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Abstract 

Background:  Extracellular vesicle-derived (EV)-miRNAs have potential to serve 
as biomarkers for the diagnosis of various diseases. miRNA microarrays are widely used 
to quantify circulating EV-miRNA levels, and the preprocessing of miRNA microarray 
data is critical for analytical accuracy and reliability. Thus, although microarray data 
have been used in various studies, the effects of preprocessing have not been studied 
for Toray’s 3D-Gene chip, a widely used measurement method. We aimed to evaluate 
batch effect, missing value imputation accuracy, and the influence of preprocessing 
on measured values in 18 different preprocessing pipelines for EV-miRNA microarray 
data from two cohorts with amyotrophic lateral sclerosis using 3D-Gene technology.

Results:  Eighteen different pipelines with different types and orders of missing value 
completion and normalization were used to preprocess the 3D-Gene microarray EV-
miRNA data. Notable results were suppressed in the batch effects in all pipelines using 
the batch effect correction method ComBat. Furthermore, pipelines utilizing missForest 
for missing value imputation showed high agreement with measured values. In con-
trast, imputation using constant values for missing data exhibited low agreement.

Conclusions:  This study highlights the importance of selecting the appropriate 
preprocessing strategy for EV-miRNA microarray data when using 3D-Gene technol-
ogy. These findings emphasize the importance of validating preprocessing approaches, 
particularly in the context of batch effect correction and missing value imputation, 
for reliably analyzing data in biomarker discovery and disease research.
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Background
Micro RNAs (miRNAs) are small non-coding RNAs that regulate mRNA degradation 
through RNA interference and are involved in regulating gene expression [1–4]. Owing 
to their unique expression patterns in specific tissues and cell types, miRNAs demon-
strate potential as biomarkers for the diagnosis and monitoring of disease progression 
[1, 5, 6]. miRNAs not only function intracellularly but can also be released extracellularly 
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through small membranous structures called extracellular vesicles, which allow them to 
remain stable in body fluids such as blood. Blood miRNA levels, determined through 
minimally invasive procedures, can serve as markers to detect the presence or progres-
sion of cancers, heart disease, and other diseases [7–9]. Notably, extracellular vesicle-
derived (EV)-miRNAs have been used as diagnostic biomarkers for amyotrophic lateral 
sclerosis (ALS) [10–14].

miRNA-seq and miRNA microarrays are commonly used to quantify circulating 
miRNA levels. Thermo Fisher Scientific (Affymetrix, GeneChip) [15, 16], Agilent Tech-
nologies (SurePrint G3) [17], and Toray Industries (3D-Gene) [18–23] manufacture 
some of the most widely used microarray products. The preprocessing of miRNA micro-
array data is critical for good analytical accuracy and reliability. Optimal preprocess-
ing methods have been proposed for Affymetrix and Agilent miRNA microarray data, 
and were validated in several previous studies [24–29]. The preprocessing of raw data 
involves noise removal, missing value imputation, normalization, and batch effect cor-
rection. Batch effects are non-biological differences attributed to variability in the meas-
urement dates, instrumentation, reagent lots, and experimenters. Batch effects can be 
misinterpreted when correlated with the desired results [30, 31]. Notably, the inadvert-
ent correction of batch effects can result in the loss of biological signals [32, 33]. Further-
more, if missing values are not properly handled, the reliability of the entire dataset is 
compromised, and the study risks becoming biased [34, 35]. Unfortunately, the shortcut 
method of deleting missing values involves deleting one or more miRNAs with missing 
values prior to downstream analysis, which may lead to the loss of relevant data. Moreo-
ver, normalization methods can yield false distributions if they are inappropriate for the 
data and can erase true biologically driven signals in downstream analyses and generate 
false signals [36–38].

Although many studies have reported the use of Toray 3D-Gene technology for 
miRNA microarray analysis as a strategy for biomarker discovery and pathological stud-
ies [18–20, 39], no studies have been conducted on appropriate preprocessing methods 
for this method. Therefore, it is necessary to compare the results obtained using a pipe-
line that combines various preprocessing methods. In this study, we constructed a pre-
processing pipeline for EV-miRNA data using Toray 3D-Gene technology and compared 
the accuracy of batch effect correction and batch-to-batch data agreement (Fig. 1).

Methods
Study design

Venous blood samples were collected from 28 and 47 patients from the first and second 
cohorts, respectively, to isolate EVs and perform miRNA microarray analyses. The first 
and second cohorts shared 10 common patients, for whom we evaluated data agreement 
and batch effects to compare the preprocessing pipelines (Fig. 1).

Patients

We recruited subjects who were clinically diagnosed with definite, probable, clinically 
probable-laboratory-supported, or possible ALS based on the revised El Escorial criteria 
and who had no family history of ALS. Subjects with severe complications such as malig-
nancy, heart failure, or renal failure were excluded from the study (Table  1). Patients 
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with sporadic ALS were assessed during hospitalization. Disease onset was defined as 
the time at which the participant experienced weakness in any body part. All study par-
ticipants were Japanese and were observed at Nagoya University Hospital between June 
2014 and September 2022.

Study approval

This study was conducted according to the Declaration of Helsinki and the Ethical 
Guidelines for Medical and Health Research Involving Human Subjects endorsed by the 
Japanese government. It was approved by the Ethics Review Committee of Nagoya Uni-
versity Graduate School of Medicine (Nos. 2013-0035 and 2015-0041), and all partici-
pants gave written informed consent before participation.

Sample collection

Venous blood samples were collected in the supine position from patients with ALS 
after > 12 h of fasting and immediately after waking up during hospitalization. Serum 
samples were centrifuged at 1330×g for 10 min at 4 °C and stored at  − 80 °C until pro-
cessing by NanoSomiX Japan, Inc. (Tokyo, Japan).

Fig. 1  Study design

Table 1  Sample information for two sample batches

Parameters Batch 1 Batch 2 Common samples

Sample number 28 47 10

Age [mean (SD)] 66.3 (8.4) 65.0 (10.8) 66.8 (5.9)

Sample number (%)

  Female 11 (39.3) 16 (34.0) 5 (50.0)

  Male 17 (60.7) 31 (66.0) 5 (50.0)

Total measured miRNAs 2632 2632 2632
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Isolation of extracellular vesicles

The following processes were performed for each batch. EV fractions were isolated 
from the serum samples at NanoSomiX Japan using polymer-based precipitation 
methods [40–42]. Briefly, frozen serum samples were thawed and centrifuged at 
1500×g for 5 min at 4 °C to remove cell debris and other contaminants; 500 µL of pre-
cleared serum was mixed with the same amount of phosphate buffered saline (PBS) 
and 250 µL of 30% (w/v) polyethylene glycol (molecular weight: 8000 Da; Research 
International, Mount Prospect, IL, USA) and incubated for 1 h at 4 °C. Crude EV frac-
tions were precipitated by centrifugation at 1500×g for 30 min at 4 °C. Each EV pellet 
was resuspended in PBS containing 0.5% bovine serum albumin, protease inhibitors, 
and a phosphatase inhibitor cocktail (Thermo Fisher Scientific, Waltham, MA, USA). 
Isolated EVs were cryopreserved at  − 80 °C until further processing by Toray Indus-
tries, Inc. (Kamakura, Japan).

Measurement of microarray data

Total RNA was extracted using 3D-Gene RNA Extraction Reagent with EVs isolated 
from the sera of subjects with ALS (Toray). The extracted total RNA was detected 
using a Bioanalyzer (Agilent, Santa Clara, CA, USA) and labeled using a 3D-Gene 
miRNA labeling kit (Toray). Half of the labeled RNA was hybridized onto a 3D-Gene 
(Human) miRNA Oligo chip (Toray), which was designed to detect 2632 miRNA 
sequences registered in the miRBase miRNA database (https://​www.​mirba​se.​org/) 
[43]. After washing, fluorescent signals were scanned using a 3D-Gene Scanner 
(Toray) and analyzed using 3D-Gene Extraction software (Toray).

The following criteria were used for quality control of the microarray data. First, 
only miRNAs with “NG” in the Flag column in the raw data of each sample were con-
verted to missing values. This process enables preprocessing with only reliable signals 
measured by reliable spot imaging. Next, background (BG) subtraction was per-
formed by taking the mean value of the BLANK (DNA not detected) portion as the 
BG value and subtracting the BG value for all measurements greater than (BG value 
(mean) + 2SD). Measurements below (BG value (mean) + 2SD) were defined as miss-
ing values [44]. The BG subtraction value, in which NA was substituted for the miss-
ing value, was used as the converted value (Supplementary Fig. S1). The missing rate 
was calculated for each miRNA. miRNAs with a missing rate > 0.95 were excluded 
from the BG subtraction and converted value data. Finally, 75 samples containing 
data for 1928 miRNAs were subjected to preprocessing, as shown in the preprocess-
ing pipeline schematic below (Fig. 2).

Preprocessing pipeline

The details of the 18 studied pipelines are shown in Fig. 2.

Pipeline 1

Using the converted value (1) in each sample, the median of all the miRNA converted 
values was calculated, and each converted value was adjusted as follows so that the 
median was 25  (global normalization): each converted value/median × 25. Missing 

https://www.mirbase.org/


Page 5 of 19Takemoto et al. BMC Bioinformatics          (2024) 25:221 	

values were imputed with 1 (imputation A) [45]. (2) After imputation A, the data 
were log-transformed (base = 2). (3) The 75th percentile of the log-transformed data 
was calculated and subtracted from each data point (75th percentile normalization) 
[26]. (4) Batch effect correction was performed using the ComBat function in the sva 
R package (ver. 3.48.0) [46]. ComBat uses an empirical Bayes method to correct for 
batch effects, thereby adjusting for systematic variation between different experi-
mental conditions and batches. This method specifically minimizes differences in 
means and heterogeneity between variables across batches, thereby reducing bias and 
increasing data uniformity [47].

Pipeline 2

Using the converted value, steps (1) and (2) proceeded as in pipeline 1. (3) Quantile nor-
malization was performed on the log-transformed data. This normalization method sorts 
the values for each sample, averages the sorted values across the samples of each rank, and 
assigns these averages to the original order of each sample [26]. (4) Batch effect correction 
was performed using the ComBat function in the sva package in R (ver. 3.48.0).

Pipeline 3

Using the converted value, (1) missing values were imputed using the missForest package 
(ver. 1.5) (imputation B). missForest uses a random forest approach to predict missing val-
ues. It constructs a random forest using available data and predicts missing values based 
on the observed portion of the sample with missing entries. This approach allows for the 
imputation of missing values and maintains the integrity of the data for analysis [48]. Steps 
(2)–(4) were performed in the same manner as in pipeline 1.

Pipeline 4

Using the converted value, (1) missing values were imputed using the missForest method 
(imputation B). Subsequent steps (2)–(4) were performed in the same manner as in 
pipeline 2.

Fig. 2  Overview of the 18 preprocessing pipelines
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Pipeline 5

Using the BG subtraction value, (1) negative values were replaced with the smallest posi-
tive value (replacement C) [49]. Steps (2)–(4) were performed in the same manner as in 
pipeline 1.

Pipeline 6

Using the BG subtraction value, (1) negative values were replaced with the smallest posi-
tive value (replacement C). Steps (2)–(4) were performed in the same manner as in pipe-
line 2.

Pipeline 7

Using the converted values, we obtained (1) logarithmically transformed values 
(base = 2) and performed (2) 75th percentile normalization. (3) The minimum value was 
calculated for each sample using the normalized data and imputed as the missing val-
ues (imputation D). Finally, we performed (4) batch effect correction.

Pipeline 8

Using the converted values, we obtained (1) logarithmically transformed values 
(base = 2) and performed (2) quantile normalization. (3) Missing values were imputed 
with the minimum value after step (2). Finally, we performed (4) batch effect correction.

Pipeline 9

Using the converted value, steps (1) and (2) proceeded as in pipeline 7. We then per-
formed (3) imputation B and (4) batch effect correction.

Pipeline 10

Using the converted value, steps (1) and (2) proceeded as in pipeline 8. We then per-
formed (3) imputation B and (4) batch effect correction.

Pipeline 11

Using the converted value, steps (1) and (2) were performed as in pipeline 7. In step (3), 
missing values were imputed following the k-nearest neighbor (kNN) method using the 
impute package (ver. 1.46.0) (imputation E) [50, 51]. This imputation method is used to 
fill in missing values in a dataset; missing values are estimated using the values of the 
neighboring data points that are closest to the data point with the missing values. In this 
study missing values were calculated with the number of neighbors = 10 and maximum 
percent missing data = 0.95. We then performed batch effect correction (4).

Pipeline 12

Using the converted value, steps (1) and (2) were performed as in pipeline 8. In step (3), 
imputation E was performed. We then performed batch effect correction (4).
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Pipeline 13

Using the converted value, (1) logarithmically transformed values (base = 2). (2) imputa-
tion E was performed. (3) 75th percentile normalization. Finally, we performed (4) batch 
effect correction.  

Pipeline 14

Using the converted value, (3) quantile normalization was performed. Steps (1)–
(2), (4) were performed in the same manner as in pipeline 13.

Pipeline 15

Using the converted value, steps (1) and (2) were performed as in pipeline 7. (3) Miss-
ing values were then imputed based on the Expectation–Maximization (EM) algo-
rithm using the Amelia package (ver. 1.6.2) (imputation F) [52, 53]. The EM algorithm 
is an iterative algorithm that is widely used to complete data with missing values. In 
this study, m = 1. First, the initial estimate is used to complete the missing values, and 
the estimate is subsequently updated based on the observed values. Specifically, the E 
step uses the observed values to compute an estimate of the missing values, and the 
M step uses the estimate to update the statistics of the observed values. This process 
is repeated until the estimates converge. We then performed batch effect correction 
(4).

Pipeline 16

Using the converted value, steps (1) and (2) were performed as in pipeline 8. We then 
performed (3) imputation F. We then performed batch effect correction (4).

Pipeline 17

Using the converted value, (2) imputation F was performed. Steps (1),  (3)–(4) were 
performed sin the same manner as in pipeline 13.

Pipeline 18

Using the converted value, (2) imputation F was performed. Steps (1),  (3)–(4) were 
performed in the same manner as in pipeline 14.

Evaluation of data agreement

Data agreement was assessed for miRNAs extracted from the 10 samples which were 
common to both data cohorts. The data was preprocessed in each pipeline using two 
extraction methods; the first method extracted only miRNAs with missing values 
stored in either batch, whereas the second extracted only detectable miRNAs (Sup-
plementary Fig. S2).

The intraclass correlation coefficient (ICC) and 95% confidence intervals for the 
ICC were calculated using the icc function in the irr R package (ver. 0.84.1). The ICC 
is a statistical index used to assess the consistency and reliability of measurements 
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of subjects when there are multiple raters or across multiple trials [54]. In this study, 
‘raters’ refers to different batches, and ‘subjects’ refers to different combinations of 
common samples and miRNAs. ICC (2, 1) values were calculated by considering both 
batch 1 and batch 2 as random models. i is the pair number of the 10 common sample 
pairs between the two batches and ni is the number of miRNAs evaluated for pair i. 
Hence, the ICC (2, 1) was calculated based on the 

∑10
i=1 ni normalized values of miR-

NAs, and is defined as shown in the following equation.

where the MSC, MSB, and MSE are the mean squares (MSs) associated with combined 
common samples and miRNAs, batches, and residuals, respectively, in the analysis of 
variance framework. We followed the interpretation criterion which states that values 
near 1 and 0 indicate high and low agreement, respectively [54]. The root mean square 

error (RMSE) was calculated as RMSE =

10
i=1

ni
j=1 (B1ij−B2ij)

2

10
i=1 ni

, where j is each miRNA 

for sample pair i, and B1ij and B2ij are the (log) normalized values of miRNA j for batches 
1 and 2 in sample pair i, respectively. The RMSE was normalized by dividing it by the 
range (maximum–minimum) of the values for batch 1 with each pipeline as follows: 
NRMSE =

RMSE
max(B1ij)−min(B1ij)

.

Statistical analysis

The batch effect evaluation scores were calculated using a t-test with the first and sec-
ond principal component scores obtained from principal component analysis (PCA). 
The hypotheses of the test with ICC were as follows: H0: ICC = 0, H1: ICC > 0. The 
p-values were corrected using the Benjamini–Hochberg method [55]. Statistical anal-
yses were performed using R version 4.3.1 (R Foundation for Statistical Computing, 
http://​www.R-​proje​ct.​org). Statistical significance was set at p < 0.05.

Results
Evaluation of batch effect correction

The converted value and BG subtraction distributions were first visualized to under-
stand the microarray distributions of each sample. The distribution of each sample 
was skewed and thus, not considered normal (Supplementary Fig.  S3a and b). Fur-
thermore, the distributions of common samples (same color pairs) were different 
despite reflecting the same sample. Therefore, both the converted and BG subtraction 
values required preprocessing. Importantly, the importance of the comprehensive 
assessment was highlighted in this study.

The EV-miRNA microarray data preprocessing pipeline is shown in Fig. 2. To evalu-
ate batch effects in the preprocessing pipeline, PCA was performed before and after 
batch effect correction with ComBat in each preprocessing pipeline, using 10 sam-
ples common to each batch (Supplementary Fig. S4, Fig. 3). To quantitatively evaluate 
the batch effects, we performed t-tests on the batch sample scores from the first and 

ICC(2,1) =
MSC −MSE

MSC +MSE +
2

∑10
i=1 ni

(MSB −MSE)
,

http://www.R-project.org
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second principal components. Before batch effect correction, the first principal com-
ponent exhibited significant batch-to-batch variation, whereas no significant differ-
ences were observed after batch effect correction (Fig. 3a, b), indicating that the batch 
effect was effectively suppressed.

Evaluation of missing value imputation accuracy

We evaluated the agreement of imputed missing values between the two batches of 10 
common samples by only considering miRNAs for which missing values were identified 
during measurement (Supplementary Fig. S2). Scatter plots were used to compare the 
measured and imputed values for the 10 samples (Supplementary Fig. S5). The accuracy 
of missing value imputation was evaluated using two agreement scores, i.e., the ICC and 
normalized RMSE (NRMSE) (Fig. 4a, b).

Pipelines 3 (ICC = 0.64, NRMSE = 0.071), 4 (ICC = 0.72, NRMSE = 0.056), 9 
(ICC = 0.73, NRMSE = 0.051), and 10 (ICC = 0.73, NRMSE = 0.049) were highly con-
sistent (Fig.  4a, b). Pipeline 10 was shown to have the best agreement, but the differ-
ence in accuracy between pipelines 4 and 10 was very small. Thus, we concluded that 
both were the best performing pipelines. Although pipelines 3, 4, 9, and 10 differed in 
normalization methods and order of processing (missing value imputation followed by 
normalization or normalization followed by missing value imputation), they all used the 
missForest missing value imputation method. Because missForest is a nonparametric 
imputation method that employs a random forest to learn from the observed value pop-
ulation, it can perform data imputation in accordance with the observed value patterns, 
resulting in smaller discrepancies between the imputed missing and observed values. 

Fig. 3  Batch effect evaluation. a PC1 (black bar is checkpoint 2, gray bar is checkpoint 3) and b PC2 (black 
bar is checkpoint 2, gray bar is checkpoint 3). Broken lines indicate a significance level of 0.05. p-values were 
adjusted using the Benjamini–Hochberg method for multiple comparisons
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We examined the agreement of each processing step in the pipeline after missForest pro-
cessing (Fig. 2, checkpoint 1) and found that pipelines 3 and 4 exhibited moderate agree-
ment (Supplementary Fig.  S7a and b, ICC = 0.37, NRMSE = 0.090). However, slightly 
lower agreement was seen for pipeline 3 after normalization and batch effect correc-
tion (Fig.  2, checkpoint 2–3) (Supplementary Fig.  S7c and d, Fig.  4). The scatter plots 
for pipeline 3 after batch effect correction showed variability between samples, particu-
larly in sample S003 (green), which appears off-diagonal with low-signal values (Supple-
mentary Fig. S5). Although 75th percentile normalization aims to normalize data such 
that the top 25% of values (75th percentile) become 1, it may not sufficiently correct for 
the influence of low-signal missing values (Supplementary Fig. S7c and d). In contrast, 
quantile normalization was performed for pipeline 4 after checkpoint 2 (ICC = 0.51, 
NRMSE = 0.080), which is highly effective in harmonizing distributions across datasets 
[56, 57]. Based on previous findings, we presumed that this method would effectively 
correct batch effects and improve agreement. Therefore, among the pipelines evaluated 
in this study, pipeline 4 was the most suitable combination and sequence for preprocess-
ing to achieve high agreement in missing value imputation.

Fig. 4  Evaluation of the missing imputation accuracy value for data with imputed values (NA rate = 0.5) 
at checkpoint 3 (Fig. 2). a Evaluation based on the ICC. Error bars represent 95% confidence intervals. 
Significance levels are denoted as * for adjusted p-values < 0.05 and *** for p-values < 0.001. p-values were 
adjusted using the Benjamini–Hochberg method for multiple comparisons. b Evaluation by NRMSE
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Pipelines using missing value imputation methods other than missForest were 
examined for agreement after correcting for batch effects (pipeline 1: ICC = − 0.40, 
NRMSE = 0.35; pipeline 2: ICC = − 0.23, NRMSE = 0.35; pipeline 5: ICC = − 0.059, 
NRMSE = 0.25; pipeline 6: ICC = − 0.061, NRMSE = 0.24; pipeline 7: ICC = 0.43, 
NRMSE = 0.19; pipeline 8: ICC = 0.26, NRMSE = 0.21; pipeline 11: ICC = 0.33, 
NRMSE = 0.10; pipeline 12: ICC = 0.11, NRMSE = 0.13; pipeline 13: ICC = 0.20, 
NRMSE = 0.13; pipeline 14: ICC = 0.14, NRMSE = 0.13; pipeline 15: ICC = 0.54, 
NRMSE = 0.07; pipeline 16: ICC = 0.51, NRMSE = 0.06; pipeline 17: ICC = 0.59, 
NRMSE = 0.07; and pipeline 18: ICC = 0.52, NRMSE = 0.07; Fig. 4a, b). These pipelines 
exhibited lower agreement than pipelines 3 and 4. Pipelines 1 and 2 normalized the 
data by ensuring that the median became 25 and then imputed a constant value of 1 
for missing values. This method introduced significant differences between the imputed 
and measured values, resulting in low agreement. Subsequent batch effect correction 
had limited effects. Pipelines 7 and 8 imputed a minimum value below the BG + 2SD 
for missing values after normalization. Similar to pipelines 1 and 2, the introduction of 
a constant value resulted in marked discrepancies between the imputed and measured 
values, and only moderate improvements in agreement after batch effect correction. 
Pipelines 5 and 6 replaced missing values with the minimum BG subtraction value for 
measurements below BG + 2SD. Pipelines 1 and 2 imputed a constant of 1 to the missing 
values, and pipelines 3 and 4 replaced the missing values with the minimum background 
subtraction value. Therefore, for the same sample, a specific value was imputed regard-
less of the miRNA. This is a simple method that differs from machine learning-based 
imputation methods such as those used in missForest. However, this method increases 
discrepancies between the actual measurements and imputed values, which affected 
the observed values of many miRNAs. Furthermore, we demonstrated that maintaining 
the accuracy of missing value imputation remains crucial even when normalization and 
batch effect correction are applied during preprocessing. The preprocessing pipelines 
using kNN-based missing value completion (pipelines 11–14) all showed low agree-
ment (pipeline 11: ICC = 0.33, NRMSE = 0.10; pipeline 12: ICC = 0.11, NRMSE = 0.13; 
pipeline 13: ICC = 0.20, NRMSE = 0.13; and pipeline 14: ICC = 0.14, NRMSE = 0.13; 
Fig. 4a,b). Therefore, the kNN approach is not suitable for the present microarray data 
set. In contrast, the preprocessing pipelines based on the EM algorithm (pipelines 
15–18) showed moderate agreement (pipeline 15: ICC = 0.54, NRMSE = 0.07; pipeline 
16: ICC = 0.51, NRMSE = 0.06; pipeline 17: ICC = 0.59, NRMSE = 0.07; and pipeline 18: 
ICC = 0.52, NRMSE = 0.07; Fig. 4a,b), but remained inferior to missForest.

Influence of preprocessing on measured values

We assessed the influence of preprocessing on the 10 shared samples from the two 
batches using only miRNAs for which measurements were acquired (Supplemen-
tary Fig. S2). Scatter plots were used to compare the measured values for the different 
batches (Supplementary Fig. S6). The influence of preprocessing on measured values was 
evaluated using the ICC and NRMSE.

The ICC values were above 0.9 and NRMSE values were below 0.07 for all pipe-
lines, indicating that preprocessing improved agreement and had a minimal impact 
on the measured values (Fig. 5a and b). With the exception of pipelines 5 and 6, the 
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odd-numbered pipelines exhibited slightly better agreement than the even-numbered 
pipelines (Fig.  5a,b); specifically, pipeline 1 (ICC = 0.94, NRMSE = 0.058), pipeline 
2 (ICC = 0.93, NRMSE = 0.064), pipeline 3 (ICC = 0.97, NRMSE = 0.045), pipeline 
4 (ICC = 0.96, NRMSE = 0.050), pipeline 7 (ICC = 0.96, NRMSE = 0.047), pipeline 8 
(ICC = 0.96, NRMSE = 0.054), pipeline 9 (ICC = 0.96, NRMSE = 0.047), pipeline 10 
(ICC = 0.96, NRMSE = 0.053), pipeline 11 (ICC = 0.96, NRMSE = 0.046), pipeline 12 
(ICC = 0.96, NRMSE = 0.052), pipeline 13 (ICC = 0.96, NRMSE = 0.046), pipeline 14 
(ICC = 0.96, NRMSE = 0.055), pipeline 15 (ICC = 0.96, NRMSE = 0.047), pipeline 16 
(ICC = 0.96, NRMSE = 0.053), pipeline 17 (ICC = 0.97, NRMSE = 0.044), and pipeline 
18 (ICC = 0.96, NRMSE = 0.050). The ICC p-values were significant for all pipelines. 
The odd-numbered pipelines utilized 75th percentile normalization, whereas the 
even-numbered pipelines used quantile normalization. For the pipeline 5 and 6 pairs, 
pipeline 6 (ICC = 0.95, NRMSE = 0.052) showed slightly higher agreement than pipe-
line 5 (ICC = 0.94, NRMSE = 0.059).

When comparing measured values in both batches (NA rate = 0), pipelines 1, 2, 
5, and 6 were found to be slightly less accurate (Fig.  5a,b). Considering the results 
regarding missing value imputation accuracy described in the previous section, the 
difference in agreement between the measured values may be related to the accuracy 
of missing value completion (Fig. 4a and b). Pipelines 1, 2, 5, and 6 are significantly 

Fig. 5  Evaluation of the influence of preprocessing on solely measured data (NA rate = 0) at checkpoint 
3 (Fig. 2). a Evaluation based on the ICC. Error bars represent 95% confidence intervals. p-values were 
adjusted using the Benjamini–Hochberg method for multiple comparisons. All preprocessing pipelines were 
significant at an adjusted p < 0.001. The null hypothesis posits that there is no agreement between the two 
batches. b Evaluation by NRMSE
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less consistent after missing value processing, while pipelines 3 and 4 are some-
what more consistent (Supplementary Fig. S7a and b; check point 1, Supplementary 
Fig. S7c and d; check point 2). Therefore, pipelines 1, 2, 5, and 6 are data sets that con-
tain incorrect imputed values, indicating that the inaccuracy remains after normali-
zation and batch effect correction. As the data with imputed values (NA rate = 0.5) 
accounted for approximately 20% of the total miRNAs, incorrect imputation intro-
duced a non-negligible bias in the results (Table  2). These results suggest that the 
accuracy of imputation carries over after normalization and batch effect correction, 
highlighting the importance of optimal preprocessing methods in the preprocessing 
pipeline.

Discussion
This study compared 18 different preprocessing pipelines for data concordance and 
batch effects in 10 common EV-miRNA samples derived from two cohorts using 
3D-Gene technology. To date, there have been no reports comparing preprocessing 
methods in 3D-Gene. We found clear differences in the performance of each preproc-
essing pipeline, emphasizing the importance of validating a preprocessing pipeline for 
3D-Gene technology. Furthermore, the results of this study provide useful insights for 
future analyses of the same arrays. Specifically, for each pipeline, we evaluated the miss-
ing value completion accuracy for miRNAs in which one of the miRNAs is missing from 
batch to batch, and the impact of preprocessing on miRNAs in which both miRNAs 
could be measured in each batch.

Batch effects are a common contributor to data heterogeneity between different exper-
imental batches [30, 31]. In the present study, the impact of batch effects was clearly 
demonstrated by the differences in principal component scores between pipelines. Cor-
rection via ComBat improved data agreement across all pipelines. However, although 
correction suppressed the batch effect in all pipelines, the missing value imputation 
accuracy was low, particularly for pipelines 1, 2, 5, 6, 7, and 8 (Fig. 4a,b). Therefore, it is 
important to evaluate both batch effects and data agreement when identifying an opti-
mal preprocessing pipeline.

We found that the method used to impute missing values had strong effects on data 
agreement. In particular, pipelines 3, 4, 9, and 10 using missForest had high agreement 
scores. missForest uses a nonparametric approach and a random forest algorithm that 
iteratively predicts missing values from the observed portion of the data. After each 
iteration, the algorithm updates the missing values with the predictions and continu-
ously improves its accuracy until convergence or a set number of iterations is reached. 
Pipelines 3 and 4 utilized missForest before normalization, whereas pipelines 9 and 10 
applied missForest after normalization, suggesting that missForest can accurately impute 
missing values both before and after normalization. However, simple strategies which 
assign constant values, such as those used in pipelines 1, 2, 5, 6, 7, and 8, may result in 
discrepancies with actual values (Fig.  4a,b). Therefore, the selection of an appropriate 
missing value imputation method is important for improving data agreement between 
batches. Moreover, this study also observed low agreement when performing missing 
value completion based on kNN (pipelines 11–14) and the EM algorithm (pipelines 
15–18). One reason for this low agreement is that the parameters in each algorithm were 
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not optimized. For example, the optimization of k (number of neighbors) in kNN-based 
missing value completion, and the optimization of the number of multiple imputations 
in EM algorithm-based missing value completion. kNN missing value completion in 
pipelines 11–14 was influenced by the fact that the data had a high missing value rate. 
When the missing  rate is low, observations that are very similar to those with miss-
ing values are more likely and kNN imputation is more accurate. However, as the rate 
of missing data increases, the remaining perfect observations become less similar, lead-
ing to fewer nearest neighbor matches and less accurate input values [58]. Furthermore, 
when the rate of missing data is high, the risk of assigning values from observations that 
are not truly similar increases, which introduces bias and further reduces the accuracy 
of the assignments. Therefore, identifying an acceptable missing value rate may be useful 
in future analyses. There are few reports which apply the Amelia function to microar-
ray data, and in this study, a single imputation was performed using the m = 1 setting in 
order to simply measure the effect of the EM algorithm. In future studies, by increasing 
the value of m, we plan to adopt an approach that uses the average from multiple impu-
tation results to improve the accuracy of the completion. This is expected to reduce the 
risk of relying on a single completion result and to make data analysis more reliable.

Agilent SurePrint G3 data are commonly normalized using 75th percentile and quan-
tile normalization methods [26]. The 75th percentile normalization method reduces the 
influence of outliers in the dataset by focusing on the upper quartile of data (above the 
75th percentile), which is useful when the data demonstrates high variability or when 
expression levels are low. It is therefore less influenced by outliers in the lower quartiles, 
allowing for more reliable normalization in biological analyses [59]. This method is par-
ticularly suitable for the present miRNA microarray data, as the imputed values have low 
signal values. Quantile normalization arranges the values in the dataset in rank order 
and normalizes each data point such that it is in the same percentile as the original data 
distribution, thereby enabling the uniform distribution of data points across datasets 
[60]. In addition, other previous studies have identified quantile normalization as the 
method which most significantly reduces data variability in the case of plasma-derived 
miRNA microarray data using a TaqMan OpenArray Human MicroRNA Panel (Applied 
Biosystems, Thermo Fisher Scientific, CA) [61]. Thus, although 75th percentile normali-
zation is suitable when dealing with outliers, quantile normalization may be useful when 
integrating data. Building on our evaluation of data integrity, future studies should eval-
uate the impact of normalization on biological differences. Furthermore, the order in 
which normalization and missing value completion were performed did not influence 
the accuracy of missing value completion. However, previous publications on proteome 
data have reported higher performance when normalization is performed first, followed 
by missing value completion [62]. Thus, the optimal pipeline differs depending on the 
data handled, sample origin, and other factors, suggesting the importance of the pipeline 
comparisons in this study.

Although our study has provided valuable insights, it is imperative to acknowledge its 
limitations and to identify areas requiring attention for future investigations and meth-
odological improvement. Our analysis was narrowly concentrated on miRNA profiles 
derived from the serum exosomes of patients with ALS, and limited to two distinct 
cohorts. This specificity underlines the need for caution in generalizing our findings, as 
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the scope was confined to a single disease (ALS) and the sample type was restricted to 
blood-derived exosomes. Such limitations underscore the potential for overfitting due 
to the insufficient number of samples within our narrowly defined cohort and sample 
type. It is essential to acknowledge that the outcomes from preprocessing pipelines can 
significantly differ across various disease cohorts, sample types, and exosome extrac-
tion methodologies. To move beyond these limitations, it is imperative to extend our 
research to encompass a broader spectrum of disease populations and sample types. 
Future efforts should aim to apply our preprocessing pipeline to conduct comparative 
analyses of miRNA profiles between patients with ALS and healthy controls. Such initia-
tives will not only aid in identifying potential ALS biomarkers but will also contribute to 
a deeper understanding of disease mechanisms.

In addition, we emphasize the critical role of data sharing in promoting the develop-
ment of robust pipelines within the scientific community. We encourage fellow research-
ers to augment and leverage our publicly accessible dataset to improve methodological 
precision. Collective endeavors in data enrichment and sharing are vital for producing 
more reliable pipelines and improving the reproducibility of research findings. Lev-
eraging these findings, future research could focus on comparative studies between 
ALS-derived EV-miRNA profiles and those of controls, as well as identifying outcome-
associated miRNAs in patients with ALS.

Comparing the various methods would be advantageous for more appropriate pipeline 
construction. However, as ComBat was found to be markedly superior in the context of 
our study, we did not extend the analysis to include other methods. A common method 
for adjusting batch effects is to add batch information as a covariate during expression 
difference analysis. However, in this study, we could not examine this method because 
we did not aim to perform expression difference analysis and did not obtain the target 
group to evaluate differential expression. In the future, it would be beneficial to evaluate 
preprocessing methods that include batch effect correction when performing expression 
analysis. We believe that such comparisons will be useful to further refine batch effect 
correction strategies.

With respect to the impact on inter-group comparisons, the preprocessing pipelines 
in this study were evaluated in terms of missing value completion and batch effect cor-
rection, but it was not possible to evaluate whether the group differences (to be com-
pared in biomarker identification studies) were correctly maintained. In the future, we 
will obtain two groups of data from multiple batches and conduct similar validation of 
preprocessing pipelines to evaluate the usefulness of each preprocessing pipeline for bio-
marker studies.

As batch effects (i.e., the frequency of missing values) and data distribution depend 
on the type of measured data, it is necessary to validate the suitability of preprocessing 
pipelines across different data types. Our approach of comparing preprocessing pipe-
lines is important for integrated analyses using multiple cohorts, and we believe it will 
enable the efficient analysis of complex large-scale datasets with numerous cohorts. Fur-
thermore, we expect that this approach will contribute to disease research and diagnos-
tic biomarker discovery using 3D-Gene-based microarray data.



Page 17 of 19Takemoto et al. BMC Bioinformatics          (2024) 25:221 	

Conclusions
Our results demonstrate the importance of preprocessing in EV-miRNA microar-
ray data analysis. A comparative evaluation of 18 different preprocessing pipelines 
using 3D-Gene microarray data showed that the choice of preprocessing strategy had 
a significant impact on the agreement between two data batches, especially in the con-
text of batch effect correction and missing value imputation. The batch effect correc-
tion method ComBat was able to effectively suppress batch effects in all pipelines. The 
pipelines employing the missForest method for data imputation showed remarkably 
high agreement and accuracy, indicating its suitability for EV-miRNA data analyses. In 
contrast, pipelines using the simpler constant-value imputation method showed lower 
agreement. Finally, our comparison of the type and order of preprocessing for 3D-Gene 
data highlighted the advantages and disadvantages of each preprocessing method and 
can aid the development of context-specific pipelines.
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