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Abstract 

Background: There exists a critical transition or tipping point during the complex 
biological process. Such critical transition is usually accompanied by the catastrophic 
consequences. Therefore, hunting for the tipping point or critical state is of significant 
importance to prevent or delay the occurrence of catastrophic consequences. How-
ever, predicting critical state based on the high-dimensional small sample data is a dif-
ficult problem, especially for single-cell expression data.

Results: In this study, we propose the comprehensive neighbourhood-based per-
turbed mutual information (CPMI) method to detect the critical states of complex bio-
logical processes. The CPMI method takes into account the relationship between genes 
and neighbours, so as to reduce the noise and enhance the robustness. This method 
is applied to a simulated dataset and six real datasets, including an influenza data-
set, two single-cell expression datasets and three bulk datasets. The method can 
not only successfully detect the tipping points, but also identify their dynamic network 
biomarkers (DNBs). In addition, the discovery of transcription factors (TFs) which can 
regulate DNB genes and nondifferential ‘dark genes’ validates the effectiveness of our 
method. The numerical simulation verifies that the CPMI method is robust under differ-
ent noise strengths and is superior to the existing methods on identifying the critical 
states.

Conclusions: In conclusion, we propose a robust computational method, i.e., CPMI, 
which is applicable in both the bulk and single cell datasets. The CPMI method holds 
great potential in providing the early warning signals for complex biological processes 
and enabling early disease diagnosis.

Keywords: Tipping point, Dynamic network biomarker (DNB), Transcription factors, 
Dark genes, Perturbed neighbourhood mutual information (PMI)

Background
Complex biological processes are often characterized by abrupt transitions rather than 
smooth progressions [1–8]. These processes with such a critical transition can generally 
be categorized into three states [1], which are the normal state, critical state and post-
critical state. The normal state represents the initial stage of a biological progression, 
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where the system demonstrates relative normality and high stability. The critical state 
is a pivotal state in which biological processes undergo abrupt alterations [1, 9]. The 
post-critical state refers to the stage following the critical state, during which the system 
enters a new state of balance. A variety of biological processes such as cell fate commit-
ment [10, 11], cell differentiation [12] and disease progression [2] are involved in the 
transition of critical states. The identification of critical states in biological processes 
holds significant potential for enhancing our understanding of disease mechanisms and 
progression. Furthermore, by providing early warning signals, it has the capacity to pre-
dict and diagnose diseases before they deteriorate [13]. The detection of critical states 
can also serve as valuable guidance for disease treatment and intervention. However, it is 
difficult to detect the critical states directly by conventional biomarkers due to the simi-
larity in clinical phenotype and gene expression profiles between the pre-transition and 
critical states.

Recently, a novel concept known as dynamic network biomarkers (DNBs) has emerged 
to capture important transitions in complex biological processes [14]. DNBs distinguish 
themselves from traditional biomarkers by exhibiting a significant increase in correla-
tion among DNB molecules, while the correlation between DNB and non-DNB mol-
ecules diminishes as the system approaches a critical state. Consequently, the DNB 
approach can be used to detect the critical state of a biological system prior to the tran-
sition. To unveil the critical state of complex biological processes at the single-sample 
level, a sample-perturbed directed network was employed [15]. The Kullback–Leibler 
divergence (KL) was used to identify the critical state of complex diseases by captur-
ing dynamic changes in multivariable distributions [16]. The Hidden Markov Model 
(HMM) can detect the early warning signals in the complex biological processes by dis-
cerning distinct dynamic characteristics between the pre-critical and post-critical stages 
[3, 17]. Simultaneously, the extensive utilization of single-cell RNA sequencing (scRNA-
seq) data in cell biology and disease research has provided deeper insights into tran-
scriptome features at the individual cell level, facilitating our comprehension of cellular 
heterogeneity, cell development, and disease mechanisms. Despite the wealth of infor-
mation contained in single-cell expression data, technical limitations may compromise 
data quality. Moreover, in contrast to bulk RNA-seq, scRNA-seq is susceptible to higher 
noise levels and lower coverage, presenting novel computational challenges. Addition-
ally, despite the widespread adoption of the DNB theory, due to the strong noise of the 
high-dimensional small sample data, the traditional methods still suffer from the effec-
tiveness and robustness problems, especially for single-cell expression data. Thus, it is 
difficult to develop an effective and robust method to identify the critical states of com-
plex biological processes.

In this study, we propose a novel computational method called CPMI, based on the 
neighborhood gene correlation network, to detect the tipping point or critical state dur-
ing a complex biological process. Our method consists of several key steps. Firstly, a 
network is constructed at each time point through the computation of a modified ver-
sion of the Mahalanobis distance between gene pairs, thereby assessing the correlation 
between nodes. Next, the K  nearest neighbor genes of the central gene in the local net-
work are selected based on the top K  genes in terms of distance. Subsequently, based on 
reference samples, case samples are separately introduced at each time point, and the 
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perturbed neighbourhood mutual information for the combined samples is calculated, 
providing insights into changes for each gene at each moment. Finally, we employ the 
CPMI score to quantify the perturbed information brought by a particular sample or 
cell relative to a group of given reference samples or cells. The CPMI method provides 
a reliable approach for identifying the critical states in complex biological processes. 
The advantages of our proposed CPMI method can be summarized as follows: (i) As a 
model-free and data-driven method, CPMI is not only suitable for both bulk and single-
cell expression data, but also enables individualised diagnosis and treatment based on 
a single sample of an individual. (ii) The incorporation of gene-neighbour relationships 
in CPMI effectively reduces the noise and enhances the robustness and effectiveness. 
(iii) Based on the CPMI method, we can not only detect the critical states during com-
plex biological processes but also identify DNBs. (iv) Through the CPMI method, we 
discovered nondifferential ‘dark genes’ and uncovered TFs associated with embryonic 
differentiation.

Applying the CPMI method to a simulated dataset generated by the artificial gene reg-
ulatory network, we evaluated its performance compared to the existing mutual infor-
mation weighted entropy (MIWE) and Jensen-Shannon Divergence (sJSD) method [18, 
19] under different noise strengths. The results illustrated that the CPMI method out-
performed the aforementioned methods in its ability to detect tipping points and iden-
tify DNBs. The CPMI method was applied to six real diseases, including an influenza 
dataset, two sing-cell datasets and three cancer datasets. By using our method, we suc-
cesfully detected the critical states or tipping points within these datasets. In addition, 
we uncovered transcription factors (TFs) responsible for regulating DNB genes, as well 
as some ‘dark genes’ that play significant roles in triggering systemic catastrophic con-
sequences. DNBs are defined as the top 5% of genes with the largest CPMI scores at 
critical state, while ‘dark genes’ are DNBs that do not show differential expression at the 
molecular level but exhibit high sensitivity to changes in CPMI scores, thus categoriz-
ing them as DNBs. Traditional methods often overlook ‘dark genes’, but our approach 
facilitates their discovery. Furthermore, through functional analysis, we elucidated the 
potential mechanisms of TFs and ‘dark genes’ in the critical states of complex biological 
processes.

Methods
Theoretical background

A critical state in a complex biological system refers to a transitional stage in system 
progression which is usually considered to be a pivotal point in disease progression and 
may have a significant impact on the treatment and prognosis of patients [2]. According 
to the DNB theory, DNBs are a group of biological molecules that exhibit the following 
three key changes as a complex system approaches a tipping point [9]: a rapid increase 
in correlation between members within the DNB group; a sharp increase in variation 
among DNB group members; and a rapid decrease in correlation between the DNB mol-
ecules and any other non-DNB molecules. DNBs can be used to reveal the early warning 
signals of complex biological processes.

The CPMI method proposed is based on the DNB theory, and we construct the net-
works in both given reference samples and perturb samples for each time period. In 



Page 4 of 22Ren et al. BMC Bioinformatics          (2024) 25:215 

any two local networks, pearson correlation coefficients are calculated for the K nearest 
neighbour genes of the central gene, and then the information difference between the 
two genes is estimated according to the mutual information. The robustness and effec-
tiveness of the method is increased by considering the neighbor genes. By comparing 
mutual information between the reference and combined samples, the perturbed mutual 
information is obtained at each time point. Finally, the CPMI quantifies the dynamic 
changes in individual differences across different time points. The CPMI score is used to 
detect the critical states of complex biological processes and discover the early warning 
signals.

Data progression and functional analysis
The CPMI method proposed in this paper has been applied to six datasets, including an 
influenza dataset (GEO: GSE30550), human embryonic stem cell to definitive endoderm 
cells (hESC-to DEC; GEO: GSE75748), mouse ESC to mesoderm progenitor (mESC-to-
MP; GEO: GSE79578) from the GEO database (http:// www. ncbi. nlm. nih. gov/ geo) and 
kidney renal papillary cell carcinoma (KIRP), colon adenocarcinoma (COAD), thyroid 
carcinoma (THCA) from The Cancer Genome Atlas (TCGA) database (http:// cance 
rgeno me. nih. gov).

Identification and prediction of potential upstream transcriptional regulators 
was  based on the online website Chea3 (http:// maaya nlab. cloud/ chea3/). The enrich-
ment analysis of DNBs and transcription factors was conducted through the Gene 
Ontology Consortium (http:// geneo ntol- ogy. org), Metascape (https:// metas cape. org/) 
and DAVID Bioinformatics Resources (https:// david. ncifc rf. gov/), while the results of 
transcription factor enrichment analysis were visualized using Circos (http:// www. cir-
cos. ca/). The gene function annotation of each dataset was obtained through GeneCards 
(http:// www. genec ards. org/). Protein–Protein Interaction (PPI) networks were obtained 
through the use of the online web page STRING (https:// string- db. org/) and visualized 
using the client software Cytoscape (https:// cytos cape. org/).

Algorithm to identify the critical state based on CPMI
The CPMI algorithm is a model-free and data-driven method for identifying criti-
cal states and DNBs of complex biological processes. Given the reference samples and 
case samples, we designed the following algorithm to identify the critical state. Figure 1 
shows the flowchart schematic of the CPMI algorithm.

[step1] Data processing and sample selection.
Duplicate genes and null values are removed and the gene expression data is nor-

malized. In order to construct the network, a set of molecular sequencing data is uti-
lized, comprising n reference samples and one case sample. For the datasets GSE30550, 
GSE75748, and GSE79578 obtained from the GEO database, the reference samples are 
selected from the initial time point of the biological progression, while the case samples 
represented the samples from other time points. As for the datasets of KIRP, COAD, and 
THCA obtained from the TCGA database, the reference samples consisted of relatively 
healthy samples, whereas the case samples consisted of the samples at different stages of 
cancer development.

[step2] Construst correlation network.

http://www.ncbi.nlm.nih.gov/geo
http://cancergenome.nih.gov
http://cancergenome.nih.gov
http://maayanlab.cloud/chea3/
http://geneontol-ogy.org
https://metascape.org/
https://david.ncifcrf.gov/
http://www.circos.ca/
http://www.circos.ca/
http://www.genecards.org/
https://string-db.org/
https://cytoscape.org/
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The Mahalanobis distance is used to construct the global network with n reference 
samples and n+ 1 samples ( n reference samples and a case sample), here we used 
a modified version of the Mahalanobis distance. Calculate the correlation between 
each two genes in the reference sample, each sample contains m genes, for gene 
gi(i = 1,2, · · · ,m) and gene gj j = 1,2, · · · ,m  , as defined below

Fig. 1 The schematic of the CPMI method for identifying the critical states of complex biological processes. 
A Given a group of control samples and case samples derived at time point t  , the correlation network is 
constructed by a modified version of Mahalanobis distance. B Extract the K  nearest neighbor genes of each 
gene. Thus, the local network is centered on gene gi(i = 1,2, · · · ,m) and contains other K  neighbourhood 
genes {gi1, gi2, · · · , giK } . Then, the CPMI is calculated for each gene. C During the progression of the biological 
process, The CPMI score increases significantly marking the imminence of a critical state
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where xil/xjl(l = 1,2, · · · , n) is the expression data of the gene gi/gj in the l-th sample, si 
denotes the standard deviation of the gene gi in n samples.

A case sample is added to the n reference samples to form n+ 1 mixed samples, and 
the correlation between each two genes in the n+ 1 samples is calculated.

where xil/xjl(l = 1,2, · · · , n, n+ 1) is the expression data of the gene gi/gj in the l-th 
sample, si denotes the standard deviation of the gene gi in n+ 1 samples.

[step3] Extract the local network.
After constructing the global network, generating a local network with each gene as 

the central gene would result in m local networks, where m is the total number of genes. 
Each local network includes the central gene gi(i = 1,2, · · · ,m) and the other m-1 neigh-
bourhood genes 

{

gi1, gi2, · · · , gim−1

}

 . Considering all gene pairs in model construction is 
an ideal practice, but it may present computational challenges, particularly when dealing 
with a large number of genes. This not only substantially extends computation time but 
also escalates computational costs. Therefore, in this paper, we selected K  gene pairs to 
calculate.

The remaining m− 1 genes excluding the central gene gi are arranged in descending 
order according to distance from the central gene, and the top K  genes with the smallest 
distance are the neighbor genes of the central gene gi of the local networkNi , denoted 
asgNNi =

{

gi1, · · · , gik , · · · , giK
}

,(i = 1,2, · · · ,m, k = 1,2, · · · ,K ).The nearest neighbor 
genes of the central gene gj of the local networkNj , denoted 
asgNNj =

{

gj1, · · · , gjk , · · · , gjK

}

,
(

j = 1,2, · · · ,m, k = 1,2, · · · ,K
)

.

[step4] Calculate the correlation coefficient to n samples.
For local networks Ni and Nj , the correlation coefficients of the two sets of nearest 

neighbour genes based on n reference samples is defined by

where xik/xjk is the expression data of the k-th nearest neighbour gene gik/gjk for the 
central gene gi/gj and xNNi /xNNj  is the mean value of the expression data of the K  nearest 
neighbour genes for the central gene gi/gj.

[step5] Calculate neighborhood mutual information (MI) of with respect to n samples 
and n+ 1 samples ( n reference samples and a case sample).

The mutual information itself is a measure used to quantify the correlation between two 
random variables. However, in this paper, we use the change of mutual information to 
describe the difference between different stages, rather than focusing on mutual informa-
tion itself. Specifically speaking, we first calculated the mutual information MInij and MIn+1
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at two different stages respectively, and by comparing the mutual information values of 
these two stages, we can obtain a quantitative result of the information change between 
them, denoted as �MIij . If the difference in mutual information ( �MIij ) is large, it indicates 
that a significant change has occurred in the network between these two stages.

Then the neighborhood mutual information of gene gi and gj in n samples is defined as

A single sample of cases is added to the n reference samples, repeat the above steps for the 
mixed n+ 1 samples and the neighborhood mutual information of gene gi and gj in n+ 1 
samples is

[step6] Calculate the comprehensive perturbed mutual information (CPMI).
Calculate the perturbed neighborhood mutual information �MIij of the case sample, 

defined as follows

At time point T  , calculate the comprehensive neighborhood mutual information for each 
gene gi

In the global network, the average perturbed mutual information of m genes for the case 
sample is

The CPMI score reflects the perturbed mutual information caused by the case sample at 
each time point. If there is a noticeable increase in the CPMI score, then the moment T is 
the tipping point for individual disease progression. Furthermore, the top 5% of genes with 
the highest CPMI scores are recognized as DNBs. Here, we propose neighborhood mutual 
information to quantify the change in network information at different stages through the 
change in mutual information. The CPMI primarily characterizes network fluctuations 
in mutual information of molecules rather than random fluctuations, which is the key to 
detecting the tipping point. Therefore, the CPMI algorithm plays a crucial role in providing 
a robust and reliable early warning signal for the critical state.

Results
Based on the given reference samples and case samples, calculating the CPMI score 
can be computed with the aforementioned algorithm to identify the critical states in 
the development of complex biological processes. To demonstrate the computational 
process and validate the algorithm’s effectiveness, we applied the CPMI method to a 
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numerical simulation dataset and six real datasets. These real datasets include an influ-
enza dataset (GEO: GSE30550), single-cell datasets such as hESC-to-DEC data (GEO: 
GSE75748) and mESC-to-MP data (GEO: GSE79578) from the NCBI GEO database, as 
well as bulk data including KIRP, COAD and THCA from The Cancer Genome Atlas 
(TCGA) database. The successful identification of critical states for all datasets confirms 
the effectiveness of the CPMI method in identifying the critical state.

Validation based on numerical simulation
To verify the accuracy of the CPMI algorithm in detecting the tipping point or critical 
state, we used a 9-node modulated network to generate simulated data to illustrate how 
the algorithm detects early warning signals. This regulatory network with nine nodes is 
composed of a set of stochastic differential equations in the Michaelis–Menten equa-
tion. Equations in the form of Mikelis–Menten are used to describe the interactions 
between nodes in a gene regulatory network [20, 21]. These equations are commonly 
used to study gene regulatory activities [22, 23] such as transcription, translation and 
nonlinear biological processes [24, 25]. They can also be used to model dynamic behav-
ior in gene regulatory networks, including the gene expression regulation and signaling. 
Based on the parameter p varies from − 0.5 to 0.23, with p = 0 representing the bifurca-
tion point, thereby generating the numerical simulation dataset.

The gene regulatory network with nine nodes is shown in Fig. 2A. The data generated 
using the initial value of parameter p is used as the reference sample for the numeri-
cal simulation. In Fig. 2B, there is a significant increase in the CPMI score, indicating 
the imminent arrival of a tipping point or critical state when the system approaches 
p = 0 , which serves as the bifurcation point. Figure 2C illustrates the different dynam-
ics of the system between the normal and critical states by showing the evolution of the 
CPMI landscape for the 9 nodes. When the parameter p is far from the bifurcation point 
p = 0 , the CPMI scores of each node remain low and stable. However, as the parameter 
p tends to 0, the CPMI scores of certain nodes, namely the DNB genes, exhibit a sub-
stantial increase, signaling the impending arrival of the critical state.

Fig. 2 The validation of the CPMI method on a simulation dataset. A The model of an 9-node regulatory 
network, in which the arrow represents positive regulation whereas the blunt line denotes negative 
regulation. B The curve of the CPMI score of the global network. C The landscape of the CPMI scores for 9 
nodes. D Comparison of the robustness between the CPMI method and MIWE, sJSD method at different 
noise strength
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In addition, simulation experiments were conducted at different noise strengths 
to compare the performance of the CPMI method with the MIWE [18] and sJSD [19] 
methods. As the noise strength increases, the CPMI method consistently detects the 
critical state accurately. Figure 2D demonstrates that the CPMI method outperforms the 
MIWE and sJSD methods in identifying the critical state under different noise strengths, 
which proves the effectiveness and robustness of the CPMI method. Further details of 
the numerical simulation calculations can be found in the Supplementary Material A.

Identifying the critical state of individual influenza infection
In this study, we applied the CPMI method to the time-series dataset GSE30550 [26] 
concerning influenza infection. The dataset encompasses samples from 17 volunteers 
who were infected with the H3N2/Wisconsin virus through intranasal administration. 
Out of these, nine subjects (including subjects 1, 5, 6, 7, 8, 10, 12, 13, and 15) subse-
quently developed severe symptoms of infection, while the other eight subjects remained 
asymptomatic. In subsequent analytical studies, the samples from volunteers with severe 
influenza-like symptoms were designated as symptomatic infections, and those from the 
healthy volunteers were classified as asymptomatic infections [11]. Following this classi-
fication, the 17 subjects were divided into two groups: the asymptomatic (AS) group and 
the symptomatic (S) group. Additionally, the dataset is generated based on microarray 
chip technology, not RNA-seq data.

This dataset comprises 17 subjects with 16 time points, where each individual has only 
one sample data per time point. However, there are missing samples for certain subjects: 
the samples from 8th subject at the 21th h, the 13th subject at the − 24th and 36th h, 
and the 17th subject at the 36th h. The other volunteers have 16 sampling time points 
(− 24, 0, 5, 12, 21, 29, 36, 45, 53, 60, 69, 77, 84, 93, 101, 108 h), totaling 268 pairs of gene 
expression data. For the reference samples, we used the gene expression profiles of the 
first two time points (− 24 and 0 h), while the case samples consisted of the gene expres-
sion profiles from the remaining time points for each individual.

The results presented in Fig.  3A demonstrate the detection of early warning signals 
preceding the onset of influenza symptoms in the nine symptomatic subjects. Figure 3B 
shows the CPMI scores of all subjects at each time point. For subjects with influenza 
symptoms (red curves), the CPMI scores exhibit a significant increase prior to the influ-
enza symptom onset, thereby providing the early warning signals for imminent critical 
transitions. In contrast, asymptomatic subjects show no notable change in CPMI scores 
(blue curves). Furthermore, Fig. 3C presents CPMI scores specifically for the nine symp-
tomatic subjects. The abrupt increase in CPMI scores at the critical state indicates the 
CPMI algorithm can accurately identify the critical state of an individual. Notably, two 
warning signals have been detected before the onset of flu symptoms for the 6th, 10th, 
13th and 15th subjects. The accurate identification of the critical states for each indi-
vidual validates the effectiveness of the CPMI method.

Identifying cell fate commitment during embryonic differentiation
We applied the CPMI method to two cell differentiation time course datasets: hESCs to 
DECs and mESC-to-MP. The hESCs-DECs dataset is a dataset for studying the differen-
tiation of human embryonic stem cells (hESCs) into definitive endoderm cells (DECs) 
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Fig. 3 The identifification of the tipping point for influenza infection based on CPMI. A The temporal table of 
the time to the occurrence of influenza symptoms and the tipping point identified by CPMI for all individuals. 
B The CPMI score curve for all 17 subjects. The red curve represents the CPMI scores for nine symptomatic 
subjects. The blue curve represents the CPMI score for eight asymptomatic subjects. C The curves of the 
CPMI scores for nine symptomatic individuals. The green box represents the initial time to the appearance of 
influenza symptoms (clinical observation), and the orange box represents the critical state determined by the 
CPMI score
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[27]. This dataset includes gene expression data, phenotype data, and other relevant 
information collected at different time points. The dataset consists of 758 cells, with 6 
time points: 0 h with 92 cell samples, 12 h with 148 cell samples, 24 h with 112 cell sam-
ples, 36 h with 218 cell samples, 72 h with 184 cell samples, and 96 h with 234 cell sam-
ples. The mESC-to-MP refers to the differentiation process of mouse embryonic stem 
cells (mESCs) into midbrain progenitors (MP) [11]. This dataset consists of 584 cells, 
with 4 time points: 0 h with 82 cell samples, 12 h with 168 cell samples, 24 h with 171 
cell samples, and 48 h with 164 cell samples.

Following the algorithmic process detailed earlier, we calculated the CPMI score at 
each time point. In this study, the reference samples are derived from the gene expres-
sion profiles of cell samples at the initial time point of the cell differentiation process, 
while the case samples at different time points correspond to the gene expression pro-
files of cell samples at each respective time point. The effectiveness and accuracy of 
CPMI has been validated by successfully detecting cell fate transitions during embryonic 
cell differentiation. The results of the hESC-to-DEC dataset are detailed in the main text, 
while the results of the mESC-to-MP dataset are provided in the Supplementary Mate-
rial B.

Critical state of hESC‑to‑ DEC
Diseases related to cell differentiation may result from changes in gene expression, sign-
aling pathways, or epigenetics. Understanding these underlying mechanisms is crucial 
for better grasping the development and progression of such diseases and for generating 
new ideas for therapeutic approaches. For the hESC-to-DEC dataset, the red curve in 
Fig. 4A shows a sharp increase in the CPMI score at 36 h, indicating an upcoming shift 
in cell fate. An early warning signal for the impending cell fate transition is observed at 
36 h. Indeed, the induction of differentiation at 72 h for definitive endoderm (DE) has 
been previously documented [27]. The top 5% of genes with the highest CPMI scores in 
the critical state are identified as DNBs, and the landscape evolution of these DNBs is 
shown in Fig. 4B, demonstrating a significant increase in critical state scores during cell 
differentiation. The dynamic changes in the DNB genes for the hESC-to-DEC dataset 
are illustrated in Fig. 4C, with significant alterations in network structure at 36 h. Fur-
thermore, as shown in Fig. 4D and E, the gene expression-based method for DNB genes 
fails to accurately distinguish the critical phase from other phases. However, utilizing the 
CPMI scores of these DNB genes enables the accurate identification of the critical state 
at 36 h.

Revealing nondifferential ‘dark genes’ and functional analysis for hESC‑to‑DEC
Within the set of DNBs, there are genes that do not show differential expression at the 
molecular level but are highly sensitive to changes in the CPMI score. We refer to these 
genes as ‘dark genes’, and their analysis provides insights into the the important roles 
that some genes play during embryonic development. The following are the ‘dark gene’ 
analyses for hESC-to-DEC.

For hESC-to-DEC dataset, CKAP5, CLSPN, HSP90AB1, ITGAV, SET and SYNCRIP 
were identified as ‘dark genes’, Fig. 5A visually compares the gene expression data with 
the corresponding CPMI scores for these ‘dark genes’. Notably, the CPMI score of ‘dark 
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genes’ become more sensitive as the cell fate transition approaches, exhibiting significant 
upward trends before differentiation into definite endoderm (DE) at 72 h. In comparison 
to the gene expression data, the CPMI scores for CKAP5 and CLSPN genes exhibit a 
significant increase at 36 h, corresponding to a critical state in hESC-to-DEC. However, 

Fig. 4 Identification of the cell fate transition of cell differentiation in hESC-to-DEC dataset. A The CPMI score 
curve of hESC-to-DEC. The significant increase of CPMI score at 36 h indicates the arrival of the critical state. 
B The CPMI landscape of DNBs for hESC-to-DEC. The overall CPMI score for the DNB gene is significantly 
higher at 36 h than at other time points, indicating that it is in a critical state. C The dynamic evolution of 
DNBs for hESC-to-DEC. At 36 h, a significant change in the network shows that a critical warning signal can 
be detected. D The gene expression of DNBs for hESC-to-DEC. E The average of gene expression of DNBs for 
hESC-to- DEC
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there is no apparent change in gene expression at all times. These findings highlight the 
effectiveness of the CPMI algorithm in providing early warning signals for impending 
cell fate transitions. In addition, ‘dark genes’ play significant functional roles in cell dif-
ferentiation. For example, increased expression of CKAP5 promotes cell proliferation 
and migration, making it an important prognostic marker [28]. HSP90AB1 is involved 
in multiple signalling pathways and shows high expression levels in various diseases [29]. 
In addition, DNMT3B is essential for regulating placental development and function 
during embryogenesis, which is critical for embryo survival [30].

In order to investigate the mechanism of action of DNBs, we conducted an analysis to 
identify potential upstream transcriptional regulators (TFs) of DNB genes [31]. TFs are 
involved in regulating the expression of multiple genes, and they play a key role in the 
regulation of cell development, differentiation, and defifine the cell identity and drive 
cell-fate transitions [32, 33]. In this study, the top 20 TFs were identified associated with 
the DNB genes. As shown in Fig.  5B, our analysis of the hESC-to-DEC dataset reveal 
that these TFs have the ability to regulate 76% of the DNB genes at the tipping point. 
In the context of hESCs, ZNF207 collaborates with master pluripotency TFs to govern 
self-renewal and pluripotency, while also exerting control over cell commitment towards 
ectoderm through direct regulation of neuronal TFs. Consequently, a distinct isoform 
of ZNF207 operates at the nexus that balances pluripotency and differentiation to ecto-
derm in hESCs [34].

In addition, we conducted enrichment analysis of the regulated DNBs, as shown in 
Fig.  5C, These DNBs demonstrate enrichment in pathways associated with cell differ-
entiation, including MicroRNAs in cancer (hsa05206), PI3K-Akt signaling pathway 
(hsa04151) and Hippo signaling pathway (hsa04390). The enrichment analysis highlights 
the involvement of these DNBs in the following biological processes such as negative 
regulation of transcription from RNA polymerase II promoter (GO:0000122), negative 
regulation of apoptotic process (GO:0043066), and positive regulation of tau-protein 
kinase activity (GO:1902949), which further underscores their significance during the 
cell differentiation from hESCs to DECs.

To reveal the regulatory mechanisms of embryo development revealed by ‘dark genes’ 
in hESC-to-DEC process, we conducted gene set enrichment analysis (GSEA) using 
the online platform. The detailed pathway information from the enrichment analysis 
can be found in Supplementary Figure S5. As shown in Fig. 5D, the enriched pathways 

Fig. 5 Regulatory mechanisms of embryo development revealed by the DNB genes. A The comparison 
of gene expression and CPMI score of ‘dark genes’ for hESC-to DEC, CKAP5, CLSPN, HSP90AB1, ITGAV, SET 
and SYNCRIP were found to be ‘dark genes’ of hESC-to-DEC, whose CPMI scores were more sensitive to the 
early warning signal of embryonic differentiation. B The top 20 hub upstream TFs, which regulates 76% of 
the DNBs that were identified at 36h. C KEGG pathway enrichment analysis of regulated DNBs during the 
hESC-to-DEC process. The left side of the outer ring represents DNBs detected by CPMI algorithm and the 
right side of the outer ring represent detailed pathway in which these genes are involved. In the inner ring, 
the color and width of links respectively indicate diverse enrichment pathway and signifificant levels of genes 
function. D GSEA enrichment analysis of ‘dark genes’. The enriched pathways included Wnt signaling pathway, 
Th17 cell differentiation and cAMP signaling pathway. E DNBs are involved in important biological processes 
and KEGG pathways in hESC-to-DEC process. F For the hESC-to-DEC dataset, switching dynamics before and 
after critical point induced by other DNBs and ‘dark genes’

(See figure on next page.)
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primarily include the Wnt signaling pathway, Th17 cell differentiation and cAMP signal-
ing pathway. The Wnt signalling pathway is involved in tissue development and homeo-
stasis, playing a vital role in various functions during embryonic developmental stages, 

Fig. 5 (See legend on previous page.)
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such as stem cell pool regulation, cell migration and specialisation [35]. Th17 cells are 
central to the pathogenesis of autoimmune and inflammatory diseases, and are impor-
tant for exploring potential therapeutic targets [36]. Figure 5E demonstrates the impor-
tant pathways involved in the DNBs, which are closely related to embryo development. 
For instance, the Estrogen regulates cell proliferation and differentiation through inter-
actions with two different receptors [37]. The Hippo signalling pathway regulates cell 
proliferation and controls cell cycle, apoptosis and cell differentiation processes [38, 39]. 
Figure 5F depicts the underlying mechanisms unveiled by the functional analysis of both 
the other DNBs and ‘dark genes’ in the hESC-to-DEC dataset. In the PIK3/Akt signaling 
pathway, the downregulation of LAMC2 and upregulation of ITGAV can induce PI3K 
enzyme activation and promote phosphatidylinositol triphosphate (PIP3) production via 
Integrin α V β 3 binding to Laminin, which in turn inhibits cell migration and prolif-
eration [40]. Moreover, the downregulation of CHUK expression levels may impact the 
regulatory role of NF-κB in processes such as cell survival and inflammation [41]. CDK6 
regulates the cell cycle process, and upregulation of its expression level enhances the 
rate of cell proliferation,, leading to cell division and growth [42].

Identifying the critical state during cancer progression
Based on the CPMI method, we identified critical states of KIRP, COAD, and THCA in 
three cancers using data from the TCGA database. Each disease dataset can be obtained 
from TCGA for both tumour samples and tumour adjacent samples, and the three can-
cer case samples were divided into different stages based on clinical information. The 
results for KIRP are presented in the main text, while the findings for THCA and COAD 
can be found in the Supplementary Material B.

Critical state of KIRP
The KIRP dataset from the TCGA database includes 35 tumor-adjacent samples and 270 
tumor samples. In Fig.  6A, the KIRP dataset successfully identifies the tipping points 
or critical states at stage II, indicating irreversible changes in the disease progression. 
Specifically speaking, the CPMI score shows a rapid increase from stage I to stage II, 
indicating that the critical state occurs prior to the worsening of the disease, which 
consistent with the observation that the cancer worsens in stage III. Figure 6B demon-
strates the changes in CPMI scores for protein–protein interaction network maps con-
structed using DNB genes. The CPMI values of these DNB genes vary according to the 
time period, and unlike other stages, the network diagram of stage II shows significant 
changes in CPMI values, which suggests the imminent arrival of a tipping point. This 
showcases the accuracy and effectiveness of our method in detecting the critical ststes 
before the disease deteriorates, enabling timely and appropriate treatment for patients. 
As shown in Fig.  6C, we analyzed the prognosis of samples grouped before and after 
each state. Notably, pre-stage II samples have significantly longer survival times and 
higher survival probabilities compared to post-stage II samples. In addition, the p-values 
obtained from the KIRP prognosis analysis were 5e-07 (Stage I), 3e-11 (Stage I-II), and 
1e-15 (Stage I-III), all less than 0.05, emphasizing the importance of prognostic analyses.

Figure 6D illustrates the changes in CPMI scores for DNBs at each stage,  accurately 
identifying  the critical state as being stage II. Tumour deterioration encompassing local 
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invasion, metastasis, and complications, is a major contributor to cancer-related deaths. 
Malignant tumor cells possess the ability to invade nearby tissues and organs, as well 
as spread to distant tissues and organs through the bloodstream or lymphatic system 
to form distant metastase [43]. Therefore, it is pivotal to determine the critical state of 
the disease before tumor cell metastasis and diffusion to control tumor deterioration. 
This enables timely implementation of appropriate treatment strategies to inhibit cancer 

Fig. 6 Identification of critical stage for KIRP. A The CPMI score curve of KIRP. The score reached its peak at the 
critical state stage II. B The CPMI landscape of DNBs for KIRP. DNBs scores increased significantly at stage II. C 
The comparison of KIRP survival times before and after every state. D The change of the DNBs CPMI values 
for KIRP. The dynamic evolution of the DNBs at different stages is shown, indicating that the critical state is at 
stageII. E The gene expression of DNBs for KIRP. F The average of gene expression of DNBs for KIRP
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metastasis and improve treatment outcomes. Through the early warning signals pro-
vided by CPMI, clinicians can detect the inflammatory response of the nervous system 
associated with the tumor in its early stages, allowing for prompt intervention with suit-
able measures. As shown in Fig. 6E and F, while DNB gene expression alone cannot dif-
ferentiate between the critical state and other states, our method can accurately identify 
the critical state.

Revealing nondifferential ‘dark genes’ and functional analysis for KIRP
‘Dark genes’ are genes that show no significant differences in gene expression levels but 
are sensitive to CPMI scores. In Fig.  7A, ADD1, GNB1, ITGB, NUMA1, RHOA and 
THBS2 were identified as ‘dark genes’. When the critical state leading to tumor deterio-
ration arrives, the CPMI scores of these genes become more sensitive and show clear 
upward trends compared to the gene expression data. For example, the CPMI scores for 
the ITGB1 gene significantly increased at stage II, the critical state of KIRP, while no 
noticeable changes in gene expression were observed at any other stage. Similar results 
were obtained for other ‘dark genes’, which illustrates the accuracy of the CPMI algo-
rithm in capturing the early warning signals of disease deterioration.

In addition, we also discovered that these ‘dark genes’ have significant biological impli-
cations in cancer processes. For instance, overexpression of GNB1 in cancer is associ-
ated with poor patient prognosis and disease deterioration, as GNB1 activates the PI3K/
MAPK signaling pathway to promote hepatocellular carcinoma progression [44]. In 
gastric cancer, ITGB1 expression correlates with the activity of the Wnt/beta-catenin 
signalling pathway and can serve as a prognostic marker for various cancers, such as 
esophageal adenocarcinoma and lung adenocarcinoma [45]. Dysregulated activity 
of RHOA has been related to the growth, progression and metastasis of various can-
cer types, positioning RHOA as a crucial regulator and potential therapeutic target 
[46]. High THBS2 expression is linked to poor patient response to immunotherapy and 
shorter survival after treatment [47].

Functional analysis was performed on the identified DNBs. The analysis revealed 
enrichment of DNBs in the PI3K-Akt signaling pathway, Protein processing in endo-
plasmic reticulum and other cancer-related pathways (Fig.  7B). In particular, proteo-
glycans in cancer play a significant role in cancer angiogenesis, proliferation, invasion, 
and metastasis, thereby impacting the progression of the disease [48]. In addition, DNBs 
were enriched in positive regulation of translation, semaphorin-plexin signaling path-
way, positive regulation of extracellular exosome assembly, and other important biologi-
cal processes crucial for disease development (Fig. 7C). For instance, Semaphorin-Plexin 
signaling is essential for various cellular aspects of organogenesis, including cell migra-
tion, proliferation and survival [49]. Receiver mediated endocytosis is a crucial pathway 
involved in regulating tumor metastasis and invasion [50]. Moreover, instability in cel-
lular redox homeostasis can lead to gene mutations, thereby promoting cancer develop-
ment [51].

Figure 7D shows the potential mechanisms revealed through functional analysis of the 
other DNBs and ‘dark genes’ in the KIRP dataset. Among these genes, the COL1A2 gene 
is a crucial component involved in supporting and connecting tissues within the extra-
cellular matrix. Upregulation of COL1A2 alters the extracellular matrix environment, 
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thereby facilitating the proliferation, migration, and invasion of cancer cells [52]. ITGB1, 
an upstream regulator, remains relatively unchanged at the gene expression level. GNB1 
participates in the regulation of cellular signal transduction. Upregulated expression of 
GNB1, in coordination with ITGB1, activates the phosphatidylinositol 3-kinase (PI3K) 
and AKT/protein kinase pathways, subsequently leading to the downregulation of the 
MCL1 gene expression. MCL1 is a protein with anti-apoptotic function and is involved 
in regulating the process of cell survival and apoptosis. Abnormal function or overex-
pression of MCL1 enhances the anti-apoptotic capacity of cells, thus promoting tumour 
growth and drug resistance [53]. In addition, after the critical state, the expression level 
of the EIF4B gene is significantly upregulated, indicating increased synthesis of specific 
proteins involved in cellular physiological and pathological processes. This contributes 
to the proliferation and transformation of tumor cells. The collective action of these 

Fig. 7 A The comparison of gene expression and CPMI score of ‘dark genes’ for KIRP, ADD1, GNB1, ITGB1, 
NUMA1, RHOA and THBS2, are found to be ‘dark genes’ of KIRP, whose CPMI scores are more sensitive to the 
early warning signal of disease deterioration. B GO analysis shows that DNB genes are involved in several 
biological processes associated with cancer. C Results of KEGG pathway enrichment analysis of DNB genes. D 
For the KIRP dataset, the underlying signaling mechanisms revealed by ‘dark genes’ and DNB genes



Page 19 of 22Ren et al. BMC Bioinformatics          (2024) 25:215  

genes leads to dysregulation of the PI3K/AKT signaling pathway [54], contributing to 
the development of various diseases such as cancer, diabetes and cardiovascular disease.

Discussion
Identifying the critical states of complex biological processes is an important and bio-
logically significant task. However, traditional methods applied to high-dimensional 
small-sample data with strong noise still suffer from the effectiveness and robustness 
problems, especially for single-cell expression data. Therefore, identifying the critical 
states of complex biological processes remains a challenging problem. To address this 
problem, we have developed a novel method, i.e., the CPMI method, to detect the early 
warning signals of complex biological processes. The CPMI method introduces neigh-
bor mutual information to estimate the difference in information between two genes and 
quantifies the perturbation mutual information caused by the given reference samples in 
relation to case samples at each moment, so as to improves the reliability and validity of 
the early warning signals.

By applying the CPMI method to an influenza dataset, two single-cell expression data-
sets and three bulk datasets, we can accurately identify the pre-deterioration stage of 
tumor disease and cell fate commitment during embryonic development. For influenza, 
the data are derived from the same individual, we can use the CPMI method to achieve 
individualised disease prediction based on a single sample of an individual. Addition-
ally, the identification of DNBs reveals the potential molecular mechanisms involved 
in complex biological processes, including disease progression and cell differentiation. 
Functional analysis further elucidates the important pathways and biological processes 
associated with these DNB genes. Notably, the discovery of ‘dark genes’, which play a 
crucial role in complex biological processes and disease prognosis, has provided signifi-
cant insights. Moreover, the effectiveness and robustness of the CPMI method are veri-
fied through numerical simulations conducted under different noise strengths.

Conclusions
In conclusion, we propose a robust computational method, i.e., CPMI, which is applica-
ble in both the bulk and single cell datasets. The CPMI method holds great potential in 
providing the early warning signals for complex biological processes and enabling early 
disease diagnosis.
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