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Abstract 

Background:  Identification of human leukocyte antigen (HLA) types from DNA-
sequenced human samples is important in organ transplantation and cancer immuno-
therapy and remains a challenging task considering sequence homology and extreme 
polymorphism of HLA genes.

Results:  We present Orthanq, a novel statistical model and corresponding applica-
tion for transparent and uncertainty-aware quantification of haplotypes. We utilize our 
approach to perform HLA typing while, for the first time, reporting uncertainty of pre-
dictions and transparently observing mutations beyond reported HLA types. Using 99 
gold standard samples from 1000 Genomes, Illumina Platinum Genomes and Genome 
In a Bottle projects, we show that Orthanq can provide overall superior accuracy 
and shorter runtimes than state-of-the-art HLA typers.

Conclusions:  Orthanq is the first approach that allows to directly utilize exist-
ing pangenome alignments and type all HLA loci. Moreover, it can be generalized 
for usages beyond HLA typing, e.g. for virus lineage quantification. Orthanq is available 
under https://​ortha​nq.​github.​io.

Keywords:  Haplotype quantification, HLA typing, Bayesian latent variable model, 
Genomic variants, Uncertainty quantification

Background
A haplotype is a biological entity that carries genetic information to be inherited from a 
single chromosome of same parental origin [1]. It can represent a set of single nucleotide 
polymorphisms (SNPs) or alleles.

An example for a particularly complex set of haplotypes to quantify is the human leu-
kocyte antigen (HLA) system (the species agnostic name is major histocompatibility 
complex (MHC)), located in the short arm of chromosome 6, which is a set of genes 
playing a central role in the immune system [2]. The HLA system consists of three main 
classes, HLA-I, HLA-II and HLA-III. The first group contains classical loci (i.e. genes) 
such as HLA-A, HLA-B, HLA-C, nonclassical loci HLA-E, HLA-F, HLA-G and pseu-
dogenes such as HLA-H, the second class the loci DQ (e.g. HLA-DQA1), DR (e.g. 
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HLA-DRB1), DP and the last class consists of genes (e.g. complement system compo-
nents and tumor necrosis factors (TNFs)) with separate functions involved in immune 
system [2, 3]. HLA genes show a relatively high genomic variability: the main database 
for known alleles (IPD-IMGT/HLA) contains currently 37,000 entries1 [4]. Following 
our definition above, each of these alleles can be seen as a haplotype. This variability 
plays a major role in the activation of specific cells of the adaptive immune system in the 
context of infection, cancer and autoimmunity.

HLA typing is the process of determining the HLA alleles of each HLA locus/gene of a 
given sample. In order to simplify characterization and comparison, a nomenclature has 
been defined that offers unique names for known HLA gene haplotypes [5]. The HLA 
nomenclature uses a four-field (separated by colons) naming system. The first and sec-
ond field next to the name of the HLA locus give information about the nucleotide sub-
stitution at the protein level. The third field informs about synonymous variants (i.e., not 
implying a difference at the protein level). The fourth field describes variants in non-cod-
ing (i.e., intronic) regions. As an alternative to above HLA nomenclature, the G group 
notation describes just those sequences of each HLA locus that code for peptide bind-
ing domains.2 A vast number of alleles are known and HLA loci themselves are highly 
homologous [6], rendering HLA typing a challenging task.

For determining the HLA type from sequencing data, several approaches have been 
developed. Optitype [7] adopts an approach where they align reads against exon 2 and 
exon 3 sequences of HLA-I class alleles and formulates an Integer Linear Program (ILP) 
that explains the HLA genotype based on the maximum number of mapped reads. HLA-
LA [8] relies on linear alignments of reads against the human reference genome plus 
HLA sequences (including HLA-I and -II) which is then followed by a projection onto 
a special graph called a Population Reference Graph (PRG) and then resulting in HLA 
type inference based on a custom optimization process. HLAreporter [9] employs an 
approach that aligns reads against a comprehensive reference panel (CRP) that consists 
of HLA alleles, classifies and de novo assembles reads in order to make queries to custom 
built databases to infer HLA types. HLA-HD [10] firstly prepares a dictionary consisting 
of exons and introns of all HLA genes. Then, their algorithm works firstly by mapping 
reads to this dictionary, secondly, read matching to exons and introns that is followed 
by read weighting and finally, determining the prediction with the highest score. HLAs-
can [11], similarly, begins with one or two alignment steps and computes a score func-
tion which is then followed by inferring HLA types via phasing. arcasHLA [12] counts 
RNA-sequencing reads with Kallisto [13], constructs a database of the desired IMGT/
HLA version and then determines HLA alleles with a genotyping algorithm that takes 
population-specific allele frequencies into account.

Orthanq differs from these previous approaches in the following ways. First, instead of 
realigning against the known HLA alleles or phasing variants, it relies on the statistically 
accurate determination of posterior variant allele frequency (VAF) distributions of the 
known genomic variation each haplotype (here HLA allele) is made of, while still ena-
bling to use local phasing information (see “Discussion” section for the latter). We show 

1  October 2023.
2  https://​hla.​allel​es.​org/​allel​es/g_​groups.​html.
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that this can provide a speed advantage without a loss in accuracy. Second, by combin-
ing the posterior VAF distributions in a Bayesian latent variable model, we are able to 
calculate the posterior probability of each possible combination of haplotypes (and their 
fractions). This allows to report the uncertainty of the predictions, which can be par-
ticularly helpful in case of ambiguous possibilities for explaining the data. Moreover, it 
is desirable in a precision medicine scenario, where knowing about the uncertainty of a 
prediction can help to decide whether a measurement should be repeated before basing 
a decision on it. Third, via the choice of the prior distribution the model allows to select 
between the usual diploid HLA typing and the ability to determine subclonal alleles. The 
latter can be particularly important in case of tumors, that usually are a heterogeneous 
mixture of different subclones. Here, HLA typing at subclonal levels can help to predict 
presented tumor antigens in a more accurate way, thereby potentially improving the suc-
cess of antigen-targeted immunotherapies. Fourth, while focusing on HLA typing in this 
first work, the model is generic, such that it can also be used to quantify other kinds 
of haplotypes. For example, this can be used to quantify virus lineages, as it has been 
a common task during the SARS-Cov-2 pandemic and still is relevant, for example for 
wastewater monitoring.

Methods
We solve the HLA typing problem by generalizing to the problem of quantifying a set of 
haplotypes that best explains the sequencing reads in a given sample. We first define the 
general problem and describe our solution. Afterwards we show HLA-typing specific 
challenges and how to overcome them.

Haplotype quantification

Definitions

General. We assume that for the investigated species a reference genome is available that 
is complete enough to contain all the haplotypes of interest H = {h1, h2, . . . , hn} (e.g., 
HLA alleles). Local differences to the reference genome, for example single or multiple 
nucleotide variants (SNV or MNV), insertions, or deletions (indels) are called variants. 
Then, each haplotype h can be considered a sequence of genomic variants. We define 
{v1, v2, . . . , vk} as the union of all those variants and represent the correspondence of hap-
lotypes and variants as binary matrix (Vi,j)i=1,2,...,n,j=1,2,...,k with Vi,j = 1 if haplotype hi 
has variant vj and 0 otherwise. We further define the binary matrix (Ci,j)i=1,2,...,n,j=1,2,...,k 
with Ci,j = 1 if haplotype hi spans across the locus of variant vj (but does not have the 
particular variant) and 0 otherwise.

Observed variables. We denote with Z = (Z1,Z2, . . . ,Zl) the observed DNA fragments 
in a given sample. For each fragment, we consider a 4-tuple of mapping quality (MAPQ, 
the posterior probability that the locus the read is aligned to is the wrong one [14]), the 
alignment of the single read or the read pair (depending on the sequencing protocol), the 
read sequence(s) and the corresponding base qualities. We further denote for each vari-
ant vj the subset Zvj ⊆ Z of fragments that span the variant.

Latent variables. We denote with � = (ψi | ψi ∈ U , i = 1, . . . , n, n
i=1 ψi = 1) the 

latent fractions of each haplotype in H in the given sample. Thereby, U denotes the 
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universe of possible fractions, which can for example be continuous ( U = [0, 1] ), or dis-
crete (e.g., U = {0, 0.5, 1} for diploid samples). For each variant vj we further denote with 
θj the variant allele frequency in the given sample. Finally, we define the same binary 
latent variables as Köster et al. [15] for each observed DNA fragment Zx ∈ Zvj . First, we 
define ξx ∈ {0, 1} with ξx = 1 if the fragment is associated with the variant (i.e. has been 
sampled from the variant allele) and ξx = 0 otherwise. Second, we define ωx ∈ {0, 1} with 
ωx = 1 if the fragment stems from the locus of interest and ωx = 0 otherwise.

Problem. Our goal is to find approximations of the true haplotype fractions �̂ that best 
explain the observed sequencing reads Z and to calculate the posterior densities of any 
provided solutions.

Bayesian latent variable model

Under the simplifying assumption that the given haplotypes represent all possible varia-
tion of the genome at a locus of interest, the central observation is that the variant allele 
frequency θj of variant vj is determined by the fractions of the haplotypes, namely

In other words, the main evidence for inferring haplotype fractions are the observed 
variant allele frequencies (i.e., vertical observations that are orthogonal to the horizon-
tal haplotypes that shall be quantified) and their underlying uncertainty. Nevertheless, 
our approach can easily incorporate phasing information by combining close SNVs into 
MNVs or SNVs and indels into complex replacements (also see “Generation of candidate 
haplotypes and variants” section).

In the following, let Zx ∈ Zvj be the arbitrary but fixed x-th observed fragment span-
ning variant vj . As defined by Köster et al. [15], for ωx we assume

with πx being the complement of the probability denoted by the MAPQ value of frag-
ment x in the BAM file with the fragment alignments of the sample. While in the sin-
gle sample case of the original paper ξx ∼ Bernoulli(θτ ) is assumed (with τ denoting the 
probability that, if sampled from the variant-affected copy, the fragment indeed covers 
the variant [15]), we can here directly relate the distribution of ξx to the haplotype frac-
tions, that is,

Reusing the same modelling as shown by Köster et al. [15], this leads to the likelihood 
function

θj =

∑n
i=1 Vi,jψi

∑n
i=1 Ci,jψi

.

ωx ∼ Bernoulli(πx)

ξx ∼ Bernoulli

(

τ

∑n
i=1 Vi,jψi

∑n
i=1 Ci,jψi

)

Pr(Zvj | ψ1,ψ2, . . . ,ψn) =
∏

Z∈Zvj

Pr

(

Z | θj =

∑n
i=1 Vi,jψi

∑n
i=1 Ci,jψi

)

.
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In practice, this means that the likelihood function can be directly obtained by applying 
Varlociraptor to the data (see “Utilizing varlociraptor to obtain variant allele frequency 
distributions” section). Consequently, the likelihood of haplotype fractions given all vari-
ants V  is

Using Bayes theorem, the posterior is thus

The marginal probability Pr(Z) depends on the fraction universe. In the continuous case 
( U = [0, 1] ), it is

with 1∑n
i=1 ψi=1 being an indicator function that ensures that the sum of the chosen hap-

lotype fractions does not exceed 1. In the discrete case (e.g., U = {0, 0.5, 1} ), it is

By choosing the reference genome, the haplotype set, the prior ( Pr(ψ1,ψ2, . . . ,ψn) ), and 
the universe, the model can be configured for various kinds of scenarios. In this manu-
script, we will focus on HLA typing, but different universes and priors can for example 
be used for virus lineage quantification.

Practical considerations for model evaluation

As can be easily seen, calculating the marginal probability is computationally expensive. 
In the continuous case, it would require O(qn) with q being the number of grid points 
in the integral (e.g., using quadrature integration) and n being the number of consid-
ered haplotypes. To speed up the calculation, one can utilize Markov chain Monte Carlo 
methods (which we want to explore in the future). Further, it is possible to heuristically 
discard haplotypes that obviously do not reflect the observed VAFs at all upfront. This 
can be done using linear optimization.

First, we consider for each variant vj the maximum a posteriori allele frequency θ̂j as 
it is reported by Varlociraptor [15]. We restrict the set of considered variant indices to 
W ⊆ {1, 2, . . . , k} such that each variant vj with j ∈ W  is covered by all the considered 
haplotypes. This is necessary to avoid the normalization factor when calculating the 
haplotype fraction induced allele frequency (see “Bayesian latent variable model” sec-
tion) in the linear program. We minimize

Pr(Z | ψ1,ψ2, . . . ,ψn) =

k
∏

j=1

Pr(Zvj | �).

Pr(� | Z) =
Pr(ψ1,ψ2, . . . ,ψn)Pr(Z | ψ1,ψ2, . . . ,ψn)

Pr(Z)
.

∫ 1

0

∫ 1

0

...

∫ 1

0

1∑n
i=1

ψi = 1 Pr(ψ1,ψ2, . . . ,ψn)Pr(Z | ψ1,ψ2, . . . ,ψn)dψ1dψ2 . . . dψn

∑

ψ1,ψ2,...,ψn|ψi∈U ,i=1,...,n,
∑n

i=1 ψi=1

Pr(ψ1,ψ2, . . . ,ψn)Pr(Z | ψ1,ψ2, . . . ,ψn).
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subject to

The optimization function minimizes the distance between the haplotype fraction 
induced allele frequency and the observed maximum a posteriori estimate of the allele 
frequency of each variant. The constraints ensure that the chosen fractions sum up to 1. 
By keeping only haplotypes with ψi ≥ t and extending this set with haplotypes that have 
either the same set of variants or at most m more or less (with both t and m being com-
mand line parameters of Orthanq), we can obtain a set of haplotypes that is drastically 
reduced to exclude those that are unlikely to play a role in favorable solutions. By group-
ing those haplotypes into equivalence classes of haplotypes that are sufficiently similar 
to become de facto mutually exclusive in any solution and evaluating combinations of 
those classes instead of combinations of all LP-selected haplotypes, the search space for 
the statistical model can be further reduced (we will explore this in the future).

Utilizing Varlociraptor to obtain variant allele frequency distributions

As outlined above, the likelihood Pr
(

Z | θj =

∑n
i=1 Vi,jψi

∑n
i=1 Ci,jψi

)

 can be obtained directly from 

Varlociraptor. To this end, Varlociraptor offers the ability to specify so-called variant 
calling scenarios, which allow to configure all relevant aspects of the underlying latent 
variable model. The scenario consists of a definition of species specific prior assump-
tions (like the expected heterozygosity), the definition of samples, and the definition of 
events of interest, all specified in a YAML3 based domain specific language. The specifi-
cations depend on the use case and can be customized in any way.4 In order to simplify 
the usage, Orthanq offers a subcommand that hides the scenario specification details 
and applies reasonable defaults. Specifically, we define a single sample, set the universe 
to be continuous and uniformly distributed and define a simple event that just checks for 
the presence of a variant.

HLA‑typing specific considerations

In the following, we show how the Orthanq model can be used to perform HLA typing. 
Figure 1 provides an outline of the involved steps. We first generate candidate variants 
from comparing known HLA alleles against the reference genome. Second, we have to 
align reads against the reference genome, taking particular care of the homology induced 
challenges occurring at HLA loci. This step can obviously be shared with other analyses, 
e.g. for variant calling. Finally, the candidate variants are preprocessed and called with 
Varlociraptor, providing the required input for HLA typing with Orthanq.

n
∑

i=1

∣

∣

∣

∣

∣

∑

W

ψiVi,j − θ̂i

∣

∣

∣

∣

∣

ψi ∈ [0, 1], i = 1, 2, . . . , n
n

∑

i=1

ψi = 1

3  https://​yaml.​org/.
4  https://​varlo​cirap​tor.​github.​io/​docs/​calli​ng/#​gener​ic-​varia​nt-​calli​ng.

https://yaml.org/
https://varlociraptor.github.io/docs/calling/#generic-variant-calling
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Generation of candidate haplotypes and variants

Orthanq expects candidate haplotypes and variants to be given in BCF/VCF format. It 
provides a subcommand for automatically generating them from a given FASTA file with 
haplotype sequences and a common reference genome for the species. The subcommand 
uses minimap2 [16] to align each haplotype sequence against the reference genome and 
infers SNVs, MNVs and indels from the alignments, representing them in a VCF with 
one column per haplotype. Thereby, the column fields represent the entries of the matri-
ces V (GT field) and C (C field) (see “Definitions” section). As mentioned above, while 
the central evidence used for haplotype fraction inference are variant allele frequencies, 
candidate variants can easily be grouped into locally phased representations like MNVs 
or complex replacements since Varlociraptor can handle all of these as well.

For the evaluation of HLA typing presented in this paper, we used all known HLA 
alleles from the IPD-IMGT/HLA sequence database v3.32, excluding unconfirmed 
alleles and those with a population allele frequency < 0.05 according to the Allele Fre-
quency Net Database [17, 18] as input haplotype sequences and GRCh38 version 106 
from Ensembl as reference genome. For now, we did not group individual variants into 
MNVs or complex replacements (but aim to pursue this in future work, see “Definitions” 
section). We run Orthanq independently for each HLA locus. Therefore, the candidate 
matrix was intersected with HLA genes.

Pangenome based two‑step alignment strategy

We adopt a two-step alignment strategy to ensure that reads align to the reference 
genome in the most accurate and efficient way. Naturally, the genetic variation of the 
investigated individual is not represented in a linear genome. The read mapper therefore 
has to decide about the optimal placement of a read solely based on the linear refer-
ence genome. This can lead to the situation that a variation in the individual’s genome 

Fig. 1  General workflow of HLA typing with Orthanq. The workflow consists of three main parts. “Prepare” 
consisting of candidate variant generation, “Align” containing the two-step alignment process that each 
sample undergoes, “Call” including both Varlociraptor for calling variants and Orthanq for calling haplotypes 
with the latter resulting in type allele prediction, with diploid priors to be used with healthy samples (steps 
with asterisk (*) are performed by respective Orthanq subcommands)
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generates a homology to a different location of the linear reference genome, pulling the 
read to a wrong place. Subsequently, the misplaced reads can lead to false positive or 
false negative variants, and thereby wrongly inferred HLA types. To overcome this issue, 
we utilize a graph based pangenome read alignment strategy. In graph based reference 
pangenomes, differential paths represent the known variants. If the pangenome is built 
to contain most of the relevant genetic variation of a species, wrong read placements 
can be reduced substantially, and more accurate mapping qualities can be reported [19] 
Since, at least on some hardware, pangenome read alignment can still be slower than 
linear reference genome alignment and we only require the maximum alignment accu-
racy for reads coming from HLA genes, we conduct a two-step approach. Reads are first 
aligned to the linear genome (GRCh38.p13) by bwa mem with default parameters. Sec-
ond, we extract reads that map to any HLA class I and II locus based on their genomic 
coordinates. While HLA class III loci are technically possible as well, the IPD-IMGT/
HLA database currently does not hold corresponding allele sequences. The extracted 
reads are then aligned to a human pangenome graph that captures the most relevant 
genetic variation [19] using vg giraffe [20, 21].

Results
Evaluation

In order to compare our novel model implemented in Orthanq with state of the art 
approaches for HLA typing, we evaluated in total 99 samples for which each sample’s 
HLA-A, HLA-B, HLA-C, and HLA-DQB1 alleles have been determined and validated 
by a clinical laboratory Chin et  al. [22] and either computationally or experimentally 
determined by Abi-Rached et al. [23]. The latter is offered by The International Genome 
Sample Resource (IGSR) as of May 2024. Those entail (a) whole exome sequencing 
(WES) samples (all samples from the population of CEU, if there is no discrepancy in the 
ground truth) from 1000 Genomes Project [24] that are listed under the project number 
PRJNA59853 on SRA,5 (b) 3 whole genome sequencing (WGS) samples from Illumina 
platinum genomes [25] that are listed under the project number PRJEB3381 on SRA,6 
and (c) the WES sample HG002 (SRA ID SRR2962669) of the NA12275 individual from 
the Genome In a Bottle project (GIAB) [26] under the project number PRJNA200694 on 
SRA.7 We provide a Snakemake report with all analysis results together with the used 
code, parameters, and software versions via Zenodo.8 In the subsequent analysis, the 
GIAB sample (sample name is SRR2962669 and alias is “D1_S1_L001” in the report) is 
evaluated separately, because its HLA types are given in G group notation in the bench-
mark [22]. A summary table across all samples can be found in the Snakemake report9 
(section “sample sheet”).

Comparison with state-of-the-art HLA typers For comparison, we chose arcasHLA 
(v0.5.0), Optitype (v1.3.5), and HLA-LA (v1.0.3), because these tools have relatively 

5  https://​www.​ncbi.​nlm.​nih.​gov/​biopr​oject/​PRJNA​59853.
6  https://​www.​ncbi.​nlm.​nih.​gov/​biopr​oject/​PRJEB​3381.
7  https://​www.​ncbi.​nlm.​nih.​gov/​biopr​oject/?​term=​PRJNA​200694.
8  http://​doi.​org/​10.​5281/​zenodo.​10419​127.
9  http://​doi.​org/​10.​5281/​zenodo.​10419​127.

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA59853
https://www.ncbi.nlm.nih.gov/bioproject/PRJEB3381
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA200694
http://doi.org/10.5281/zenodo.10419127
http://doi.org/10.5281/zenodo.10419127


Page 9 of 18Uzuner et al. BMC Bioinformatics          (2024) 25:240 	

recent releases and appear to be continuously maintained. For the fairest evaluation, 
IPD-IMGT/HLA release version 3.32 was preferred for Orthanq and arcasHLA since 
that is the version that HLA-LA uses in its predictions. For Optitype, the database ver-
sion cannot be customized. All tools were executed with their default parameters. For 
Orthanq we configured a diploid prior, in other words, we assumed that all evaluated 
samples are diploid at their HLA loci.

Accuracy and call rate

On the evaluated samples, we calculate accuracy and call rate across all samples exclud-
ing HG002 sample. The latter is evaluated separately, because the true alleles are given 
as G groups (see “Background” section) only. We define the call rate as the fraction of 
samples for which the evaluated tool provides a prediction among all loci and samples. 
We define the accuracy, as the fraction of correctly predicted HLA genotypes across 
all loci and all called samples (i.e., excluding samples where the tool did not provide a 
prediction). The genotype of an HLA locus is thereby defined as a pair of HLA alleles 
defined by the first two fields of the nomenclature, in other words, only considering non-
synonymous coding variants, to be compliant with the provided benchmark dataset by 
Abi-Rached et al. [23]. In fact, Orthanq is capable of reporting three fields of the nomen-
clature as well. For two loci of one individual (NA12874, locus A &B), Abi-Rached et al. 
[23] report multiple HLA genotypes. In this case, any of the listed alleles are accepted as 
accurate for the tool.

HLA-LA and Orthanq offer multiple predictions per locus. Orthanq may output sev-
eral combinations of alleles with the same density, while HLA-LA may output several 
different alleles per chromosome for one locus. Then, the sample is accounted as accu-
rate if one of the combinations (for Orthanq) and alleles (for HLA-LA) matches the 
ground truth for the corresponding sample.

Since Orthanq reports a posterior probability for each provided solution as a result of 
uncertainty quantification, it can be that some solutions have identical posterior prob-
abilities, yet suggesting different HLA types. In order to show the tradeoff between the 

Fig. 2  Call rate and accuracy depending on thresholds used to determine a considered call in the performed 
benchmark, stratified by HLA locus. Horizontal axes show the minimum required density, colors depict 
maximum allowed haplotype solutions with same maximum density
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threshold and accuracy and call rate, we varied threshold values to obtain the effect on 
accuracy and call rate as shown in Fig. 2. We varied the first threshold from 5 to 10 (and 
omitting it entirely - no threshold) and the second from 0.0 to 0.9. It can be seen from 
the plot that that as expected, choosing more permissive thresholds increases the call 
rate at the expense of loosing some accuracy.

Therefore, it is up to the user to choose a cutoff for considering a prediction to be 
made, for example by controlling the local false discovery rate. Here we kept a prediction 
if Orthanq reported ≤ 5 solutions of equal probability which summed up to > 0.7.

As can be seen in Fig.  3, Orthanq provides the best accuracy over all loci, followed 
by Optitype, which is however unable to predict alleles for HLA-DQB1. On the HLA-A 
locus, Optitype’s accuracy slightly better, though one could as well argue that this differ-
ence so marginal that both tools have about the same accuracy on HLA-A. After Ort-
hanq and Optitype, HLA-LA comes next which is then followed by arcasHLA. Given 
our filtering approach (see above paragraph), call rates of Orthanq are lower than those 
of Optitype. However, this does not mean that Orthanq would not provide a call in such 
cases, it just offers various alternatives and weak posterior probabilities, thereby report-
ing the increased uncertainty in the data. The benefit of this is nicely illustrated in the 
lower accuracy of Optitype on non HLA-A loci that manifests itself predominantly on 
samples with a lower coverage (see Fig. 4 for sample coverages). For the GIAB sample, 
Orthanq and HLA-LA predict the correct HLA alleles for all loci. Optitype predicts 
the correct HLA alleles for all loci except HLA-DQB1, as it does not provide predic-
tions for this locus. ArcasHLA only predicts HLA-DQB1 for this sample, for which it 
however reports the correct alleles.  G notations of HLA predictions are given in the 
following: A*01:01:01/A*26:01:01 for A*01:01:01G/A*26:01:01G, B*35:08:01/B*38:01:01 
for B*35:08:01G/B*38:01:01G, C*04:01:01/C*12:03:01 for C*04:01:01G/C*12:03:01G, 
DQA1*01:05:01/DQA1*03:01:01 for DQA1*01:01:01G/DQA1*03:01:01G, 
DQB1*03:02:01/DQB1*05:01:01 for DQB1*03:02:01 G/DQB1*05:01:01 G. In the Snake-
make report  10 (section “Evaluation (all tools)”), a table that shows the predicted HLA 
alleles for each sample across all tools can be found.

Fig. 3  Accuracy of HLA-LA, Optitype, arcasHLA and Orthanq for 98 samples (excluding GIAB). For code, 
software, and parameters, see section “Accuracy” in the Snakemake report

10  http://​doi.​org/​10.​5281/​zenodo.​10419​127.

http://doi.org/10.5281/zenodo.10419127
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With Orthanq, we aim to not only correctly quantify given haplotypes (or in this case 
correctly predict HLA alleles), but also aim to accurately report the uncertainty of the 
prediction. While with the given benchmark data the numbers of false predictions are 
too small to validate the provided posterior probabilities numerically, we can still check 
whether the tendency of observing a false prediction is increasing with decreasing pos-
terior probabilities. Figure 5 shows the count of records for correct (right) and false (left) 
predictions compared to the posterior probabilities reported by Orthanq across all eval-
uated samples. The analysis considers predictions that pass the thresholds true positives 
or false positives and uncalled if they don’t. The latter ones are predictions that do not 
meet the threshold criteria, but would have been true positive or false positive if they 
did. The aforementioned predictions are split into two, “uncalled” true predictions are 
found on the right, whereas “uncalled” false predictions are found on the left side of the 
plot. From Fig. 5, it can be seen that more than half of the uncalled predictions (27/48) 
still contain the true combination of alleles, just ambiguously together with other possi-
ble solutions (for data points underlying, see “all predictions density table” in the section 
“Orthanq density accuracy” in the Snakemake report). The density plots, solution plots 
generated by Orthanq for each sample automatically, can all be found in the Snakemake 
report. In addition, it can be seen that false predictions occur in higher fractions at low 
posterior probabilities.

Runtime performance and memory consumption

We also compare the performance of Orthanq against the other tools in terms of runt-
ime and memory consumption. Experiments were conducted on a compute server (Intel 
Xeon Silver 4216, 2.1 GHz, 188 GB RAM), providing 40 CPU cores to each tool. Most 

Fig. 4  Boxplot of coverages for samples belonging to 1000 Genomes, a trio from Illumina Platinum Genomes 
(N = 98). For code, parameters, and software versions, as well as detailed access to the underlying data, see 
the Snakemake report
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Fig. 5  Density distributions of True Positive (black), False Positive (red) and uncalled predictions (gray) for 98 
samples (excluding GIAB). Uncalled predictions are split into “true & uncalled” (right) and “false & uncalled” 
(left) if the predictions do not meet the threshold criteria. For code, software, and parameters, see section 
“Orthanq density accuracy” in the Snakemake report

Fig. 6  Boxplot of runtimes of Orthanq, Optitype, HLA-LA and arcasHLA for samples belonging to 1000 
Genomes, a trio from Illumina Platinum Genomes and the GIAB sample (N = 99). For code, parameters, and 
software versions, as well as detailed access to the underlying data, see “Runtime performance” section in the 
Snakemake report
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tools contain several steps that have to be executed for each considered sample (e.g., 
preprocessing of read alignments and candidate variants with Orthanq, followed by the 
actual haplotype quantification). We measured the per sample runtime as the sum of all 
of these steps and the per sample memory usage as the maximum across all steps. We 
did not include ordinary linear genome read alignment or usual common preprocessing 
steps like PCR deduplication in the measurements, as we expect this to happen anyway, 
independently of HLA typing (e.g. for variant calling). Figure 6 shows the results for all 
evaluated samples. When excluding vg-related steps, Orthanq is the fastest across both 
preprocessing and calling and has the least memory usage (see “Discussion” section). 
If vg is included, Orthanqs runtimes are still faster than Optitype (the  overall second 
best performing in terms of accuracy), while being higher than HLA-LA and arcasHLA 
and having the highest memory usage of all tools during the vg step. However, pange-
nome alignment with vg specifically for HLA typing will become unnecessary in the near 
future (see “Discussion” section).

Reporting uncertainty

For each locus, Orthanq reports multiple possible combinations of haplotype fractions 
(here HLA alleles). Each solution is reported with its posterior densities (or probabilities 
if the universe is discrete, like it is the case here, where diploid genomes are assumed). 
For visual assessment, Orthanq offers the possibility to plot the first n solutions, with n 
being configurable. In Fig. 7, the first ten solutions sorted by their log-scaled posterior 
densities are given. For the given sample, there are eight events that share the same den-
sities which can easily be deduced from line plot. The bar plot shows the corresponding 

Fig. 7  Posterior densities of 10 solutions for 1000 Genomes sample SRR702070, using 3-field (left) and 
2-field (right) HLA nomenclature. The shared x axis shows the different solutions and the y axes show 
the corresponding log-scaled posterior densities and color-coded fractions attributed to each allele. The 
HLA truth for this sample is given in the following: A*03:01/A*24:02, B*07:02/B*39:06, C*07:02/C*07:02, 
DQB1*06:02/DQB1*06:02. For code, parameters, and software versions, as well as analogous plots across all 
evaluated samples, see “Orthanq detailed solutions” section in the Snakemake report
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fractions of solutions, 0.5 for each allele, which is to be expected in a “diploid” healthy 
sample. Since the third field of HLA nomenclature represents synonymous mutations, 
it is less relevant in practice. Therefore, Orthanq offers its omission (Fig. 7 right part), 
summing densities of solutions with the same two-field alleles, and it provides both 
three-field and two-field resolution outputs.

For even deeper investigation of Orthanqs predictions, the tool allows to assess the 
contributions of individual variants to the final haplotype prediction. In Fig. 8, the con-
tribution of allele frequencies coming from variants can be checked to see how they 
affect the linear program and the statistical model decision.

On average, across all benchmark samples, the LP reduces the number of candidate 
haplotypes to be considered by 75%. A histogram of pruned haplotypes can be found in 
the Snakemake report in the supplement.

Pangenome based avoidance of alignment artifacts

As mentioned before (“Pangenome based two-step alignment strategy” section), we 
utilize a two-step alignment strategy: the usual linear reference genome alignment, fol-
lowed by pangenome based realignment of reads that originate from HLA loci. This is 
needed because the high homology of HLA loci can give rise to incorrect read place-
ments caused by the variants occurring in the investigated individual. Additional file 1 
shows an example that compares alignments with linear and pangenome approach. 
With linear reference genome alignment (using bwa mem), the variant 6:29943462:T>C 
is called, which does not belong to the known homozygous HLA type A*02:01 of this 
sample. Using a pangenome reference with vg giraffe [20, 21] though causes the reads 
supporting the variant to get a mapping quality of zero, denoting that they cannot be 
uniquely placed to this location and an alternative placement is equally possible. In con-
sequence, the variant is not called by Varlociraptor, and therefore does not misguide the 
HLA typing towards a wrong allele. Currently, Orthanq does not offer an approach with-
out including pangenome alignment.

Fig. 8  Bar plot transparently displaying the model decision in relation to Varlociraptor’s maximum a 
posteriori allele frequency estimates for each variant. The x axis shows variant IDs and y axis shows variant 
allele frequencies (black circles) as well as the sum of haplotype fractions (as stacked bar plot). Thereby, 
the sum of the fractions of haplotypes having a certain variant should match the observed variant allele 
frequency. Each color represents an HLA allele. For this sample Orthanq predicts DQA1*05:01:01 (light 
orange) and DQA1*03:03:01 (dark orange). The matrix plot below the bar plot shows for each evaluated 
haplotype which variants it hosts. For code, parameters, and software versions, as well as analogous plots 
across all evaluated samples, see “Orthanq detailed solutions” section in the Snakemake report
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Discussion
Using previous publications, we curated a comprehensive and cleaned up set of 99 
benchmark samples with known and validated HLA types. Apart from its additional 
benefits in terms of the provided uncertainty estimation and the ability to closely inves-
tigate the involved variants, Orthanq overall manages to outperform other HLA typers 
in terms of accuracy on the investigated samples (with the exception of HLA-A, where 
Orthanq’s accuracy is about the same as that of Optitype). Results show that Orthanq 
tends to be more conservative than other HLA typers: instead of always providing one 
solution, it sometimes lists multiple solutions with the same (weaker) posterior probabil-
ity, thereby reflecting uncertainty in the data. It can be seen that such cases are in general 
reflecting weak evidence (and correspondingly a higher chance for wrong predictions if 
uncertainty would not be estimated) like low read coverage in the respective sample.

Under the assumption that pangenome based read alignment is the upcoming stand-
ard approach (as e.g. illustrated by the fact that it is nowadays the default for the Illumina 
Dragen pipeline), Orthanq also provides the by far most favorable runtime and memory 
requirements: it can directly work from pangenome aligned reads with the accuracy 
reported in this paper given that a sufficiently representative pangenome was used as 
e.g. presented by Liao et al. [19]. Moreover, as Orthanq relies on pangenome alignments, 
any performance based improvement in pangenome aligners will directly affect runtime 
and memory performance of Orthanq. When including measurements for pangenome 
based read alignment (vg), Orthanq still provides a runtime comparable to the overall 
second best HLA typer, Optitype.

Orthanq obtains its evidence from variants that are retrieved by aligning given hap-
lotypes or alleles to a reference genome. Currently, the variants are encoded as SNVs 
and small indels. In the future, we strive to group variants that are close to each other 
into small haplotypes, represented as complex replacements and multiple nucleotide 
variants (MNVs). This way, the Varlociraptor based calling utilized by Orthanq will auto-
matically deliver evidence from reads spanning multiple variants, which should further 
improve the already very high accuracy provided by Orthanq. Moreover, we also expect 
this to further improve the reported certainty of calls (and thereby Orthanq’s call rate in 
the context of the evaluation in this manuscript), as formerly ambiguous solutions will 
sometimes become more distinguishable.

Since the model is agnostic of the considered universe of possible haplotype frac-
tions (see “Definitions” section), it can also be applied to predict subclonal HLA types 
of for example tumor samples. While such subclonal HLA typing requires further opti-
mizations in the implementation (see “Practical considerations for model evaluation” 
section), it could provide important information for designing tumor-antigen targeted 
immunotherapies, since this would allow to detect the evolution of tumor subclones 
which no longer present specific tumor antigens due to HLA allele loss or to predict sub-
clone specific tumor antigen binding affinities.

Orthanqs model evaluation is in principle exponential in the number of considered 
haplotypes. However, using linear programming, the number of haplotypes to consider 
can be dramatically reduced, enabling practical feasibility when constraining the uni-
verse of possible haplotype fractions (see LP pruned haplotypes in the supplementary 
Snakemake report). In the future, we plan to further improve the speed by exploring an 



Page 16 of 18Uzuner et al. BMC Bioinformatics          (2024) 25:240 

equivalence class based approach preprocessing de facto mutually exclusive solutions, 
as well as statistical approximations (see “Practical considerations for model evaluation” 
section).

By utilizing variant based evidence generated by Varlociraptor, Orthanq can also make 
direct use of Varlociraptors advanced capabilities for defining relations between sam-
ples, e.g. in terms for inheritance (mendelian and clonal) and contamination. This way, 
for the first time, contamination or pedigree information and complex sample scenarios 
like longitudinal studies can be taken into account on a statistical level for HLA typing.

While Orthanq’s model is capable to type any kind of HLA locus, in practice, Orthanq 
is currently able to type HLA-A, HLA-B and HLA-C from class I genes and HLA-DQA1 
and HLA-DQB1 from class II genes. The reason for this practical limitation is that HLA-
DRB1 (the second class II gene) requires a refinement of the way we determine candi-
date variants that can deal with the high sequence similarity between DRB1 and DRB5 
(an issue that is also known to another HLA typer, HLA-reporter [9]). Once this has 
been implemented, we will extend our benchmarking towards all class II genes.

Finally, Orthanq has applications beyond the typing of HLA alleles, because it can 
handle any kind of haplotype and reference genome. For example, we plan to apply Ort-
hanq to quantify virus lineages in patient or wastewater samples, e.g. for monitoring 
SARS-Cov-2, influenza or other future virus outbreaks, while, for the first time, being 
able to accurately report the involved uncertainties and pinpoint individual mutations in 
addition to the general lineages.

Conclusion
With Orthanq, we presented a novel statistical approach for the quantification of haplo-
types, that, for the first time, allows to statistically report the uncertainty of the predicted 
quantifications. We showed how Orthanq excels in performing HLA typing, which is 
particularly challenging because of the high variation and homology between HLA loci. 
Orthanq not only predicts the HLA types of samples, it moreover offers detailed insights 
into the associated variants and their contribution to the model decision and the esti-
mated posterior probabilities (or densities). Moreover, this offers the ability to inves-
tigate the HLA loci of a sample beyond the known HLA alleles (but still within their 
context) and assess the potential impact of additional (e.g. subclonal) variation. Finally, 
Orthanq works out-of-the-box with any combination of HLA loci, database versions, 
and reference genomes, as it does not rely on any specialized prebuilt indexes.

Availability
Orthanq is implemented as an open-source, MIT licensed software based on the Rust 
programming language. It can be reached under https://​ortha​nq.​github.​io and installed 
via Bioconda [27]. All the plots generated in this paper, along with their underlying tabu-
lar data are provided together with the used code and parameters in the supplemen-
tary Snakemake report on Zenodo.11 Moreover, the entire codebase of the performed 
evaluation can be found under https://​github.​com/​ortha​nq/​ortha​nq-​evalu​ation and on 
Zenodo.12

11  http://​doi.​org/​10.​5281/​zenodo.​10419​127.
12  http://​doi.​org/​10.​5281/​zenodo.​10418​867.

https://orthanq.github.io
https://github.com/orthanq/orthanq-evaluation
http://doi.org/10.5281/zenodo.10419127
http://doi.org/10.5281/zenodo.10418867
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