covariates and the corresponding estimated functional curves. 
The visualization enables users to easily see the estimation results. Based on the numeri-
cal comparisons with existing packages, we find that the estimation procedure in our 
package produces reliable estimation results, and it is expected that this package can 
be widely used to analyze gene expression survival data with measurement error effects 
accommodated.

From the methodological perspective, we primarily adopt the regression calibra-
tion method to adjust measurement error in survival times in our package. While this 
approach was similar to [25], the difference between our package and existing litera-
ture is that we adopt this technique to the AFT model with nonlinear covariates. While 
the regression calibration method is convenient and useful to correct for measurement 
error effects, a crucial concern is its application for error-prone covariates, and it simply 
induces approximately consistent estimator if the nonlinear pattern of covariates is not 
seriously oscillatory (e.g., [4], Section 4.8.2). It might be interesting to explore alternative 
correction methods to adjust measurement error in the survival time, and then extend 
our package and the computational algorithm accordingly.
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