
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Li and Yang ﻿BMC Bioinformatics (2024) 25:219
https://doi.org/10.1186/s12859-024-05844-0

BMC Bioinformatics

PxBLAT: an efficient python binding library
for BLAT
Yangyang Li1 and Rendong Yang1,2* 

Abstract 

Background:  With the surge in genomic data driven by advancements in sequenc-
ing technologies, the demand for efficient bioinformatics tools for sequence analysis
has become paramount. BLAST-like alignment tool (BLAT), a sequence alignment tool,
faces limitations in performance efficiency and integration with modern program-
ming environments, particularly Python. This study introduces PxBLAT, a Python-based
framework designed to enhance the capabilities of BLAT, focusing on usability, compu-
tational efficiency, and seamless integration within the Python ecosystem.

Results:  PxBLAT demonstrates significant improvements over BLAT in execution
speed and data handling, as evidenced by comprehensive benchmarks conducted
across various sample groups ranging from 50 to 600 samples. These experiments
highlight a notable speedup, reducing execution time compared to BLAT. The frame-
work also introduces user-friendly features such as improved server management,
data conversion utilities, and shell completion, enhancing the overall user experience.
Additionally, the provision of extensive documentation and comprehensive testing
supports community engagement and facilitates the adoption of PxBLAT.

Conclusions:  PxBLAT stands out as a robust alternative to BLAT, offering perfor-
mance and user interaction enhancements. Its development underscores the poten-
tial for modern programming languages to improve bioinformatics tools, aligning
with the needs of contemporary genomic research. By providing a more efficient,
user-friendly tool, PxBLAT has the potential to impact genomic data analysis workflows,
supporting faster and more accurate sequence analysis in a Python environment.

Keywords:  Software libraries, Sequence analysis, BLAT

Background
The rise of Python as a preferred programming language within bioinformatics is widely
acknowledged as a result of its user-friendly nature, extensive libraries, and unparalleled
versatility [1]. A variety of libraries have been crafted to augment Python’s interface,
thereby amplifying the adaptability and compatibility of bioinformatics tools [2, 3]. For
instance, Biopython [3], a preeminent bioinformatics library, furnishes interfaces to tools
like Basic Local Alignment Search Tool (BLAST) [4] and Clustal [5]. BLAT, a prominent
tool in bioinformatics, is renowned for its speed in genome sequence alignments and

*Correspondence:
rendong.yang@northwestern.
edu

1 Department of Urology,
Northwestern University
Feinberg School of Medicine,
303 E Superior St, Chicago, IL
60611, USA
2 Robert H. Lurie Comprehensive
Cancer Center, Northwestern
University Feinberg School
of Medicine, 675 N St Clair St,
Chicago, IL 60611, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05844-0&domain=pdf

Page 2 of 8Li and Yang ﻿BMC Bioinformatics (2024) 25:219

serves as a more efficient alternative to BLAST for aligning DNA sequences with the
reference genome [6–8]. Furthermore, the unprecedented growth in genome sequencing
technologies has significantly increased the availability of genomic data, emphasizing
the need for advanced tools in both research and clinical contexts [9, 10]. While BLAT
was developed twenty years ago, it continues to be a staple and popular tool in bioinfor-
matics due to its exceptional speed and accuracy. Its enduring relevance is evident across
various contexts, from genome sequencing to comparative genomics [11–15].

Despite its popularity and effectiveness, BLAT’s integration is fraught with difficulties,
primarily due to its C-based implementation and reliance on Command-Line Interfaces
(CLIs), hindering seamless integration into Python projects [16]. Also, executing exten-
sive queries with the BLAT suite leads to inefficiencies when operations are isolated and
not executed in batches. Typically, BLAT’s task allocation is sporadic, and intermixed
with other tasks. Users generally face a choice: either employ standalone BLAT or inte-
grate gfServer with gfClient [4]. BLAT’s standard operational model involves initiating
gfServer, conducting the sequence query through gfClient, and subsequently terminat-
ing the server after each query. This method becomes highly inefficient for ungrouped,
numerous queries as it necessitates the repeated initialization and shutdown of gfServer,
introducing significant overhead [6]. An optimized approach would entail initiating
gfServer a single time and leveraging gfClient to execute multiple queries. However, the
command-line-only access to gfServer and gfClient complicates this process. This limita-
tion necessitates the management of system calls (like subprocess or os.system), the han-
dling of intermediate temporary files, and dealing with format conversion, all of which
cumulatively degrade performance.

PxBLAT is proposed as a solution that allows for the programmatic use of BLAT,
ensuring its smooth integration into new algorithms or analytical pipelines within the
Python ecosystem. It acts as a conduit, merging the high-performance capabilities of
BLAT with Python’s versatility while ensuring data reproducibility. The primary goal of
PxBLAT is to bridge the gap in the current landscape by providing a Python binding
library tailored specifically for BLAT, addressing both the efficiency bottlenecks and the
ergonomic challenges of its integration.

Implementation
Design and architecture

The design of PxBLAT is anchored in the principles of readability and simplicity, foster-
ing an intuitive user interface that minimizes the learning curve for users. In our quest
to streamline complexity and amplify both usability and performance, we meticulously
extracted the core implementation of BLAT from the broader UCSC Genome Browser
(UCSC) codebase, significantly reducing dependency overhead.

We preserved the integrity of the original C codebase while reimplementing key BLAT
(V37.1) utilities such as faTwoBit, gfServer, and gfClient in C++. This strategic choice not
only modernizes the code but also enhances maintainability and scalability. The inte-
gration of the revamped C++ code with PxBLAT was achieved using Pybind11 [17], a
lightweight, seamless method for interfacing C++ and Python.

This approach ensures a direct and efficient interaction with BLAT’s func-
tions, upholding the original performance benchmarks and reliability of BLAT.

Page 3 of 8Li and Yang ﻿BMC Bioinformatics (2024) 25:219 	

Simultaneously, it extends the framework’s functionality, aligning it with modern
computational standards and making it a robust tool in the bioinformatics toolkit
(Table 1).

PxBLAT features CLI utilities crafted through its Application Programming Inter-
faces (APIs), boasting shell completion for various systems to augment its versatil-
ity (Table 1). Recognizing the diverse technological landscape, we provide the library
in wheel format compatible with multiple platforms, including Linux x86-64, macOS
x86-64, and macOS arm64. This ensures a seamless installation process, free from the
complexities of C library dependencies, making it straightforward and user-friendly.

Moreover, PxBLAT utilizes type annotations in its public classes and functions. This
not only reinforces code quality and correctness through type checking and static
analysis but also enhances the development experience. The annotated types facilitate
automatic suggestion and correction of function signatures in development environ-
ments, streamlining the coding process.

APIs of PxBLAT

PxBLAT delivers its query results in alignment with the QueryResult class of Biopy-
thon [3], enabling seamless manipulation of query outputs (Listing 1). This integra-
tion effectively streamlines the post-query workflow, allowing users to leverage the
full potential of Biopython in their sequence alignment tasks. Significantly, PxBLAT
negates the necessity for intermediate files by conducting all operations in memory.
This advancement eliminates the often cumbersome and time-consuming step of data
format conversion, enabling users to concentrate on the core aspects of sequence
alignment. To enhance user flexibility, the necessity for input and output files has
been made optional, aligning with diverse user preferences and workflows.

Table 1  Overview of features of PxBLAT compared with BLAT

 This table presents a comprehensive comparison between the features offered by PxBLAT and BLAT. Features are denoted
with a ✓ to signify availability and an ✗ to indicate absence. Notably, PxBLAT showcases significant enhancements,
particularly in server management (e.g., wait server), data conversion (e.g., fasta to bit, bit to fasta), and enriched user
interaction (e.g., shell completion). These advancements firmly establish PxBLAT as a superior and more versatile alternative
to the conventional BLAT tool

Feature PxBLAT BLAT

Start server ✓ ✓
Stop server ✓ ✓
Query server ✓ ✓
Wait server ✓ ✗
Fasta to bit ✓ ✗
Bit to fasta ✓ ✗
Port retry ✓ ✗
Shell completion ✓ ✗

Page 4 of 8Li and Yang ﻿BMC Bioinformatics (2024) 25:219

Listing 1  API example. The code snippet shows how to use the API of PxBLAT, and the query result can be
iterated. More code examples can be found at https://​pxblat.​readt​hedocs.​io/​en

Recognizing the latency and potential performance bottlenecks induced by system
calls, PxBLAT minimizes their usage, thereby streamlining operations and enhanc-
ing efficiency. Additionally, PxBLAT simplifies server status retrieval, circumvent-
ing the complexities and potential pitfalls of log file manipulation, particularly in
concurrent usage scenarios. To further elevate the user experience and operational
efficiency, PxBLAT integrates several ergonomic features. These include real-time
server readiness checks for alignments, automatic port retries when the default is
in use, and the capability to latch onto an already running server if available. These
features collectively ensure a smoother, more efficient alignment process, reducing
downtime and maximizing productivity.

To facilitate a smooth experience, we offer an extensive range of examples and
comprehensive documentation (Listing 1). PxBLAT introduces a robust set of APIs,
including the classes Server and Client, along with a suite of functions designed to
replicate the capabilities of the BLAT suite. These classes mirror the utilities of the
CLI tools gfServer and gfClient, respectively, but with added flexibility to accommo-
date a wider range of user requirements. Key functions such as start_server, query_
server, status_server, fa2twobit, and twobit2fa are provided to cater to diverse usage
scenarios. Rigorous testing and development protocols, incorporating Continuous
Integration (CI) and Continuous Development (CD), have been employed to ensure
high code quality and reliability.

https://pxblat.readthedocs.io/en

Page 5 of 8Li and Yang ﻿BMC Bioinformatics (2024) 25:219 	

Results
Performance on real datasets

The performance of PxBLAT was rigorously benchmarked against BLAT (V37.1) , utiliz-
ing eight distinct sample sets of FASTA files. Each set comprised a group of samples,
ranging from 50 to 600 samples per set. The datasets are sampled from chromosome 20
of the genome of Homo sapiens (hg38), with each sample containing a single sequence.
These sequences varied in length from 1000.00 bp to 3000.00 bp, encompassing a spec-
trum of typical use-case scenarios (Fig 1).

To ascertain the accuracy and reliability of PxBLAT, we conducted a comparative anal-
ysis of the High-Scoring Pairs (HSPs) generated by both BLAT and PxBLAT for each
sample. This side-by-side comparison indicated a complete alignment between the HSPs
generated by PxBLAT and BLAT, validating the precision of PxBLAT’s results (S2 Table).

The benchmarking process was carried out on an Apple M1 Pro running macOS 13.4.1
(arm64). For launching BLAT, system calls were utilized, and the execution time was
measured using the time library. Each set of FASTA files underwent three experimental

Fig. 1  Sequence length distribution in real datasets. This figure illustrates the distribution of fasta sequence
lengths across different sample sets. The x axis represents the sequence length, while the y axis denotes
the count of each length. a Distribution of a set of 50.00 samples. b Distribution of a set of 100.00 samples.
c Distribution of a set of 200.00 samples. d Distribution of a set of 300.00 samples. e Distribution of a set of
400.00 samples. f Distribution of a set of 500.00 samples. g Distribution of a set of 600.00 samples

Page 6 of 8Li and Yang ﻿BMC Bioinformatics (2024) 25:219

runs, facilitating a comprehensive assessment of performance. The results highlighted
the efficiency of PxBLAT, with observed speedups ranging from 1.00 to 1.77 times com-
pared to the BLAT execution (Fig 2).

In summary, PxBLAT demonstrates significant advantages in terms of execution time
reduction. These findings underscore its utility as a substantial improvement over the
BLAT, reinforcing its value within the bioinformatics toolkit.

Conclusion
In conclusion, PxBLAT is a robust, efficient, and user-friendly Python binding library
designed to enhance the capabilities of BLAT. It is freely available for non-commerial
users. Its seamless integration with the Python ecosystem, coupled with its enhanced
performance, underscores its potential to impact genomic data analysis workflows.
Overall, PxBLAT provides a comprehensive set of features, including server manage-
ment, data conversion utilities, and shell completion, to enhance the user experience.

We plan to explore the implementation of a distributed service architecture and multi-
tenant management support, despite the challenges posed by the BLAT architecture.
Additionally, incorporating a dynamic BLAT server is another future direction to further
enhance the performance of PxBLAT. These future enhancements aim to improve the
performance and scalability of PxBLAT, ensuring it remains a valuable tool for the bioin-
formatics community.

Availability and requirements
Project name: PxBLAT

Fig. 2  Performance comparison between BLAT and PxBLAT. This figure quantifies the performance of
BLAT (indicated by red points) and PxBLAT (indicated by blue points) across various data sets, with the x
axis categorizing the number of samples in the sets and the y axis detailing the execution time in seconds.
Each group encapsulates the results of three independent experiments. Trend lines, depicted in red for
BLAT and blue for PxBLAT, illustrate the general performance pattern for each tool. Notably, the green text
highlights the speedup achieved by PxBLAT, calculated as the ratio of the execution time ( time

blat
/time

pxblat
 ),

underscoring the efficiency gains of PxBLAT relative to BLAT

Page 7 of 8Li and Yang ﻿BMC Bioinformatics (2024) 25:219 	

Project home page: https://​github.​com/​ylab-​hi/​pxblat
Operating system(s): Linux, Mac OS X
Programming language: C, C++, Python (version 3.9.0 or higher).
License: The source code and executables are freely available for academic, nonprofit,

and personal use. Commercial licensing information is available on the Kent Informatics
website (http://​www.​kenti​nform​atics.​com).

Any restrictions to use by non-academics: license needed

Abbreviations
API	� Application Programming Interface
BLAST	� Basic Local Alignment Search Tool
BLAT	� BLAST-like alignment tool
CD	� Continuous Development
CI	� Continuous Integration
CLI	� Command-Line Interface
HSP	� High-Scoring Pair
UCSC	� UCSC Genome Browser

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​024-​05844-0.

Supplementary Material 1.

Acknowledgements
Special thanks to the team who maintain the UCSC codebase and users from the bioinformatics community whose valu-
able feedback and suggestions were pivotal in refining PxBLAT’s design and functionality.

Author contributions
Y.L. and R.Y. conceptualized the project. Y.L. implemented the software and conducted the benchmarking. R.Y. super-
vised the project. Both authors wrote the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the National Institute of General Medical Sciences [R35GM142441].

Availability of data and materials
The PxBLAT, along with the source code, is publicly available in the GitHub repository at https://​github.​com/​ylab-​hi/​pxb-
lat. The documentation is available at ReadtheDocs https://​pxblat.​readt​hedocs.​io/​en/​latest/. The script for benchmarking
is available at tests/test_result.py in the repository. The testing dataset is available at the GitHub repository https://​github.​
com/​ylab-​hi/​pxblat. The path of the testing dataset is benchmark/fas.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
No Conflict of interest is declared.

Received: 5 March 2024 Accepted: 13 June 2024

References
	1.	 Perkel JM. Programming: pick up Python. Nature. 2015;518(7537):125–6. https://​doi.​org/​10.​1038/​51812​5a.
	2.	 Putri GH, Anders S, Pyl PT, Pimanda JE, Zanini F. Analysing high-throughput sequencing data in Python with HTSeq

2.0. Bioinformatics. 2022;38(10):2943–5. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btac1​66.
	3.	 Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, Hoon MJL.

Biopython: freely available python tools for computational molecular biology and bioinformatics. Bioinformatics.
2009;25(11):1422–3. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btp163.

https://github.com/ylab-hi/pxblat
http://www.kentinformatics.com
https://doi.org/10.1186/s12859-024-05844-0
https://github.com/ylab-hi/pxblat
https://github.com/ylab-hi/pxblat
https://pxblat.readthedocs.io/en/latest/
https://github.com/ylab-hi/pxblat
https://github.com/ylab-hi/pxblat
https://doi.org/10.1038/518125a
https://doi.org/10.1093/bioinformatics/btac166
https://doi.org/10.1093/bioinformatics/btp163

Page 8 of 8Li and Yang ﻿BMC Bioinformatics (2024) 25:219

	4.	 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
https://​doi.​org/​10.​1016/​S0022-​2836(05)​80360-2.

	5.	 Higgins DG, Sharp PM. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer.
Gene. 1988;73(1):237–44. https://​doi.​org/​10.​1016/​0378-​1119(88)​90330-7.

	6.	 Kent WJ. BLAT-The BLAST-like alignment tool. Genome Res. 2002;12(4):656–64. https://​doi.​org/​10.​1101/​gr.​229202.
arXiv:​ 1193.​2250.

	7.	 Grant GR, Farkas MH, Pizarro AD, Lahens NF, Schug J, Brunk BP, Stoeckert CJ, Hogenesch JB, Pierce EA. Com-
parative analysis of RNA-seq alignment algorithms and the RNA-seq unified mapper (RUM). Bioinformatics.
2011;27(18):2518–28.

	8.	 Borozan I, Watt SN, Ferretti V. Evaluation of alignment algorithms for discovery and identification of pathogens using
RNA-seq. PloS ONE. 2013;8(10):76935.

	9.	 Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387–402.
	10.	 Marx V. Method of the year: long-read sequencing. Nat Methods. 2023;20(1):6–11.
	11.	 Sielemann K, Pucker B, Schmidt N, Viehöver P, Weisshaar B, Heitkam T, Holtgräwe D. Complete pan-plastome

sequences enable high resolution phylogenetic classification of sugar beet and closely related crop wild relatives.
BMC Genomics. 2022;23(1):113.

	12.	 Coates BS, Walden KK, Lata D, Vellichirammal NN, Mitchell RF, Andersson MN, McKay R, Lorenzen MD, Grubbs N,
Wang Y-H, et al. A draft Diabrotica virgifera virgifera genome: insights into control and host plant adaption by a major
maize pest insect. BMC Genomics. 2023;24(1):19.

	13.	 Carbonnel S, Falquet L, Hazak O. Deeper genomic insights into tomato CLE genes repertoire identify new active
peptides. BMC Genomics. 2022;23(1):756.

	14.	 Dressler L, Bortolomeazzi M, Keddar MR, Misetic H, Sartini G, Acha-Sagredo A, Montorsi L, Wijewardhane N, Repana
D, Nulsen J, et al. Comparative assessment of genes driving cancer and somatic evolution in non-cancer tissues: an
update of the network of cancer genes (NCG) resource. Genome Biol. 2022;23(1):35.

	15.	 Zhu Y, Gomez JA, Laufer BI, Mordaunt CE, Mouat JS, Soto DC, Dennis MY, Benke KS, Bakulski KM, Dou J, et al. Placen-
tal methylome reveals a 22q13. 33 brain regulatory gene locus associated with autism. Genome Biol. 2022;23(1):46.

	16.	 Wang M, Kong L. pblat: a multithread blat algorithm speeding up aligning sequences to genomes. BMC Bioinform.
2019;20(1):1–4.

	17.	 Jakob W, Rhinelander J, Moldovan D. pybind11 – Seamless operability between C++11 and Python. 2016; https://​
github.​com/​pybind/​pybin​d11.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/0378-1119(88)90330-7
https://doi.org/10.1101/gr.229202
http://arxiv.org/abs/1193.2250
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11

	PxBLAT: an efficient python binding library for BLAT
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Design and architecture
	APIs of PxBLAT

	Results
	Performance on real datasets

	Conclusion
	Availability and requirements
	Acknowledgements
	References

