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Abstract 

Background:  Tandem repeats are specific sequences in genomic DNA repeated 
in tandem that are present in all organisms. Among the subcategories of TRs we have 
Satellite repeats, that is divided into macrosatellites, minisatellites, and microsatel-
lites, being the last two of specific interest because they can identify polymorphisms 
between organisms due to their instability. Currently, most mining tools focus on Sim-
ple Sequence Repeats (SSR) mining, and only a few can identify SSRs in the coding 
regions.

Results:  We developed a microsatellite mining software called SATIN (Micro and Mini 
SATellite IdentificatioN tool) based on a new sliding window algorithm written in C 
and Python. It represents a new approach to SSR mining by addressing the limita-
tions of existing tools, particularly in coding region SSR mining. SATIN is available 
at https://​github.​com/​labgm/​SATIN.​git. It was shown to be the second fastest for per-
fect and compound SSR mining. It can identify SSRs from coding regions plus SSRs 
with motif sizes bigger than 6. Besides the SSR mining, SATIN can also analyze SSRs 
polymorphism on coding-regions from pre-determined groups, and identify SSRs 
differentially abundant among them on a per-gene basis. To validate, we analyzed 
SSRs from two groups of Escherichia coli (K12 and O157) and compared the results 
with 5 known SSRs from coding regions. SATIN identified all 5 SSRs from 237 genes 
with at least one SSR on it.

Conclusions:  The SATIN is a novel microsatellite search software that utilizes an inno-
vative sliding window technique based on a numerical list for repeat region search 
to identify perfect, and composite SSRs while generating comprehensible and ana-
lyzable outputs. It is a tool capable of using files in fasta or GenBank format as input 
for microsatellite mining, also being able to identify SSRs present in coding regions 
for GenBank files. In conclusion, we expect SATIN to help identify potential SSRs to be 
used as genetic markers.

Keywords:  Microsatellite, Simple sequence repeats, SATIN

*Correspondence:   
cwillian@ufmg.br; 
rommelramos@ufpa.br

1 Institute of Biological Sciences, 
Federal University of Minas 
Gerais, Belo Horizonte, Brazil
2 Simulation and Computational 
Biology Laboratory, High 
Performance Computing Center, 
Federal University of Pará, Belém, 
Brazil
3 Universidad Tecnológica de 
Santiago, Campus Central 
de Herrera, Isabel Aguiar No. 
61 21243, Santo Domingo, 
Dominican Republic

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05842-2&domain=pdf
https://github.com/labgm/SATIN.git


Page 2 of 14Dantas et al. BMC Bioinformatics          (2024) 25:217 

Background
Tandem repeats or TRs are specific regions of blocks of sequences (motifs) of different 
sizes in the genetic material that are repeated in tandem in different organisms [1]. These 
repetitions are non-random and appear important in several organisms [1–3].

TRs are divided into ribosomal DNA and Satellite repeats (SRs). The latter is further 
classified into 1—Macrosatellites, which are repetitive sequences with the size of several 
kb in length; 2—Minisatellites, which are repetitive sequences with sizes greater than 10 
up to a few hundred nucleotides; and 3— Microsatellites or Simple Sequence Repeats 
(SSRs), which are smaller repetitive sequences whose repeating unit (motif ), ranges 
from 1 to 6 base pairs [3, 4].

Among Satellite repeats, Mini and microsatellites are highlighted due to their insta-
bility and dynamics on populations, being microsatellites way more abundant than the 
other repeats [4].

Microsatellites or simple sequence repeats (SSRs), are widely used to identify spe-
cific molecular sequences in an unknown DNA pool. Microsatellites can be classified, 
according to the observed repetition pattern, into (I) Perfect microsatellites, which 
exhibit perfect repetitions of a single motif, e.g., (GC)15; (II) Imperfect microsatellites, 
which have different bases between the repetition pattern that are not in the motif, e.g., 
(GT)4A(GT)8 and (III) Compound microsatellites, which contain different motifs (two 
or more) repeated in tandem, e.g., (TA)8(GC)7 [3, 5].

These sequences are highly suitable for revealing polymorphisms among individuals, 
which is why they are widely used in population studies, genetic similarity analysis, and 
distance analysis. Furthermore, microsatellites can be found in eukaryotes, prokaryotes, 
and viruses, exhibiting a wide distribution through the genome and being present in 
both genic and intergenic regions. These repeated sequences have mutation rates rang-
ing from 103 to 10⁶ per cell generation, and due to this instability, they are highly relevant 
in evolutionary studies [3]. Besides, substantial results show that SSRs are nonrandomly 
distributed in protein-coding regions, and microsatellites within genes are probably sub-
jected to stronger selective pressure than other regions due to their significant functional 
importance [6]. Since microsatellites occur throughout the genome of different species, 
they have become suitable for studying genetic diversity among species and populations 
[7]. Minisatellites can also be highly polymorphic in terms of copy number, length, and 
composition and can be subjected to variations during meiosis, differently from micro-
satellites, making them also useful for DNA fingerprinting and population studies [4, 8].

Both microsatellites and minisatellites might have a role in genetic tunning on some 
genes of eukaryotes and prokaryotes, by the repeat copy number, suggesting that they 
might act as “tuning knobs” on gene expression based on the number of tandem repeats 
present [6]. Aside from that, SSRs present in genes have a higher mutation rate than the 
SSRs in non-genic regions and, for example, in primates, a high rate of polymorphism 
with elongation/shortening process is an important factor of molecular evolution [6, 9].

Due to their importance, SSRs, algorithms, and search tools have been developed for 
mining repeat regions to identify and monitor microsatellites as genetic markers in vari-
ous organisms [10]. Among the different approaches used for microsatellite identifica-
tion algorithms, these search algorithms can be divided into stochastic and deterministic 
models, where a stochastic algorithm uses a range of values for each variable, allowing 
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for some randomness. In contrast, a deterministic algorithm uses a single estimate to 
represent values of all variables, being more predictable [10, 11].

The methods used to identify SSRs and the types of outputs vary among different 
tools. For example, MISA [12] searches for perfect, and compound repeats through 
exact searches in keyword trees. IMEx [13] is designed to identify perfect, imperfect, 
and compound repeats and uses a sliding window search approach to identify indels 
and substitutions. Alignment-based methods using dynamic programming matrices are 
employed in STAR [14], Mreps [15], and STRING [16] to define approximate repeats, 
which can be efficient in finding exact and approximate patterns but may be computa-
tionally inefficient and slower due to more intensive calculations.

On the other hand, REPuter [17] and MISA [12, 18] uses Suffix Trees and Keyword 
Trees, respectively, which are data structures that can locate subsequences in O(p) time 
complexity, where p is the size of the pattern. However, Suffix Trees can require O(n2/2) 
memory space, where n is the size of the sequence. IMEx [13] performs a two-stage slid-
ing window search. Initially, it searches for sequences that repeat at least twice (e.g., 
ATC ATC) without imperfections (i.e., k = 0). It extends the search in the edges of the 
sequence, allowing up to k imperfections [12, 13].

Currently, several researchers need advanced computational training and focus a great 
amount of time on installing and running the tools for microsatellite mining, without 
mentioning that some tools have some limitations related to the machine capability and 
the size of input data intended to be used [19]. Besides, some tools are not memory effi-
cient and therefore, are not capable of analyzing large files, beyond that most SSR min-
ing tools do not generate outputs capable of differentiating SSR present in coding and 
non-coding regions.

So, we present a new tool for mining microsatellites and minisatellites based on a 
deterministic sliding window algorithm called SATIN (Micro and Mini SATellite Iden-
tificatioN tool) with an innovative method for Satellite repeats mining that offers lower 
memory and processing requirements when compared to methods such as suffix trees or 
dynamic programming.

It offers functionalities for identifying perfect, and compound SSRs, while generating 
comprehensible and analyzable outputs. It is a tool capable of using files in fasta or Gen-
Bank format as input for microsatellite mining, and it is also able to identify SSRs present 
in coding regions for GenBank files. SATIN is a memory-efficient mini and microsatel-
lite mining tool that can identify SSRs present in coding and non-coding regions without 
the limitation of motif size.

Implementation
Method of the SATIN search algorithm

SATIN’s algorithm is based on the user setup of the motif ’s size to be determined as 
input, with m for the motif size (e.g., 3 for ATG ATG), and exponent as the total number 
of motif repetitions (e.g., 2 for ATG ATG), where MinExponent represents the minimum 
number of repetitions required to be considered as an SSR.

Initially, the nucleotide sequence is converted into a numeric list L = Li...Ln , where 
each nucleotide corresponds to a prime integer value or the number 1. Subsequently, L , 
a list of composite numbers LC = LCi...LCn−m+1 is generated, where each value in the 
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set is obtained by multiplying the values of k-mers of size m belonging to L . Next, the 
consecutive repetition of values LC is counted, and whenever the repetition reaches the 
value of MinRepMultiples, a region with a perfect repetition is identified, which may or 
may not be further extended (Fig. 1).

In practice, the L values of two neighboring k-mers at a time are needed for com-
parison, which can be calculated by going through m characters for each character in 
the sequence. As a result, the processing and LC are not created and stored in memory 
because only the time increases as m grows. On the other hand, by converting the k-mer 
sequences into corresponding integer values, fewer bits are used (for sufficiently large m) 
in comparison to character strings.

When a repetition region is found in LC, satisfying the minimum repeat count, the 
start and end positions of that region are determined. Finally, the identified perfect SSRs 
are stored in a matrix (Table 1).

In the example of searching for microsatellites. When searching for different motif 
sizes, the matrix will be populated in such a way that it becomes unsorted since each 
motif type (e.g., mono, di, tri, etc.) is searched one at a time in the sequence. Therefore, 
a sorting step is necessary to align each repetition found in the matrix based on its start 
position.

The subsequent steps after sorting involve adding markers to the matrix, which aid 
in defining the SSRs. One of the functions of the markers is to identify repetitions 

MinRepMultiples = (m ∗MinExponent)− (m− 1)

Fig. 1  Example of SSRs searching algorithm used in SATIN. A sequence with AT repetitions where the 
sequence is converted into a numerical list (L) and then into a multiples list (LC) with a motif size of 2 (m). 
From there, a search mechanism is used on the LC list, considering two neighboring k-mers at a time that 
repeat in tandem, to identify the SSRs
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occurring at the same position. In such cases, the SSRs with the smaller motif are con-
sidered (e.g., considering (AC)4 instead of (ACAC)2). As a result, q is the number of 
perfect SSRs found, and the redundancy removal step is performed in O(q2) (Order of 
q2) time.

Finally, the search for compound SSRs is carried out in O(q) time by comparing the 
positions of adjacent SSRs in the matrix to check if they fall within the accepted dis-
tance. For this, the value of the end position of SSR 1 is subtracted from the start posi-
tion of SSR 2. If the result is a distance less than or equal to 10 for example (int = 10), the 
positions of both SSRs are updated to negative values, indicating that they belong to a 
unique tract of compound SSR. Additionally, the integer value of the position is retained 
to keep the information about the distance between each motif. The same process is 
applied to SSRs 2 and 3. At the end of this process, a single composite or compound SSR 
is obtained at the region starting at position 4 and ending at position 35, where before 
would be considered as 3 distinct SSRs (Table 2).

Tool overview
SATIN can be used on Linux, and, as input files, SATIN is capable of processing fasta 
and GenBank file formats. When GenBank files are used, the software will search for 
repetitive regions throughout the genome and within coding regions.

Additionally, for GenBank data analysis, the obtained results can be further analyzed, 
by generating a table of microsatellite motif abundance from the identified genic regions 
in the GenBank file formats of different genomes “SSR_counting.txt” (Fig. 2). This analy-
sis is useful for identifying unique and common motifs in the genic regions of the ana-
lyzed genomes for genetic diversity analyses based on the filtered SSRs that show the 
highest potential as genetic markers. Additionally, another script is available to isolate 
the sequences of the selected SSRs with their flanking regions into a multifasta file from 
the results.

Table 1  Matrix of the recorded positions of repeated sequences during the SSRs mining. From left 
to right, it is the SSR identification order, the size of the identified motif, the number of times this 
motif repeats (exponent), and the start and end position of the repetition found

SSR id motif Exponent Start position End position

1 3 2 4 8

2 2 3 9 14

3 2 6 24 35

Table 2  Post-processing result matrix of the SSR mining recorded for compound SSRs considering 
the intervals (int = 10) between identified Satellite repeats

SSR id motif Exponent Start position End position

1 3 2 4 − 8

2 2 3 − 9 − 14

3 2 6 − 24 35
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We chose to create SATIN as a tool that combines enhanced effectiveness, a distinct 
methodology, and unique functionalities while adhering to parameters and an output 
format reminiscent of the MISA software [12], which is one of the most widely used 
tool [11]. The SATIN’s parameters related to SSR search are stored in the "Parame-
ters.ini" file, which specifies the motifs and the minimum number of motif repetitions 
(motif: repetition), as well as the minimum size of random sequences to identify some 
imperfect microsatellites (int parameter).

SATIN generates an output indicating the type of SSRs motif followed by the num-
ber of repetitions, the start and end positions of the identified Satellite repetition, and 
the sequence ID.

Input file formats

When using FASTA files as input, SATIN can perform the search for Satellites repeti-
tions in two ways: (1) Single Analysis: analyses unique fasta or multifasta file through 
a command; or (2) Batch analysis of multiple fasta files within a single folder through 
a unique command.

On the other hand, when GenBank files are used as input, besides generating the 
same output as in the analysis of FASTA files, SATIN will generate additional output 

Fig. 2  Diagram illustrating the process of counting the SSR in coding regions to identify potential SSR 
markers after the SSRs mining. The figure depicts the abundance calculation process, where the SSRs are 
counted on a per-gene basis. Subsequently, the output is analyzed by an R-script that compares the selected 
SSR among the previously selected groups (Group1 compared to Group2 in the example above)

Table 3  Example of a file Format displaying SSRs in coding regions, along with gene name and their 
positions within the coding region

Start End SSR Gene Strand Synonym (locus_tag) Product ID

583,756 583,763 (A)8 appY  +  b0564 DNA-binding transcriptional 
activator

NC_000913.3



Page 7 of 14Dantas et al. BMC Bioinformatics          (2024) 25:217 	

files. (1) A fasta file containing the genome sequence; (2) A Protein Table file that 
extracts the coding regions; and (3) an SSR-coding file with identified SSRs specifi-
cally found within the coding regions. The SSR-coding file is presented in the format 
of Table 3.

Analysis of SSRs in coding regions among groups of genomes

In addition to its main function of SSR mining, SATIN can also serve as a complemen-
tary tool by providing scripts for additional analysis of SSRs profiles among pre-defined 
groups of genomes. These tools will compare and analyze perfect SSRs present among 
the groups of genomes. The idea is based on the assumption that differences in SSR 
counts occur due to mutations within these repetitive sequences [20] and that the SSRs 
diverging among the groups will have their motif count values modified due to popula-
tion polymorphism [3]. As a result, it generates a file containing the SSRs count values 
within each gene from a Python script (abundance file) and compares them with the 
counts present in the other group of genomes under the same conditions using an R 
script to compare the groups (Figs. 2 and 3).

The tool takes as input the outputs generated by running GenBank format files, spe-
cifically, the previously obtained results from SATIN for the coding regions, along 
with a TSV file defining the group membership of each organism for statistical analysis 
purposes.

Afterward, SATIN’s coding SSR file results can be used to generate an abundance file 
that compares the SSR frequency profiles of coding SSRs among each group by execut-
ing a Python script, and, subsequently, a count of SSRs within the gene regions is per-
formed for each analyzed genome and saved on an abundance file (Fig. 2). It utilizes the 
obtained results and segregates them according to the genome files used.

Using the abundance file and the pre-defined groups of genomes file, the user can run 
an R-script to compare these SSRs and make further analyses of differential SSR fre-
quency between groups by using tests for normality (Shapiro–Wilk), non-parametric 
Kruskal–Wallis test, parametric ANOVA, Tukey’s post hoc test, and a sum of the SSR 
counts for each gene and SSR. The results of these tests are saved in separate files, so the 
user can analyze the results to select potential SSR markers (Fig. 4).

If the SSRs have already been selected and the user needs to design new primers and 
therefore needs the flanking regions to do so, SATIN offers a script to extract the flank-
ing regions of each SSR of the selected coding regions present on the folder with all 

Fig. 3  Flowchart of the steps for the perfect SSR analysis of the coding regions among different groups 
of genomes. The first step is shown in Fig. 3 where the SSR on a per gene basis is counted and saved on a 
file called “SSR_couting.txt” (abundance file), then is analyzed together with a grouping file by an Rscript 
to generate results with some statistical analysis such as tests for normality (Shapiro–Wilk), non-parametric 
Kruskal–Wallis test, parametric ANOVA, Tukey’s post hoc test, and a sum of the SSR counts for each gene and 
SSR. After the SSR has been selected the user can select the flanking regions using a script called “extract_
seq_from_ssr_gene.py”
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genomes analyzed (Fig. 3). These flanking regions can be used as input in subsequent 
steps for primer selection using other tools such as GSP [7], ConsensusPrimer [21], or 
Primer3 [22].

In addition to microsatellite mining, SATIN can utilize its results generated from the 
identified SSRs in coding regions to compare the SSRs identified by each genome group. 
It utilizes the obtained results and segregates them according to the genome groups pre-
defined by the user.

The analysis assumes that the SSRs diverging among the groups will have their motif 
count values modified due to population polymorphism [3]. As a result, it generates 
a file containing the SSR count values within each gene and compares them with the 
counts present in other genomes under the same conditions (Fig. 2).

Based on the table generated through the abundance calculation of SSRs, along with 
an additional file provided by the user indicating the analyzed genomes and their corre-
sponding groups, SATIN offers an R script that analyses the abundance table and groups 
to identify differentially expressed SSRs among the analyzed groups.

Results and discussion
Tools comparison

To compare whether SATIN can generate similar results to other microsatellite mining 
tools, we used 100 randomly selected genomes from NCBI (supplementary_data1). The 
motifs of the sequences found by each tool were compared among them as well as the 
processing time for each task (Fig. 4).

Among the known microsatellite mining programs, the following programs were 
selected for result and processing time comparison: IMEX-2.1 [13], MISA [12, 18], and 
Sciroko [23]. Also, we specifically focused on searching for perfect microsatellites to 
facilitate the analysis of outputs.

The motif sizes and repetitions used for the adjusted programs were 1:12, 2:5, 3:4, 
4:3, 5:3, and 6:3 based on parameters previously defined [19, 24], where the values 

Fig. 4  Box plot of the processing time for each of 100 genomes with detection of SSRs under the same 
parameters. The circles above each box plot represent outliers



Page 9 of 14Dantas et al. BMC Bioinformatics          (2024) 25:217 	

correspond to the motif size followed by the minimum number of repetitions. The pro-
grams were executed, and their processing time outputs were analyzed as shown (Figs. 4 
and 5).

For the comparison of their motifs and identified start and end positions, multiple 
Venn diagrams were generated for each analyzed genome comparing each of these cat-
egories (SSR, start position, and end position). These diagrams compared the number of 
results common to all three tools for each genome (supplementary data and Fig. 5).

Processing time

With the previously mentioned data, we also ran SATIN with 3 more programs on MISA 
mode for 100 genomes and compared their running time for each mining software used.

Based on the data from Fig. 4, it can be observed that SATIN is faster compared to 
MISA and IMEX-2.1, except for Sciroko, which is known to be a fast SSR mining tool 
[11]. It is important to note that IMEX-2.1 was built in the same C language as SATIN, 
while MISA was written in Perl, and this will probably influence the time of processing 
besides the parameters used for each tool and alternative outputs created.

Efficiency in microsatellite identification

For the comparison of their motifs, multiple Venn diagrams were generated for each 
analyzed genome comparing the identified SSRs. These diagrams compared the number 
of results of perfect SSRs common to three tools (MISA, IMEX, and SATIN) for each 
genome (Fig. 5 & supplementary_data1). Sciroko’s output was not compared due to his 
differentiated output (not in table format) when compared to MISA and IMEX-2.1.

Figure 5 (below) depicts one of these diagrams for the motifs identified in the Escheri-
chia coli str. K-122 genome (GCF_000005845.2), where the common motifs among the 

Fig. 5  Venn diagram comparing the shared or unique SSR (motif ) regions based on the output generated 
by the programs under the same search conditions. The value at the center indicates the number of motifs 
identified in common by all three software programs. The three values immediately following, in light blue, 
brown, and purple, indicate the motifs shared between MISA-IMEX, MISA-SATIN, and IMEX-SATIN, respectively. 
The remaining values represent the motifs uniquely identified by each software: Green—uniquely identified 
by MISA, Navy blue—uniquely identified by IMEX, and Red—uniquely identified by SATIN
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three programs are shown at the center, the motifs shared between two of the three 
software programs are indicated in light blue, brown, and purple colors, and the unique 
motifs identified for each analyzed program are represented in green, navy blue, and red 
colors for MISA, IMEX, and SATIN software, respectively.

From the data in Fig. 5, it can be observed that SATIN can identify a similar number 
of outputs when compared to IMEX and MISA under the same conditions. The SSRs 
“(GGCG)3”, “(TTAT)3” and “(GGT)4” were only identified by SATIN and MISA. IMEX 
showed a unique SSR “(GTG)4”, but when closely looked at, “(GTG)4” corresponded to 
the same SSR “(GGT)4”, so they were considered the same. Giving MISA and SATIN a 
plus of 2 SSRs. We also ran 100 other genomes with the same conditions to create other 
Venn diagrams to show this characteristic of SATIN compared to other tools with per-
fect SSR mining (supplementary_data1).

Analysis of SSRs for the identification of potential population markers

To test the results of the identified SSRs of the coding regions among populations, the 
microsatellite data of Escherichia coli identified and experimentally validated between 
the k12 and O157 groups in coding regions were used [25] (Table 4). The identified SSRs 
in the coding regions in Table 4 were then compared with the SSRs identified by SATIN.

For the identification of SSRs, 51 genomes of Escherichia coli strains from the K12 
group and 51 genomes of Escherichia coli strains from the O157 group were used (sup-
plementary_data2). These data were downloaded from NCBI (RefSeq) in GenBank for-
mat and underwent microsatellite mining by SATIN using the following parameters: 
1:8, 2:6, 3:4, 4:3, 5:3, and 6:3; defined [19, 24] and adapted based on Table 4. The identi-
fied SSRs in gene regions were then subjected to abundance calculation, resulting in the 
"SSR_counting.txt" file, which was later analyzed using R.

As a result, since the data did not show a normal distribution from Shapiro–Wilk 
results, non-parametric tests were considered. Among the identified SSRs for these 
groups, approximately 237 SSRs were found in gene regions with a p-value less than 
0.001 in the Kruskal–Wallis analysis (supplementary_data2). Among these identified 
SSRs, 5 SSRs mentioned in Table 4 were identified (Table 5).

From the table with Kruskal–Wallis results available on supplementary_data2, we also 
selected other 2 SSRs (one per gene), that were probably differentiated from the elonga-
tion/shortening process, from the 237 genes to show how these markers can differenti-
ate between the two serovars (K12 and O157 groups) of Escherichia coli. These 2 SSRs 

Table 4  List of identified SSRs in coding regions among Escherichia coli groups K12 and the O157 
group. These SSRs were subsequently analyzed with the results obtained from SATIN for result 
comparison

Strain and substrain No of repeats Motif Genomic location, 
name of ORF

Source

k12:w3110, b sr9b, ehec, epec, etec 8 C G1787051, gsiA [25]

k12:w3110, b sr9b, ehec, epec, etec 9 A G1790021, yibA [25]

k12:w3110, b sr9b, ehec, epec, etec 6 GC G1786541, mhpR [25]

k12, b, ehec, epec, etec, e:1–69 5 CGG​ G1786284, ftsZ [25]

k12, b, ehec, epec, etec, e:1–69 4 CTGG​ G1788332, hisC (25)
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had their flanking regions extracted and individually analyzed to see how they would 
differentiate among the two serovars.

The first SSR identified were the (CGG)4 and (CGG)5 repeats in the accC gene. The 
SSR (CGG)4 were present on the genomes of the O157 serovar and (CGG)5 were pre-
sent on the genomes of the K12 serovar. The second SSR identified was the (A)8 and 
(A)9 repeats in the yqeJ gene that showed to be repeated twice in that region. In the 
genomes with the K12 serovar, it was observed the repetition (A)8 twice in the yqeJ gene 
[(A)8, (A)8], while in the O157 serovar, it was observed the repetition (A)8 and (A)9 
in the yqeJ gene [(A)8, (A)9]. However, one of the K12 genomes (GCF_003028735.1) 
showed a (CGG)4 repetition in the accC gene and not all O157 genomes could be 
identified due to this gene being absent on some of the GenBank files for both SSRs 
(supplementary_data2).

In summary, SATIN provides an output similar to MISA, and faster processing time 
compared to other programs and enables additional analyses of potential population 
markers for microsatellites. It can analyze the frequency of specific SSRs to distinct 
population groups and generate suggestions of SSRs that exhibit differential frequency 
among them based on some statistical analysis. If desired, the user can isolate these SSR 
regions for further population-based analyses, particularly focusing on the loci associ-
ated with the SSRs.

Besides Minisatellites being not discussed on the results, SATIN’s algorithm can identify 
bigger motif sizes when defined by the user, since it produces a numerical list defined by 
that motif size. So, the SATIN motif is limited only by the hardware where it’s been used.

Conclusion
In conclusion, SATIN emerges as a valuable and efficient tool for the detection of mini 
and microsatellites using a new algorithm based on prime numbers, as it can identify a 
wide range of SSRs present in genomes. SATIN also displays some additional tools to help 
identify new markers, such as the identification of the SSRs present in the coding regions 
and further statistical analysis to help the user to better identify perfect repeats polymor-
phism in coding regions. Its ability to analyze different types of SSRs and its fast process-
ing make it a versatile and practical choice for researchers working with SSR analysis.

Availability and requirements
Availability and Implementation:  SATIN is available at https://​github.​com/​labgm/​
SATIN.​git.

Project name: SATIN—Micro and Mini SATellite IdentificatioN tool.
Project home page: https://​github.​com/​labgm/​SATIN.​git
Operating system(s): Linux.
Programming language: C, Python, and R.
Other requirements: pandas, numpy, biopython, collection, libz-dev, libbz2-dev, r-base 

(‘dplyr’, ‘tidyr’).
License: MIT License.
Any restrictions to use by non-acad: none.

https://github.com/labgm/SATIN.git
https://github.com/labgm/SATIN.git
https://github.com/labgm/SATIN.git
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