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Abstract 

Multi‑omics sequencing is poised to revolutionize clinical care in the coming dec‑
ade. However, there is a lack of effective and interpretable genome‑wide modeling 
methods for the rational selection of patients for personalized interventions. To 
address this, we present iGenSig‑Rx, an integral genomic signature‑based approach, 
as a transparent tool for modeling therapeutic response using clinical trial datasets. 
This method adeptly addresses challenges related to cross‑dataset modeling by capi‑
talizing on high‑dimensional redundant genomic features, analogous to reinforcing 
building pillars with redundant steel rods. Moreover, it integrates adaptive penalization 
of feature redundancy on a per‑sample basis to prevent score flattening and mitigate 
overfitting. We then developed a purpose‑built R package to implement this method 
for modeling clinical trial datasets. When applied to genomic datasets for HER2 tar‑
geted therapies, iGenSig‑Rx model demonstrates consistent and reliable predictive 
power across four independent clinical trials. More importantly, the iGenSig‑Rx model 
offers the level of transparency much needed for clinical application, allowing for clear 
explanations as to how the predictions are produced, how the features contribute 
to the prediction, and what are the key underlying pathways. We anticipate that iGen‑
Sig‑Rx, as an interpretable class of multi‑omics modeling methods, will find broad 
applications in big‑data based precision oncology. The R package is available: https:// 
github. com/ wangx lab/ iGenS ig‑ Rx.

Keywords: Breast cancer, HER2‑targeted therapy, Integral genomic signature, 
Therapeutic response prediction, Multi‑omics modeling, Precision oncology

Background
With the advent of low-cost genome sequencing, precision oncology is expected to 
undergo a deep transformation by leveraging multi-omics sequencing to guide precision 
treatment decisions, which is deemed to be highly cost-effective. While there is copi-
ous literature on the topic of predicting treatment responses based on multi-omics data 
in cancer, most, if not all, available modeling tools for precision oncology are machine-
learning based tools that lack the transparency much needed for clinical use. To date 
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there is a serious lack of white-box methods for modeling therapeutic responses based 
on clinical trials. In addition, most of these tools are developed for modeling pharma-
cogenomics data of cancer cell lines and are not validated for directly modeling clinical 
trials [1–6]. Whereas most of the clinical trial studies used standard machine learning 
methods for modeling therapeutic responses [7–11], rather than specialized tools. This 
reflects a dearth of specialized multi-omics modeling tools for clinical trials.

More importantly, machine learning methods are predominantly developed from 
image and language processing, which lack specialized algorithms in design to deal with 
the hallmark characteristics of genomic data: (i) genomic data have ultra-high dimen-
sion with massive numbers of genomic features, (ii) clinical trial datasets typically have 
very limited subjects, (iii) high multicollinearity of genomic features resulting from co-
expression and co-occurring genetic events, (iv) genomic data are imprecise and incon-
sistent as a result of sequencing errors, experimental variations, library preparation 
methods and platforms, discordant sequencing depth and read-length, heterogenous 
sample qualities. This problem is further exacerbated by the black-box nature of the 
machine learning algorithms that lack the transparency much needed for clinical use, 
which raises concerns from oncologists and questions from patients. These factors cre-
ate an urgent need for innovative white-box methods designed from scratch that are 
specially adapted to the hallmark characteristics of genomics data and are more suitable 
for clinical applications that require high-levels of transparency.

While many effective therapies have been developed for breast cancer, overtreatment 
of clinically localized or regional tumors remains a major clinical problem. For exam-
ple, compelling evidence suggests that HER2 targeted therapy is highly effective in the 
treatment of HER2-positive breast cancer, but the responses are discordant, leading to 
overuse of HER2 monoclonal antibodies in non-responders which carry more risks than 
benefits. The lack of genomic signatures underlying the differential clinical response to 
HER2-targeted therapy has a negative impact on the development of cost-efficient strat-
egies for better management of HER2-positive breast cancer. Recently, clinical trials in 
HER2-positive breast cancer patients with Trastuzumab-based neoadjuvant chemo-
therapy have produced a tremendous amount of multi-omics data along with well doc-
umented therapeutic endpoints, which provided great opportunity to develop big-data 
based predictive models [7, 8, 12–15].

In our previous study, we postulated that the collinearity of high-dimensional features 
may actually help improve the cross-dataset applicability of predictive models, similar to 
the use of redundant steel rods to reinforce the pillars of a building. We thus developed a 
new line of modeling methods that generates prediction scores using high-dimensional 
redundant genomic features predictive of therapeutic responses detected from labeled 
genomic datasets, then reduce the effect of feature redundancy via adaptively penalizing 
the collinearity of predictive features in specific tumors based on unlabeled datasets for 
large tumor cohorts [16]. With this approach, if a subset of genomic features was lost 
due to sequencing noise or experimental variations, the redundant features will sustain 
the predictive power of the model. The unbiased genomic information acquired from 
large cancer cohorts will substantially improve the transferability of the models to clini-
cal study of heterogenous patient cohorts. iGenSig-Rx modeling diminishes false posi-
tives resulting from sequencing errors and overweighing via averaging the weights of 
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genomic features and prevents overfitting via dynamically adjusting the feature weights 
for training subjects. Furthermore, we have demonstrated the general applicability of 
our iGenSig-Rx methods to model targeted therapy and chemotherapy in a variety of 
cancer types based genomic datasets for chemical perturbations, and we have validated 
our models for five different treatments on six clinical trial datasets [16].

In this study, we aim to further develop this technology into a white-box tool called 
iGenSig-Rx for modeling pathological responses, which is in high demand for genomic 
study of clinical trials. In contrast to our previous method, modeling the binary path-
ological response is more challenging than modeling the continuous drug sensitivity 
measurements due to the lack of information about the precise degrees of responses. To 
develop the modeling method, we focused our study on modeling HER2 targeted ther-
apy in breast cancer for which multiple clinical trial datasets with relatively large patient 
numbers are available to test the transferability of the model. The benefit of using clini-
cal trial datasets lies in that the pathological responses as clinical endpoint are directly 
associated with the specific treatment. Whereas retrospective clinical studies are incon-
sistent in treatment regimens, and the outcome are more likely to be confounded by 
sequential treatments the patient received. Our results showed that the iGenSig-Rx 
model developed in this study demonstrates stable predictive power across four inde-
pendent clinical trials and reveals clinically relevant insights into the pathways underly-
ing HER2 therapy responses.

Methods
The basic algorithm to calculate genomic feature weight and select significant genomic 

features

The workflow of the iGenSig-Rx model is depicted in Additional file 2: Fig. 1. To define 
the weight ( ωi ) of each genomic feature in sensitive or resistant therapeutic response, 
we leveraged the Pearson correlation coefficient, also called a mean square contingency 
coefficient, to calculate the association between individual genomic features and thera-
peutic sensitive or resistant patients.

(1) Sensitivity Weight, wi = Pearson coefficient between ith genomic feature and thera-
peutic sensitive patients.

The association will be represented as the enrichment of therapeutic sensitive or 
resistant patients in each genomic feature. We assessed the observed enrichment by 
removing genotypes with a Pearson correlation coefficient < 0.13, which shows the best 
performance in the drug response prediction. To eliminate potential bias, we removed 
genomic features that belong to ‘Up_Level1’ and ‘Down_Level1’, because the effect of 
low-level genomic features is feeble. Likewise, we removed gene expression features that 
show same trend of predictive values on pathological complete response (pCR) when the 
genes are either up or down regulated.

To prevent the inflation of iGenSig-Rx scores by genomic feature redundancy, we lev-
eraged the TCGA Pan-Cancer RNA-seq and exome datasets to assess the co-occurrence 
between genomic features associated with each patient. We generated the similarity 
matrix of genomic features based on the Otsuka-Ochiai coefficient between the genomic 
features. We defined  Kij for the Otsuka-Ochiai coefficient between the pair of ith and the 
jth genomic feature associated with patient x. We then introduced a penalization factor 
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(ε) for the ith genomic feature as the sum of the coefficients obtained from the similarity 
matrix of genomic features associated with a given patient x.

(2) εi =
∑n

j=1
Kij , where n is the total number of genotypes associated with a patient 

x. We then eliminated the cumulative effect of nonsignificant overlaps between genomic 
features. To achieve this, we made clusters of genomic features by hierarchical clus-
tering analysis with the ‘ward.D2’agglomeration method and excluded the coefficients 
of genomic features that are placed outside the main clusters. The feature clusters are 
determined based on the "hybrid" method implemented by the “cutreeDynamic”, with 
deepSplit depth of 2 as cutoff to capture intermediate-sized clusters. Here εi is an esti-
mator of redundancy among the genomic features associated with a patient x.

Calculate iGenSig‑Rx scores for predicting therapeutic responses

We then penalized the weight ωi using εi, resulting in Effective Weight (EW):
(3) EW i =

ωi
εi

The sum of the reciprocals of εi was then used to calculate the Effective Feature Num-
ber (EFN):

(4) EFNi = n/εT

Finally, the iGenSig-Rx score of the given patient x is computed as:

(5) iGenSig − oncologist|patientx =
n
i=1

EWi

EFNi
=

n
i=1

I{i∈x}
ωi
εi

n/εT

The slope of the dividing line (D-line) for sensitive and resistant patients is deter-
mined by Youden Index. We then calculated the distance between a patient and D-line 
and defined the distance as the final iGenSig-Rx score, which can be used to predict 
the patient’s treatment sensitivity. The sensitive patients above D-line will have positive 
iGenSig-Rx scores and vice versa.

The methods for retrieval of clinical trial datasets, multi-omics feature extraction, 
determining the D-line, feature error simulations, benchmarking, machine learning, 
pathway interpretation, and statistical analysis are provided in Additional file 1: Methods.

Results
Modeling patient responses to trastuzumab and paclitaxel‑based chemotherapy

To build the iGenSig-Rx predictive model for standard HER2 targeted therapy and 
chemotherapy, we analyzed multi-omics data from the treatment arms of the CALGB 
40601 (ClinicalTrials.gov ID, NCT00770809; Registry identifier, NCI-2009-1073; Study 
registration date, 2008-10-09; dbGaP Accession Number, phs001570.v2.p1, ver.74825-
8) trial testing Trastuzumab in combination with paclitaxel, with or without Lapatinib 
in HER2-positive patients (Table 1). Differential expression features representing twelve 
levels of up- or down-regulated genes were extracted from the RNA-seq data for both 
trials (Additional file  2   Additional file  2: Fig.  1). In addition, we generated mutation 
features based on a total of 19,288 somatic nonsynonymous mutations and 794 adjacent 
gene rearrangements (AGRs) in the CALGB 40601 cohort (Additional file  3: Tables  1 
and 2). We obtained 6,685 somatic mutations in the ACOSOG Z1041 (ClinicalTrials.
gov ID, NCT00513292 and NCT00353483; Registry identifier, NCI-2009-00341; Study 
registration date, 2007-08-06; dbGaP Accession Number, phs001291.v1.p1, ver.69443-7) 
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cohort provided by the respective publications [8] and generated 33,152 AGRs (Addi-
tional file 3: Table 3). The mutation features are then integrated with differential expres-
sion features representing twelve levels of up- or down-regulated genes.

Table 1 A summary of the clinical trial datasets in HER2‑positive breast cancer used in this study

* T = Paclitaxel; H = Trastuzumab; L = Lapatinib
** FEC = Fluorouracil, Epirubicin, and Cyclophosphamide
*** Doxorubicin/paclitaxel (AT) followed by cyclophosphamide/methotrexate/fluorouracil (CMF)
# AC Doxorubicin plus Cyclophosphamide

Dataset ClinicalTrials.
gov
ID

Use of 
dataset in 
this study

pCR (pCR vs 
non‑pCR) 
for the 
subjects 
used in this 
study
(Only HER2‑
positive 
subjects)

Treatment Arms 
in neoadjuvant 
chemotherapy
(n, the number 
of subjects)

Available 
omics data

Reference

CALGB 40601 NCT00770809 Trainset 
and internal 
testset
(n = 217)

pCR (n = 109) 
/ non‑pCR 
(n = 108)
(n = 217 from 
Arm1 and 
Arm2)
# Conclusion: 
No asso‑
ciation with 
treatment 
arms

o Arm1: THL*
o Arm2: TH
o Arm3: TL

o Transcrip‑
tomics (RNA‑
seq): 265 
subject
o Whole 
exome 
sequencing 
(WXS): 225 
subject

PMID: 
26527775
PMID: 
27704226
PMID: 
30037817

ACOSOG 
Z1041

NCT00513292 
NCT00353483

External vali‑
dation set 1
(n = 42)

pCR (n = 22) 
/ non‑pCR 
(n = 20)
(n = 48 from 
Arm1 and 
Arm2)
# Conclusion: 
No asso‑
ciation with 
treatment 
arms

o Arm1: Sequen‑
tial treatment,
FEC** then T + H
o Arm2: Concur‑
rent treatment,
T + H then 
FEC + H

o Tran‑
scriptomics 
(RNA‑seq): 42 
subjects
o Whole 
exome 
sequencing 
(WXS): 48 
subject

PMID: 
30193295
PMID: 
28453704
PMID: 
24239210

NOAH NCT01428414 External vali‑
dation set 2
(n = 63)

pCR (n = 31) 
/ non‑pCR 
(n = 32)
(total n = 63 
from Arm3 
only)
# Conclusion: 
Arm3 benefits 
compared to 
Arm2

o Arm1: HER2‑
negative, AT‑
CMF***
o Arm2: HER2‑
positive, AT‑CMF
o Arm3: HER2‑
positive, AT‑
CMF + H

o Microarray: 
156 subjects

PMID: 
24443618
PMID: 
24657003

NSABP B‑41 NCT00486668 External vali‑
dation set 3
(n = 187)

pCR (n = 99) 
/ non‑pCR 
(n = 88)
(total n = 187 
from Arm1 
and Arm3)
# Conclusion: 
No asso‑
ciation with 
treatment 
arms

o Arm1:  AC# 
followed by 
Paclitaxel plus 
Trastuzumab
o Arm2: AC 
followed by 
Paclitaxel plus 
Lapatinib
o Arm3: AC 
followed by 
Paclitaxel plus 
Trastuzumab 
plus Lapatinib

o Transcrip‑
tomics (RNA‑
seq): 576 
subjects

PMID: 
24095300
PMID: 
32371537
PMID: 
31428908
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We then selected the predictive genomic features based on their correlations with 
pathological responses computed using Pearson correlation coefficients. Figure  1A 
shows the heatmap of significant genomic features correlating with iGenSig-Rx scores 
and pCR in the CALGB 40601 and ACOSOG Z1041 trials. Next, we integrated a 
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Fig. 1 The performance of iGenSig‑Rx models in predicting the treatment responses in training and 
validation clinical trial datasets for HER2 targeted therapies in breast cancer. A The association between 
significant genomic features, pCR rate, and iGenSig‑Rx scores. The enrichment of drug‑resistant and sensitive 
significant genomic features (n = 3,955) based on Pearson correlation is shown in the figure. The CALGB 
40601 subjects are sorted by their iGenSig‑Rx scores in column (light blue bars on the top). B iGenSig‑Rx 
sensitive and resistant scores for CALGB 40601 subjects. Red dots represent pCR‑achieved subjects, and blue 
dots present non‑pCR‑achieved subjects. Black circles indicate the subjects used in the test set. C Area under 
the receiver operating characteristic (AUROC) curve displays the performance of the predicting sensitive 
responses to Trastuzumab‑based treatment in CALGB 40601. 90% of subjects of CALGB 40601 were used as 
the train set, and 10% of subjects were used as the test set. D–F The performance of the predicting sensitive 
responses in ACOSOG Z1041, NOAH, or NSABP B‑41 as the test set. 100% subjects of CALGB 40601 were used 
as the train set. G Kaplan–Meier plots show the predictive values of the iGenSig‑Rx model on ACOSOG Z1041
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TCGA gene expression profile and somatic mutation datasets of 1,095 breast tumors 
to quantify the similarity between genomic features associated with each tumor in 
the clinical trials and applied the measurement of the similarity to the redundancy 
penalty score in individual genomic features. To develop the iGenSig-Rx model, we 
made a random sampling that select 90% of subjects in CALGB 40601 trainset and the 
rest 10% as the internal test set. We then calculated the iGenSig-Rx scores predicting 
the sensitive or resistant responses for each subject based on the correlated genomic 
features (Fig. 1B). The final iGenSig-Rx scores are calculated based on the distance of 
each subject to the division line (D-line) that best separates the responders from non-
responders (Fig. 1B). The iGenSig-Rx scores are positively correlated with the pCR-
achieved subjects with a similar trend in both training and testing sets as exemplified 
in the CALGB 40601 model. The iGenSig-Rx scores calculated for each subject can be 
used to predict Trastuzumab and Paclitaxel based therapeutic response.

The predictive performance of the iGenSig‑Rx model

We optimized the iGenSig-Rx model by tuning the parameters such as the cut-off for 
selecting predictive genomic features for iGenSig-Rx modeling and the formula for cal-
culating iGenSig-Rx scores. We built the models based on ten random samples of the 
trainsets in the CALGB 40601 dataset, and calculated Area Under ROC Curve (AUROC) 
based on pCR in test sets to assess the model’s prediction performance. The iGenSig-
Rx model predicted therapeutic response on CALGB 40601 subjects with an average of 
AUROC 0.91 in trainsets and 0.89 in internal test sets based on 10 permutated training 
and testing sets (Fig. 1C).

Next, we sought to examine the value of the iGenSig-Rx predictive model in inde-
pendent clinical trials for trastuzumab and paclitaxel-based regimens. To achieve this, 
we accessed genomic datasets for two large clinical trials. NOAH (NeOAdjuvant Her-
ceptin; ClinicalTrials.gov ID, NCT04538079; Study registration date, 2020-03-05; GEO 
accession number, GSE22226) is an open label phase 3 trial evaluating neoadjuvant 
doxorubicin/paclitaxel (AT) followed by cyclophosphamide + methotrexate + fluoroura-
cil (CMF) in combination with trastuzumab in breast cancer patients [17]. The NOAH 
clinical trial only have microarray gene expression profile data [18], and the arm3 sub-
jects (n = 63) (HER2-positive, Trastuzumab-treated) were included in our analysis. The 
NSABP B-41 trial (ClinicalTrials.gov ID, NCT01850628; Study registration dates, 2013-
05-01), obtained from Georgetown University, is a Randomized Neoadjuvant Trial for 
HER2-positive operable breast cancer treated with neoadjuvant trastuzumab and chem-
otherapy (AC + T), with or without lapatinib [19]. Transcriptome sequencing data on 
the pretreatment tumors are available for NSABP B41 trial for approximately 250 patient 
subjects with well documented clinical and treatment outcome information. Since both 
trials lack genomic sequencing data, we generated genomic features based on transcrip-
tomics only. We benchmarked the models to the three external validation sets, ACO-
SOG Z1041, NOAH, and NSABP B41 to assess the cross-dataset performance of the 
iGenSig-Rx model. As expected, the performance of our iGenSig-Rx models achieved 
higher AUROC of 0.80 in the ACOSOG Z1041 trial that has both gene expression and 
whole exome sequencing (WXS) data, and 0.75 in both NOAH and NSABP B41 tri-
als that has only transcriptomic data (Fig.  1D, E, and F). When we removed genomic 
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features of somatic mutations in CALGB 40601 training set and ACOSOZ Z1048 vali-
dation set, the iGenSig-Rx mode performance was slightly reduced (AUROC of 0.87 in 
blue in Fig. 1C; AUROC of 0.77 in blue in Fig. 1D). In addition, the iGenSig-Rx model 
successfully predicted recurrence-free survival in the ACOSOG trial, the only dataset 
that has recurrence free survival data. The favorable survival in ACOSG with a hazard 
ratio of 0.168 and log-rank p-value of 0.028 (Fig. 1G).

The iGenSig‑Rx model does not depend on the genomic features of drug target genes 

or hormone receptor genes

To examine the dependency of iGenSig-Rx predictions on the genomic features of the 
primary drug target and hormone receptor genes, we depleted the genomic features of 
ERBB2 or ESR1 genes from the whole genomic features in the CALGB 40601, ACOSOG 
Z1041, NOAH, and NSABP B-41 datasets (Fig. 2A). Our results showed that the per-
formance of the iGenSig-Rx model is not affected by the absence of genomic features of 
known Trastuzumab target and hormone receptor genes (Fig. 2B).

The association of iGenSig‑Rx scores with clinicopathological variables

Next, we examined the association of iGenSig-Rx scores with the pathological responses 
of patient subjects stratified based on receptor status and clinicopathological subtypes. 
The median level of iGenSig-Rx scores was significantly higher in subjects achieving pCR 
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and hormone receptor genes. The prediction model’s performance was compared between all genomic 
features and the genomic features devoid of HER2 and hormone receptor genes. C The iGenSig‑Rx scores 
are associated with pCR achievement, ER, and PR subtypes. However, the scores are not associated with 
treatment arms, menopausal, or tumor stages. THL, Paclitaxel (T) + Trastuzumab (H) + Lapatinib (L); TH, 
Paclitaxel (T) + Trastuzumab (H). D The comparison of prediction performance AUROCs between iGenSig‑Rx 
and HER2, ER, and PR expression levels in ACOSOG Z1041, NOAH, or NSABP B‑41 trials
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but lower in ER-positive and PR positive subjects in the CALGB 40601 trial (Fig. 2C). 
This suggests that the iGenSig-Rx scores are positively associated with pCR rate but neg-
atively correlated with ER and PR subtypes. The iGenSig-Rx scores did not show associa-
tions with treatment arms, menopausal status or tumor stage, which is consistent with 
the results of the CALGB 40601 clinical trial [7] that the treatment arms did not affect 
the patient outcome.

Previous studies reported that high levels of HER2 expression and low ER levels 
are associated with increased benefit of Trastuzumab-based therapy [9, 20]. We thus 
examined the correlation between the iGenSig-Rx scores and the ER, PR, and HER2 
gene expression levels in the CALGB 40601 dataset. Our results show that the iGen-
Sig-Rx scores are positively correlated with HER2 expression (R = 0.556, p < 0.001) but 
negatively correlated with ER (R = − 0.554, p < 0.001) and PR expression (R = − 0.496, 
p < 0.001) (Additional file 2: Fig. 2). This suggests that the HER2, ER, and PR pathway 
signatures may have major contributions to the iGenSig-Rx model. However, the iGen-
Sig-Rx model does not rely on the genomic features from these receptor genes as it is 
grounded on the integral signature of all genomic features associated with these receptor 
genes. Next, we compared the prediction performance between iGenSig-Rx scores and 
the expression of known biomarkers HER2, ER, and PR in the ACOSOG Z1041, NOAH, 
and NSABP B-41 trial datasets. Our result showed that the iGenSig-Rx model outper-
formed the biomarker expressions on predicting the pCR of all three trials (Fig. 2D).

Comparison of the predictive performance between the iGenSig‑Rx model and standard 

machine learning models in the presence or absence of simulated errors in genomic 

features

Next, we sought to compare the performance of iGenSig-Rx modeling with the AI- and 
machine learning-based approaches implemented in other studies [1, 2, 7, 21]. Following 
the previous reports [1, 2] for dimensionality reduction, we computed the unsupervised 
representation of the genomic features based on the autoencoder deep learning method. 
Then, the dimensionality reduced data were used in the machine learning methods, 
such as elastic net, random forest (RF), or support vector machine (SVM), for super-
vised learning on drug responses. In addition, we also performed modeling directly from 
the high-dimensional genomic features using the minor absolute shrinkage and selec-
tion operator (Lasso) and elastic net, one of the few standard machine-learning methods 
that can deal with massive number of genomic features with high multicollinearity [22]. 
Elastic net is a hybrid of ridge regression and lasso regularization (see Additional file 1: 
Methods) [23].

Compared to the iGenSig-Rx model, Lasso achieved the prediction performance 
AUROC 0.69 ~ 0.83 (median 0.79), elastic net achieved AUROC 0.52 ~ 0.71 (median 
0.63), and the AI-based methods achieved AUROC 0.5 ~ 0.8 (median 0.68) on ACOSOG 
Z1041, NOAH, and NSABP B-41 data (Fig. 3A–C). These AUROCs AI-based methods 
achieved are much lower than the one iGenSig-Rx model achieved, 0.79 ~ 0.81 (median 
0.80). When applied to NOAH and NSABP B-41 validation set, the AUROCs of predic-
tion for these methods dropped to a median range of 0.50 ~ 0.68 or 0.58 ~ 0.73, respec-
tively. In contrast, the iGenSig-Rx models maintained significantly higher predictive 
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values (Fig.  3A–C). In addition, the range of AUROC values by AI-based methods 
showed wide variations.

To assess the resilience of the iGenSig-Rx model against the common genotypic bias 
that can be caused by insufficient depth or sequencing or misreading gene expression, 
we simulated the errors in genomic features with 5–25% rates by randomly generating 
false-positive or false-negative genomic features in either CALGB 40601 or ACOSOG 
Z1041 dataset (Fig.  2A; see Additional file  1: Methods). We built the iGenSig-Rx and 
AI-based method models using the genomic features containing simulated errors for 
comparison. The result showed that the predictive performance in the autoencoder-elas-
tic net (AE-EN), lasso or elastic net model was substantially destabilized even on 5% of 
simulated genotypic errors, and it got worse as the error rate increased (Fig. 3D). In con-
trast, the iGenSig-Rx models can tolerate the simulated errors in genomic features for 
up to 25% without a significant decrease in their performance, regardless of whether the 
genotypic errors are generated in training or validation sets.

Clinical variables that confound the iGenSig‑Rx model

Next, we sought to examine if key clinical variables such as PAM50, tumor stage, grade, 
age, receptor status, etc., may confound the predictive effect of the iGenSig-Rx models. 
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Fig. 3 Comparison of the iGenSig‑Rx models with standard machine learning models on predicting the 
response of HER2 positive breast cancer patients to trastuzumab and paclitaxel‑based regimen. A, B, and 
C Comparison of prediction performance between iGenSig‑Rx model and AI‑based methods on CALGB 
40601 train and ACOSOG Z1041, NOAH, and B‑41 validation set. For AI‑based methods, the unsupervised 
learning was performed by autoencoder (AE) and supervised learning was performed using various machine 
learning tools, including Lasso, elastic net (EN), random forest (RF) and support vector machine (SVM). D The 
prediction performance of iGenSig‑Rx, AI‑based method AE‑EN, and LASSO on CALGB and ACOSOG trials 
under simulated sequencing error rates. The 90% subjects of CALGB 40601 are randomly selected as train set, 
and the subjects from ACOSOG Z1041 trial are used as validation set. *P < 0.05, **P < 0.01, and ***P < 0.001 
(unpaired two‑tail t‑test)



Page 11 of 17Lee et al. BMC Bioinformatics          (2024) 25:220  

For example, HER2-positive tumors that express ER are known to respond well to endo-
crine therapy [24]. Age is one of the most critical risk factors for cancer progression 
[25]. The tumor microenvironment by different tumor stages are known to influence 
therapeutic response and clinical outcomes [26]. The interactions of the iGenSig-Rx 
model with the possible confounding variables were assessed using logistic regression 
(see Methods). Our result showed that among the clinical variables, tumor stage/tumor 
size appear to be most significantly interacting clinical variable in both datasets (Fig. 4A 
and B). We thus stratified the ACOSOG Z1041 and NSABP B-41 subjects into low stage 
(I-II) and high stage (III) subjects and calculated the predictive values (iGenSig-Rx 
scores) trained on all CALGB 40601 subjects (n = 277) or stage III subjects only (n = 89), 
respectively. Interestingly, stage III subgroups in ACOSOG Z1041 and NSABP-B41 test 
sets showed higher predictive values (lower p-values) when modeled based on stage III 
subgroups only in the CALGB 40601 trial compared to that modeled based on all sub-
jects, particularly in the NSABP-B41 trial (Fig. 4C). This suggests that the therapeutic 
response prediction is associated with tumor stages and stratifying the patient subjects 
based on tumor stage may help improve the modeling outcome.

Fig. 4 The confounding clinical variables to the iGenSig‑Rx prediction model. A, B The interactions of 
confounding clinical variables were assessed based on multiple logistic regression models for therapeutic 
response predictive values in ACOSOG Z1041 and NSABP B‑41. The bar plot shows the ‑log10 transformed 
p values of Chi‑Square tests comparing the pair‑wise multiple logistic regression models with the simple 
logistic regression model. C The predictive values of the iGenSig‑Rx model are displayed for ACOSOG Z1041 
and B‑41 subjects stratified by tumor stages; stage I‑III, stage I‑II or stage III. The predictive values were 
measured in pCR or non‑pCR subjects separately in each tumor stage stratification. CALGB 40601 stage II‑III 
(n = 277) or CALGB 40601 stage III (n = 89) were used as the train sets to build the independent iGenSig‑Rx 
modeling. ACOSOG Z1041 and NSABP B‑41 are used as the test sets
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The signature pathways underlying the integral genomic signature of HER2‑targeted 

therapy response

Next, we examined the signature pathways underlying the integral genomic signature 
of HER2-targeted therapy response based on the CSEA method [27] we developed 
(Fig.  5A). CSEA assesses functional enrichment of pathways in the signature gene list 
extracted from therapeutic sensitive or resistant genomic features. CSEA deep inter-
prets the function of the signature gene list via computing their overrepresentations 
in a wide array of molecular concepts, which were then used as weights to compute a 
genome-wide uniConSig score that represent the functional relevance of human genes 
underlying this signature gene list. Then the UniConSig-sorted genome will be used 
for testing pathway enrichments. The most relevant up-regulated gene signatures pre-
dicting sensitive responses are MTOR1 signaling, MYC targets, and interferon gamma 
response (Fig. 5B, Additional file 2: Fig. 4, and Additional file 3: Table 4). This is con-
sistent with the fact that phosphatidylinositol-3 kinase/mechanistic target of rapamycin 
(PI3K/mTOR) signaling mediates HER2 downstream signaling and is implicated in the 
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Fig. 5 CSEA reveals the network of the signature pathways underlying the iGenSig‑Rx model for trastuzumab 
and paclitaxel‑based treatment response. A CSEA facilitates the interpretation of pathways underlying the 
iGenSig‑Rx model. Using positive or negative contributing genes to the iGenSig‑Rx model, a uniConSig score 
can be calculated for all human genes in the genome. To identify the pathways characteristic of the integral 
genomic signature, the enrichments of pathways in this sorted gene list were assessed by K‑S tests. B The 
top up‑regulated pathways predicting sensitive response (green) or resistant response (red) to trastuzumab 
and paclitaxel‑based regimen were clustered in the interconnected network. The node’s size depicts the 
CSEA enrichment score for each pathway, and the thickness of the edge depicts the functional associations 
between the pathways computed based on CSEA (see Methods)
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pathogenesis of HER2-overexpressing breast cancers. Among the up-regulated gene sig-
natures predicting lack of treatment responses, estrogen response pathways and epithe-
lial mesenchymal transition (EMT) pathways are of most interest (Fig.  5B, Additional 
file 2: Fig. 4, Additional file 3: Table 5). Estrogen receptor (ER) is an established oncogene 
known to drive resistance to HER2-targeted therapy through ER-driven growth signal-
ing independent of HER2[28]. EMT has been reported to mediate resistance to HER2, 
and EGFR inhibitors [29–31] and Paclitaxel, consistent with our previous study [32].

In our previous research, we introduced iGenSig, a transparent and interpretable 
multi-omics-based model for predicting the response of cancer drugs [16]. This model 
effectively utilizes high-dimensional genomic features, demonstrating its potential 
for modeling therapeutic responses using pharmacogenomics datasets. However, one 
major limitation of iGenSig is its restricted functionality in modeling continuous drug 
sensitivity data. To address this limitation, we have undertaken a new study to develop 
iGenSig-Rx, a variant of iGenSig specifically designed to model binary pathological 
response. Such response assessment is commonly employed in clinical trials to evaluate 
treatment outcomes. In iGenSig-Rx, we have implemented the Pearson correlation coef-
ficient instead of the weighted K-S tests used in our previous study to determine feature 
weights. This approach allows us to measure the enrichment of therapeutic sensitive 
or resistant patients within each genomic feature. We then developed a purpose-built 
R package to implement this method for modeling clinical trial datasets. Optimizing 
the iGenSig-Rx model is a critical task to accomplish the highest prediction AUROC in 
our study and facilitate its future application for predicting other therapeutic responses. 
Here we recommend testing different weight cutoffs based on internal training and test-
ing sets to assess the impact of this key parameter (see Additional file 2: Fig. 4).

To assess the efficacy of our iGenSig-Rx method in modeling clinical trial datasets, 
we leveraged multiple genomic datasets from breast cancer patients undergoing HER2 
targeted therapy in CALGB 40601, ACOSOG Z1041, NOAH, and NSABP B-41 trials. 
Our evaluation revealed strong cross-dataset performance of the iGenSig-Rx model 
across three external validation sets. In the ACOSOG Z1041 trial, which integrated gene 
expression and WXS data, the model achieved an AUROC of 0.80. Comparatively, in 
the NOAH and NSABP B41 trials, which utilized transcriptomic data alone, AUROCs 
of 0.75 were obtained. Our iGenSig-Rx modeling approach demonstrates flexibility in 
accommodating various omics data types, enabling the inclusion of multi-omics fea-
tures to enhance the precision. Notably, the interpretability of iGenSig-Rx models sets 
them apart from black box approaches. Utilizing the CSEA method we developed [27], 
the pathways underlying the iGenSig-Rx model are highly interpretable, which is one 
of the advantages of the iGenSig-Rx model over black box approaches. CSEA revealed 
the pathways characteristics of the integral genomic signature predicting Trastu-
zumab-based treatment responses, such as the MTORC1 signaling predicting sensitive 
response, a major downstream effector of HER2 signaling, and the ER and EMT path-
ways predicting resistant response, both of which are known to endow HER2 therapy 
and chemotherapy resistance in breast cancer.

Our iGenSig-Rx methods implement innovative designs to address the five hall-
mark characteristics of cancer genomics data and provide robust clinical decision 
support with high transparency and cross-dataset applicability: (i) This method 
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leverages the high-dimensional redundant genomic features and introduces de novo 
redundant genomic features to enhance the transferability of multi-omics-based 
modeling for precision oncology, a concept like building constructions that use mul-
tiple steel rods to reinforce the pillars of a building. With this method, we specu-
late that if a subset of the genomic features was lost due to sequencing biases or 
experimental variations, the redundant genomic features will help sustain the pre-
diction score. (ii) To overcome the limited number of subjects, iGenSig-Rx detects 
the co-occurrence of genomic features using unlabeled genomic datasets for large 
cohorts of human cancers from The Cancer Genome Atlas (TCGA). This method 
also prevents overfitting through dynamically adjusting the feature weights for train-
ing subjects. (iii) To address the multi-collinearity issue, the iGenSig-Rx algorithm 
adaptively penalizes the redundant features detected in specific samples, allowing 
for preservation of redundant genomic features during the modeling, while pre-
venting the feature redundancy from flattening the scoring system. The second 
genomic information obtained from unlabeled large cancer cohorts will substantially 
improve cross dataset applicability of the iGenSig-Rx models, particularly on clini-
cal trial datasets. (iv) To deal with the imprecise nature of genomic data, iGenSig-Rx 
modeling utilizes the average correlation intensities of significant genomic features 
detected in specific samples to diminish the effect of false positive detection result-
ing from sequencing errors and overweighing. Thus iGenSig-Rx represents a new 
class of integral multi-omics modeling methods for big-data precision medicine.

In this study, we developed machine learning models using standard hyperpa-
rameters. To explore the potential for further improvement in the results, we con-
ducted analyses to tune the key hyperparameters. Specifically, we tested different 
tree depths ranging from 100 to 2,000 in the AE-RF model (Additional file 2: Fig. 5). 
Our result showed that the number of trees did not lead to major improvement in 
the prediction performance across different validation datasets. To assess the per-
formance of the Autoencoder (AE) under different hyperparameters, we fine-tuned 
various aspects such as the embedding layer size, unit sizes, dropout rate, num-
ber of synthetic features, and training iterations. We then employed elastic net for 
supervised learning. However, these parameter adjustments did not lead to a sig-
nificant improvement in prediction performance, all of which are surpassed by the 
iGenSig-Rx model in the validation sets (Additional file 2: Fig. 6). We believe what 
sets our iGenSig-Rx model apart from traditional machine learning models is its 
adaptive penalization of feature redundancy. The penalization factor εi is estimated 
specifically for each tumor sample based on its unique set of genomic features. Con-
sequently, the effective weight (ωi/εi) and the effective feature number (n/ε ̄T) vary 
for different tumor samples. This approach helps prevent the overfitting of feature 
weights to the training samples. Thus, despite the correlation between the weights of 
iGenSig-Rx and the coefficients of lasso (Additional file 2: Fig. 7), iGenSig-Rx dem-
onstrated superior performance in external validation sets. By highlighting these 
advancements in our research, we aim to offer a more comprehensive and improved 
approach for predicting treatment outcomes in clinical trials. Our iGenSig-Rx model 
demonstrates its superiority, in part due to its adaptive penalization strategy tailored 
to the genomic characteristics of individual tumor samples.
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In conclusion, iGenSig-Rx represents a unique class of white-box methods for big-
data based precision oncology with specialized algorithms adapted to the hallmark 
characteristics of genomic data, and is designed to address the transparency, cross-
dataset applicability, and interpretability for big-data based modeling. iGenSig-Rx 
will have broad applications on modeling therapeutic responses and clinical tumor 
behaviors based on multi-omics datasets of clinical trials or retrospective clinical 
studies.

Conclusions
iGenSig-Rx modeling generates predictive scores using redundant genomic features 
associated with therapeutic responses found in labeled genomic datasets, term as 
an integral genomic signature. To address feature redundancy, we employ adaptive 
penalization to reduce the impact of redundant features identified in specific tumors 
and avoid over-fitting. iGenSig-Rx counteracts the effects of sequencing bias by cap-
turing the integral predictive signal and implementing purpose-built algorithms to 
address the characteristics of genomics data.

We utilized genomic datasets from CALGB40601, a neoadjuvant phase III trial 
employing trastuzumab and paclitaxel-based chemotherapy, to test the iGenSig-Rx 
model. The iGenSig-Rx model showcased remarkable cross-dataset performance 
and robustness against simulated errors in genomic features. Significantly, it out-
performed conventional machine learning and AI methods in three separate clinical 
trials, while offering the vital attribute of transparency necessary for clinical applica-
tion. Interpreting the iGenSig-Rx model yielded clinically relevant insights into the 
signature pathways at play. In summary, iGenSig-Rx is engineered to tackle challenges 
related to transparency, cross-dataset applicability, and interpretability in big-data-
driven modeling. With customized algorithms tailored to the unique characteristics 
of genomic data, this approach holds great potential for applications in big-data based 
precision oncology.
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