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Background
Over the past few decades, full-length 16S ribosomal RNA (rRNA) gene sequences 
have become the core of microbial taxonomy [1, 2]. Moreover, with Oxford Nanopore 
Technology, the sequencing of full-length 16S amplicons from environmental samples 
is feasible, and because of the portability of this technology, on-site monitoring of the 
environment is possible [3]. Due to the error-prone nature of such data, full-length 16S 
reference sequences are needed for data analysis [4, 5]. However, obtaining high-quality 
full-length sequences from microorganisms that cannot be cultured is a major challenge, 
as most such data are still obtained by short-read amplicon sequencing. Although, in 
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theory, shotgun metagenome data should enable the reconstruction of full-length 16S 
rRNA gene sequences [6] the Metagenome Assembled Genomes (MAGs) often lack, or 
have poor quality, 16S rRNA genes [7].

Despite advancements in long-read technologies [8], the primary challenge in ana-
lyzing environmental DNA still lies in issues such as sample purity and fragmentation, 

Fig. 1 The illustration depicts the process of METASEED, which utilizes both amplicon and shotgun data 
from the same sample set. Box a shows how we started with N samples of 16S amplicon sequencing data. In 
box b, the most abundant OTUs with no database match are listed along with the samples where they are 
most abundant. In box c, d, these n samples are then subjected to metagenome shotgun sequencing. The 
16S seeds were selected from the n samples in box (e). In box (f), the seeds are matched to the metagenome 
reads under specific conditions and reads that matched either the entire seed or the end of the seed were 
selected for further analysis (green tick), while the partially matched reads were discarded (red tick). Box 
g shows the assembly of each seed using the SPAdes assembly tool to produce near full‑length 16S rRNA 
genes box (h). Created with BioRender.com
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which render long-read metagenome sequencing difficult or impossible [9]. The error-
prone nature of long reads and the difficulty in scaling data analysis tools to handle the 
data produced by long read technologies also remain challenges [10]. Hence, developing 
strategies for building high-quality full length 16S rRNA gene sequences from short read 
DNA sequencing data, originating from environmental samples would be beneficial.

There have been some efforts to develop tools for reconstructing the 16S rRNA gene 
from metagenome data, such as Emirge (Expectation–Maximization Iterative Reconstruc-
tion of Genes from the Environment) [11] and MATAM (Mapping-Assisted Targeted-
Assembly for and Metagenomics) [12]. They use a mapping-based approach to identify, 
align, and assemble metagenome reads, using a collection of already known full-length 16S 
sequences as a reference. MATAM focuses on generating profiles based on the existing full 
length 16S rRNA gene sequence databases and has been successful in doing so. However, 
the opportunity to comprehend and create novel long 16S rRNA genes is still lacking.

In this paper, our aim is to develop strategies to reconstruct full length 16S rRNA 
sequences when there is a lack of a reference sequence in public databases. Our strat-
egy is based on the use of short-read amplicon 16S rRNA gene and full metagenome 
sequencing data from the same samples. This method is designed to broaden the rep-
ertoire of sequences in reference databases by reconstructing novel near full length 
sequences. This means that based on the 16S amplicons, we have very precise informa-
tion about how a smaller region of the 16S genes in our samples look. Using these data-
sets, we propose an alternative method called METASEED as shown in Fig.  1, where 
these amplicon sequences are considered ‘seeds’, the matching metagenome reads are 
collected, and from these, we attempt to reconstruct (or grow) a larger part of the 16S 
gene for each seed separately. Seeded assembly may improve the accuracy and complete-
ness of assembled contigs, particularly when working with environmental data that are 
difficult to assemble due to high diversity and fragmented DNA.

Results
Simulated data

A key to the success of our approach lies in the ability to collect the best possible set of 
metagenome reads for each of the seed sequences. On the one hand we need to collect 
enough read pairs to be able to assemble and extend the seed into a near full-length 16S, 
but on the other hand, collecting too many incorrect reads, i.e., reads that do not truly 
come from the 16S of the seed, will turn the assembled sequence into a mosaic of lit-
tle value. To investigate the potential pitfalls here, we started with simulated data. This 
allows us to annotate every single read with the exact genome from which it originated, 
facilitating us in assessing how many correct and incorrect reads were collected for each 
seed, given necessary filtering options.

Figure 2 depicts the variation in the number of reads collected correctly and incorrectly 
with respect to the minimum alignment identity. Note that since in the simulated data, all 
reads are tagged by which genome it originated, making it possible to see if a read is ‘cor-
rect’ or ‘incorrect’ with respect to the seed it matches. Apparently, more incorrect reads 
align with the seeds than with correct reads, and when the identity surpasses 98%, there is 
a decrease in the number of correct reads. Thus, a 98% identity threshold was used below 
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unless otherwise stated. We also notice the number of reads that aligned to the seeds for 
low -diversity samples was greater than that for high-diversity samples.

We found that many reads matched two or more seeds equally well, a potential expla-
nation for the results shown in Fig. 2. We then tried to collect only reads who aligned 
uniquely to one seed only. In the left panel of Fig. 3, we show the effect of employing 
this uniqueness criterion. A comparison of the boxplots for no such filtering (None) to 
requiring uniqueness (Unique) revealed a dramatic decrease in the number of incor-
rectly collected reads (red boxplots). However, we also observed a substantial decrease 
in correctly collected reads (green boxplots), indicating that this criterion is perhaps a 
bit too strict. Then we explored the relaxation of the uniqueness criterion by using the 
seed abundance information from the 16S rRNA gene data. If a read matches two or 
more seeds equally well, we always assign the read to the seed with the highest abun-
dance in the sample. The logic is simply that the read is more likely to come from a more 
abundant seed, given that it matches several equally well. In the right panel of Fig. 3, we 
highlight how the number of collected reads increases by allowing reads to match up to 
2, 3, …,10 different seeds. Allowing up to three matches, increases the number of cor-
rectly collected reads without significantly increasing the number of incorrect ones.

After setting the criterion where we allow up to 3 matches, and assigning reads by 
seed-abundance, we collected the read pairs and assembled them for each seed and sam-
ple. By comparing the resulting reconstructed sequence to the 16S in the genomes from 
which we simulated, we found that by far most of the reconstructed gave an excellent 
match (> 99% identity, alignment covering > 99% of the sequence). In Fig. 4 we instead 
show how the number of collected read pairs affect the reconstruction of the 16S. It is 
obvious that we need more than 10 read pairs, and in most cases more then 40, to be 
able to reconstruct a 16S with some substantial length. As expected, the more (correct) 
reads we collect, the longer the reconstructed sequence.

Fig. 2 The effect of sequence identity on the collection of metagenome reads matching the seeds. Different 
minimum identity thresholds (percent) were tested (x‑axis) and the numbers of correctly and incorrectly 
collected reads were counted for all seeds in all 40 simulated samples. All metagenome samples contained 
10 million read pairs. The green and red boxplots at each minimum identity indicate the spread between 
the samples. The left panel shows 20 high‑diversity samples, while the right panel shows for 20 low‑diversity 
samples
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Metagenomic dataset of seafloor sediments

To demonstrate the 16S reconstruction on real data we started out with 16S amplicon 
sequencing (Illumina MiSeq) of 286 samples taken from seafloor sediments, an exam-
ple of an environment with rather large diversity and with many ‘unknown’ 16S variants. 
Our 16S pipeline produced a total of 70,578 OTUs (99% identity clustering) from these 
data. A subset of 24 samples were then selected based on having amplicons not matching 
(> 99% identity) known 16S in the SILVA database [13]. These 24 samples cover a total of 
9296 of the OTUs. The eDNA from these samples were then subject to full metagenome 

Fig. 3 The number of correctly and incorrectly collected reads under various filtering regimes. In the left 
panel (A) we show the effect of collecting all reads (filtering None) versus only collecting reads who give a 
unique match against one single seed (filtering Unique). Again, we split the samples by diversity. In the right 
panel (B) we relax the uniqueness by allowing reads to match from 1 up to 10 different seeds, but then assign 
the read to the seed with the largest abundance, based on the amplicon data. The result for 1 match in the 
right panel is identical to the uniqueness criterion in the left panel

Fig. 4 The number of read pairs required to assemble the 16S. Each dot is an assembled 16S contig from one 
of the samples of simulated data. Along the x‑axis is the number of read pairs collected and the y‑axis is the 
length of the resulting assembled contig. Contigs of length 0 indicate the assembly failed, and we observe 
this is the case when the number of read pairs decreases to less than approximately 40. Whenever a contig is 
assembled, its length tends to grow by the number of read pairs
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sequencing (Illumina Novaseq 6000). From this we selected the top 300 most abundant 
OTUs as our seed sequences, from which we want to reconstruct as much as possible of 
the full 16S. In real life, only the seed sequences not matching anything in the public data-
bases would be of interest, but in this case, we included all the top 300 seeds regardless of 
this. This is because, it gives us preliminary indications about whether we reconstructed 
something comparable to what the full-length sequence in the public database suggests.

Reconstructing 16S rRNA gene from amplicon and shotgun data using METASEED pipeline

We employed the strictness criteria learnt from the simulated data results above, i.e. we 
collect metagenome reads who align with at least 98% identity to some seed, and allow 
alignment against up to 3 different seeds, but then assign the read to the seed with larg-
est abundance in the sample in question. In Fig. 5, we show the log of the number of read 
pairs collected, and the length of the reconstructed 16S for each seed. As we observed 
for the simulated data, the length of the reconstructed 16S sequence tended to increase 
as we collected more reads, with substantial variation. The METASEED resulted in 282 
of the 300 seeds having a reconstructed sequence. Of these, 185 had a minimum length 
of 800 bp. We use this as a minimum length of interest, since this means it covers > 50% 
of the full length. Also, the seeds are themselves already 400–450 bases long. The chi-
mera check showed that none of the reconstructed 16S were chimeric.

Since we did not filter the seeds for already known 16S sequences, some of them matched 
full-length 16S sequences in the SILVA database. BLASTing the seeds behind the 185 
reconstructed 16S against the SILVA database revealed a near-exact match (> 99% identity) 
for 125 of them. For a sanity check, these 125 seeds were also blasted against the corre-
sponding reconstructed 16S sequences, to verify the reconstructed 16S sequences indeed 

Fig. 5 The figure shows the log number of metagenome read pairs (x‑axis) collected for each seed (dots) 
along with length of the reconstructed 16S for each seed (y‑axis). The black dots represent reconstructed 16S 
with a minimum length of 800 bp. Dots at zero length indicates seeds where no reconstruction was possible
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had the best match to their corresponding original seeds. A second blast analysis using 
the corresponding reconstructed 16S sequences from these 125 seeds against the SILVA 
database, revealed that these also had the best match to the same sequences, or to a similar 
SILVA sequence of the same species, where the seeds matched. Figure 6 shows the BLAST 
identities for these 125 cases. The green dots indicate the seed, and the red dots represent 
the corresponding reconstructed 16S. The position along the x-axis for each green–red 
pair indicated the length of the reconstructed sequence. The figure demonstrates how well 
the seeds, and its reconstructed sequences matched the same SILVA sequence (colored 
dots) in terms of sequence identity. In addition, the trend line indicates there is little loss in 
identity for longer reconstructed sequences. We also tried to vary the uniqueness criterion 
when collecting reads, and the results of this are shown in supplementary Table S1.

Alternative ways to obtain 16S rRNA gene from shotgun data

Once we have the metagenome data for the 24 samples, it is of course natural to assemble 
these and see if we find many 16S sequences in the resulting contigs. The assembly pipe-
line resulted in a large number of contigs for each sample, in total 26,133,575 contigs. We 
used the Barrnap software to search all contigs for 16S. This resulted in the detection of 
195 bacterial sequences and 186 archaeal sequences. All these 381 sequences were non chi-
meric and above 800 bases in length. However, since we must expect several of these being 
16S variants from the same species, the Barrnap sequences were clustered using VSEARCH 
with 99% identity. This resulted in 150 distinct 16S sequences. To see to what extent these 
are already known 16S sequences, we did a BLAST analysis of the Barrnap sequences 

Fig. 6 In total 125 seeds achieved a reconstructed sequence of at least 800 bases length and at the 
same time had a match (> 99%) against at least one full‑length SILVA 16S sequence. The 125 green dots 
indicate the identity of this match (y‑axis). The red dots indicate how well the corresponding reconstructed 
sequence matched the corresponding SILVA sequence. The location along the x‑axis marks the length of the 
reconstructed sequence for each seed/reconstructed sequence pair. Additionally, the trend line indicates a 
very weak drop in identity for longer reconstructed sequences
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against the SILVA database. From this we found that 128 matched something (> 99% iden-
tity). We then compared the Barrnap sequences to the OTUs from our amplicon data and 
found only 51 matches (> 99% identity). We then made a similar study based on our sim-
ulated data sets, since here we know exactly how the full-length 16S sequences look like. 
The simulated shotgun data were assembled in the same way as the real data, and Barrnap 
was used to collect 16S from the contigs. Of the 253 distinct 16S sequences found this way, 
only 1 gave a > 99% match to some of the actual 16S sequences, indicating very clearly that a 
short-read metagenome assembly of 16S easily becomes a mosaic of several sequences.

The de-novo assembly using the MATAM tool was performed on the 24-shotgun 
metagenome samples. In MATAM a contig of at least 500 bp is considered as a recon-
structed 16S. The MATAM tool found 14 non-chimeric 16S sequences of this minimum 
length, the longest of which was 649 bases long.

Comparing METASEED to existing tools

We compared METASEED to EMIRGE and MATAM using the simulated data men-
tioned above. In total EMIRGE reconstructed 1589 sequences, MATAM 992 and 
METASEED 1631 from all samples. Comparing these to the actual 16S behind the data 
we required > 99% identity for count it as a successful reconstruction. This resulted in 
discarding 471 of the EMIRGE, 160 for MATAM and 97 from METASEED. In the upper 
panels of Fig.  7 we display the number of successfully re-constructed for the various 

Fig. 7 Displays the count and average length of reconstructed 16S sequences obtained from three methods, 
each with at least 99% identity to the actual 16S sequences across various samples. The upper panel 
illustrates sample numbers on the X‑axis and the corresponding count of reconstructions on the Y‑axis. The 
lower panel represents the methods utilized on the X‑axis and the mean length of the reconstructed 16S 
sequences for each sample on the Y‑axis. Different methods are denoted by color in both panels
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methods in each sample. The lower panels show the length distribution of the success-
fully re-constructed sequences.

Discussion
The reconstruction of the full-length 16S rRNA gene from short-read metagenome 
data is challenging, limiting the taxonomic exploration and analysis of environmental 
samples [14]. The fact that 16S is highly conserved across taxa imposes some limita-
tions on the assembly of this gene from short reads [15]. Based on our simulation stud-
ies, as shown in Fig. 2, we observed that when aligning shotgun reads to the amplicons 
from the same samples, we collect a greater number of incorrect reads than correct 
reads, even with exact matching to the amplicons. This clearly demonstrates the prob-
lem faced here. In general, if we assemble all these collected reads (incorrect and cor-
rect), we are unlikely to reconstruct the original 16S. This is the reason for the poor 
or no reconstruction of 16S directly from metagenome reads [16]. Hence, we devel-
oped METASEED as an alternative where we use amplicon 16S rRNA data and shot-
gun sequencing data from the same samples, helping the pipeline to determine how the 
original 16S region would look.

After our multiple tuning trials, we found certain criteria that help in reducing the 
number of incorrect reads, and thus performing the assembly on the best possible 
data. As a first step, blastn parameters were investigated and optimized, as shown 
in Fig. 2. Often 16S analysis uses 97% identity as the threshold [17], but we found a 
98% identity was optimal as the number of correct reads dropped beyond this scale. 
In general, we collect more reads from low diversity samples. This indicates that real 
environmental samples, often having a very high diversity, are the most challenging 
type of data to work with. Since many reads match many different seeds equally well, 
we regulated this by specifying the maximum number of seeds a read pair can match, 
before the read must be discarded. In Fig.  3, panel A, we illustrated the effect of 
uniqueness (number of matches = 1), where the number of incorrect reads then drops 
to nothing, but also causes a decrease in the number of correct reads. This essentially 
means we only collect reads matching the unique pieces of the 16S, which we sug-
gest too strict for having data enough to reconstruct the full length 16S. To avoid 
this decline, the uniqueness criteria were then relaxed as seen in panel B of Fig.  3. 
Again we made use of the amplicon data, by allowing a read pair to match up to 3 dis-
tinct seeds, but then assigning it to the seed with the largest abundance in the sample. 
From the simulated data this seems to recover many correct reads, without appreci-
ably increasing the number of incorrect reads. As we anticipated, Fig.  4 shows that 
we must collect a minimum number of correct read pairs to reconstruct high quality 
long 16S.

Next, we tested this approach on real data from seafloor sediments. From 24 sam-
ples where we have both amplicon and shotgun data, we selected the 300 most abun-
dant OTUs as seeds, and used the METASEED to reconstruct as much as possible 
of the 16S surrounding these amplicons. From the 300 seeds we got reconstructions 
for 282, of which 185 were at least 800 bases long, as seen in Fig. 5. In the real data, 
we have no knowledge of the actual 16S in the samples. However, 125 of the 185 
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reconstructed sequences had a match to the SILVA database, which is at least some 
indication of correctness, since this sequence has been observed before. The trend 
line in Fig.  6 depicts the overall trend in the variation of identity for the seeds and 
their corresponding reconstructed 16S sequences to the SILVA sequences, indicating 
the quality of reconstructed 16S. Apparently, there are very few reconstructed 16S 
that has an identity drop below 96%. We also performed METASEED analyses using 
uniqueness criteria 2 and 1 as shown in Fig. 3, panel B. The idea being that a stricter 
read collection may be beneficial for real compared to simulated data. Seemingly, 
there was no improvement in the number and quality of the reconstructed 16S as dis-
played in supplementary table S1.

Tools such as EMIRGE or MATAM also try to re-construct the 16S from WGS 
reads, but instead of using amplicon data from the same samples, they rely on already 
known full-length 16S sequences. Although this setup differs from our setting, we did 
a comparison of these methods on the simulated data, wherein all genomes and 16S 
sequences included are from already known taxa. Still, our results in Fig. 7 indicate that 
METASEED is consistently capable of reconstructing more of the 16S in the shotgun 
data, even if the EMIRGE typically produces longer sequences. However, EMIRGE pro-
duced approximately thirty percent unsuccessful reconst ructions, i.e. a 16S sequence 
less than 99% identical to the actual true sequence, whereas METASEED only produced 
six percent such ‘false positives’. As expected, all methods perform better on low-diver-
sity data, since this gives more coverage to the dominating taxa. Even if these results 
indicate the usefulness of METASED, we must stress that its real benefit lies in the 
potential to re-construct novel 16S where no reference is available, as required by the 
other tools.

We also used the software MATAM on the real data, but this resulted in very few 16S 
being reconstructed. EMIRGE was not tried on these data since it would take a very long 
time to run on these very large data sets. When compared to these tools, METASEED is 
also more efficient in terms of running time and computational resources.

Apparently, the most obvious approach to finding 16S is to simply assemble shot-
gun reads in the conventional way, and then use a tool like Barrnap to look for 16S 
in the resulting contigs. We also did this for the 24 sediment samples and found 
150 distinct 16S sequences of length 800 or more. This is almost as good as META-
SEED, with 185 sequences. However, of these only 51 gave a good match to some 
of the amplicon OTUs for the samples, indicating two thirds of these are either 
mosaic sequences, or from taxa not amplified by our primers. When we used the 
same procedure on the simulated data only 1 out of 253 sequences collected this 
way matched one of the actual 16S sequences that we know are in the samples. We 
believe this indicates the 16S collected directly from metagenome assemblies are 
mostly mosaics that look like a ‘general’ 16S sequence but probably contains pieces 
from many different taxa. These are also difficult to reveal by conventional chimera 
checking, since the latter is designed to find mixtures due to PCR amplification, 
where the first and the last part of the sequence comes from distinctly different 
taxa. Here we most likely face mosaics of several taxa, with pieces intermixed along 
the sequence.
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The METASEED sequences are based on an amplicon that was amplified and 
sequenced in high abundance in the same samples. This implies we start with a rock-
solid fragment of the 16S for one taxon. The challenge then resides in collecting the 
appropriate shotgun reads associated with this seed sequence, hence the requirement 
for the fine tuning we present on this. Conventional metagenome assembly of environ-
mental samples is typically performed sample by sample, rather than as a co-assembly, 
simply because the samples are often too distinct. However, with METASEED we collect 
16S-matching reads to each seed across all samples before we start the assembly, which 
is then no longer a metagenome assembly but done for each seed separately. As a result, 
we get a significantly greater coverage of the 16S for each seed compared to if we lim-
ited ourselves to the (few) reads in each sample. To the best of our knowledge, this work 
builds on prior research in related domains while making a distinct contribution to the 
subject.

Conclusions
In this study we have shown why reconstructing the 16S gene from short-read metage-
nome data is extremely challenging, even close to impossible, without some form of 
reference to start out with. In our proposed METASEED approach, we use amplicon 
data from the exact same samples as this reference. High abundant sequences found by 
amplicon sequencing give us a very precise ‘seed’ for each 16S sequence, and by care-
fully tuning the collection of metagenome reads matching these seeds, we were able to 
reconstruct a substantial number of 16S, to an adequate length and within a reasonable 
precision. Seemingly, the results reveal that METASEED have tremendous improve-
ment to existing methods when it comes to high-precision re-construction of many 
and potentially novel 16S. Moreover, our strategy presents potentially new avenues for 
reconstructing the 16S rRNA gene from short-read amplicons and metagenome data.

Our approach is most useful when exploring environmental samples, where new taxa 
are likely to be found even among the more abundant ones. The long-read technology, 
otherwise providing excellent metagenome data for 16S reconstruction, is not as use-
ful here due to highly fragmented DNA in such samples. By our proposed approach, we 
believe we have a tool to begin mapping the full-length 16S landscape of these environ-
ments as well.

Methods
Data

In this study, we use two types of data, one simulated and the other comprised of sam-
ples collected from the seafloor sediment environment.

The simulated data were all a mix of 100 genomes from 100 different species typically 
found in sediments. The genome information of these 100 species is available in Addi-
tional file 1, table S2. Their abundances were sampled from an exponential distribution, 
independently for each sample. We made 20 samples with low diversity (most abundant 
species dominate) and 20 high diversity samples (more equal abundances). Using the 
software ART version 2016.06.05, we generated simulated Illumina HiSeq reads with a 
length of 150bp for the shotgun samples [18]. For the corresponding 16S rRNA amplicon 
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data we used the software InSilicoSeq version 1.5.4 to mimic Illumina MiSeq sequencing 
with 300bp reads [19]. The header-line of every simulated read contained information 
about which genome it came from, making it possible to reveal the reality of the read 
assignment later.

The DNA extraction and amplicon sequencing of the sediment samples have been 
done as described in the previously published dataset [20]. In brief, the DNA was 
extracted using the MagAttract PowerSoil DNA KF Kit (Qiagen). Sequencing of the 
V3-V4 region of the 16S rRNA gene was performed on a MiSeq platform (Illumina, CA, 
USA). In total 286 samples were subject to 16S sequencing, but, as described below, 
only a subset of 24 samples were selected for shotgun sequencing as well. The shotgun 
sequencing protocol stated in [20] was used here. The 24 samples were sequenced on a 
Novaseq 6000 platform at the Novogene, UK facility.

Metagenome assembly

To see how easy it is to get 16S sequences directly from assembled contigs, the shot-
gun metagenomic reads (simulated and sediment data) were pre-processed (filtering, 
adapter-trimming merging of overlapping reads etc.) using the BBmap software version 
1.5.4 [21]. All reads were assembled using metaSPAdes version 3.15.3 [22] with default 
parameters. Finally, the 16S rRNA genes in the contigs were detected using Barrnap ver-
sion 0.9-foss-2018b [23]. In addition, for the comparison to above approach, as well as 
our own METASEED, the MATAM tool was used to reconstruct full length 16S rRNA 
genes directly from the shotgun reads. All the 16S sequences generated by any approach 
were subjected to chimera check from VSEARCH.

The METASEED approach

The seeds

From the 16S data we typically find a set of sequence variants, each representing a taxon 
(OTU, ASV etc.) in the sample. These are the seeds in our procedure, and there are sev-
eral pipelines for obtaining these, e.g. VSEARCH version 2.22.1 [24] or dada2 [25]. The 
classical 97% identity clustering has an advantage of resulting in seeds being distinctly 
different from each other, but due to the rather large ‘radius’ of 3% identity may very 
well represent more than one taxon. On the other hand, denoising like dada2 results in 
highly specific seeds, but these may originate from the same genome, due to differing 
16S variants within the genomes. As a compromise we have settled on clustering the 16S 
reads at 99% identity, which is a radius that is wide enough to include all variants within 
a genome. The 99% radius will also include roughly 90% of all 16S variants within a spe-
cies. In the supplementary material Fig. S2, we present how the current set of RefSeq 
genomes support this choice.

Once we generated OTUs from all samples, we set aside all the OTUs that matched 
with the full-length 16S sequences of the SILVA database, leaving us with a collection 
of pieces of 16S sequences from which we want to reconstruct the full-length version. 
With our V3-V4 primers, these OTU sequences are around 400–450 bases long. Next, 
we selected a subset of samples for full metagenome sequencing to get reads that over-
laps and extend the OTU sequences. We computed the relative abundance for these 
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OTUs. Next, we identified the samples where these OTUs were highly abundant. How 
many samples to select for metagenome sequencing is largely a question of resources. 
For a fixed number of n samples, we first selected the samples in which the top n abun-
dant OTUs were found, and if this did not result in n samples (two OTUs may be ‘most’ 
abundant in the same sample), we proceeded down the list of OTUs until we reached 
n samples. This procedure ensures we end up with exactly n samples where we have at 
least one unknown OTU with a large abundance in each of them. These OTUs are the 
seeds we now pursue. The OTUs and the read count table is available in additional files 2 
and 3 respectively.

Collecting metagenome reads

A key step in the reconstruction of the 16S gene is to collect reads from the metagenomes 
in a proper way. To gain insights on this, we conducted a study on simulated data. When 
simulating the metagenome reads, every read was given a header indicating which genome 
it comes from. In this way we could determine exactly if a collected read comes from the 
same genome as the seed it matches.

Given a sample, and its corresponding set of 16S seeds, the metagenome reads where 
aligned to the seeds in a two-step procedure. First, all metagenome reads were aligned to 
the seeds by bowtie2 version 2.5.0 in ‘local’ mode, and all read pairs where at least one mate 
had a match to a seed were collected using samtools version 1.9 [26]. Next, these reads were 
aligned to the seeds again using blastn version 2.12.0 [27], in order to get more details on 
how exactly they aligned. The initial usage of bowtie2 was exclusively for the purpose of 
speed, as the alignment process with blastn is considerably slower. From the blastn align-
ments we tested several strategies for collecting reads, based on various degrees of strict-
ness. More specifically, this means looking for thresholds related to sequence identity, 
alignment lengths and how uniquely a read pair aligns to one or more seeds. For some given 
thresholds, we collected metagenome read pairs allocated to the various seeds, i.e. one fastq 
file-pair for each seed.

It should be noted that, even though reads are collected independently for each sample, 
the reads collected for the same seed should be merged into a single fastq file-pair after the 
collection is complete. For the simulated data we did not do this, but instead did the assem-
bly (see below) separately for each sample, just to see how good/bad the choice of thresh-
olds was with respect to reconstructing the 16S sequence.

Seeded assembly

During the preceding steps, in effect the reads have been binned before the assembly, hav-
ing a pair of fastq-files with metagenome reads for each seed sequence. Thus, a straightfor-
ward assembly, as if reads where from a single genome, was used to re-construct the 16S 
for each seed separately. We used the SPAdes version 3.15.3 software [28] for this, and also 
include the seed sequence itself as a ‘trusted contig’ input to the assembly software, since 
SPAdes has his option. The quality of the reconstructed 16S in the real data was evaluated 
using different blast analyses. Figure 8 illustrates the various steps in previously mentioned 
METASEED alignment strategy and evaluation.
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Comparing METASEED to existing tools
As of our current understanding, no other tools specifically target the reconstruction 
of completely unknown 16S rRNA gene sequences while utilizing both amplicon and 
whole-genome sequencing (WGS) data. However, existing tools such as EMIRGE and 
MATAM rely on a reference set of previously known 16S sequences, to reconstruct 
the 16S found in WGS data. The 16S were reconstructed from the simulated data dis-
cussed in the data section, employing these three tools. Since MATAM sets a cutoff at 
500 base pairs, only reconstructed sequences that met this threshold were taken into 
consideration. For each method, the reconstructed 16S from each sample that had at 
least 99% identity in VSEARCH alignment to the actual full-length 16S sequences was 
considered a successful reconstruction.

Fig. 8 Steps involved in developing and evaluating METASEED’s alignment strategy. The simulated data 
was analyzed to develop blastn alignment approach for seeds and metagenome reads which involved trials 
with varying identities and the number of matches allowed between the seed and read pairs (blue box). The 
METASEED strategy is then employed for the real data (green box). The seeds with matches in SILVA are then 
used to validate the quality of reconstructed 16S from the real data (purple box). Further, the matches of seed 
and reconstructed 16S in SILVA were compared for any possible similarities. Created with BioRender.com
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Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859‑ 024‑ 05837‑z.

Additional file 1: Table S2. The tables contains the genome id and organism name of the 100 species used for the 
simulated analysis.

Additional file 2. 100 centroid sequences that was used for the METASEED analysis.

Additional file 3. Read count for 100 centroid sequences that was used for the METASEED analysis.
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