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Abstract 

Background: Pan-virus detection, and virome investigation in general, can be chal-
lenging, mainly due to the lack of universally conserved genetic elements in viruses. 
Metagenomic next-generation sequencing can offer a promising solution to this prob-
lem by providing an unbiased overview of the microbial community, enabling detec-
tion of any viruses without prior target selection. However, a major challenge in utilis-
ing metagenomic next-generation sequencing for virome investigation is that data 
analysis can be highly complex, involving numerous data processing steps.

Results: Here, we present Entourage to address this challenge. Entourage enables 
short-read sequence assembly, viral sequence search with or without reference virus 
targets using contig-based approaches, and intrasample sequence variation quan-
tification. Several workflows are implemented in Entourage to facilitate end-to-end 
virus sequence detection analysis through a single command line, from read cleaning, 
sequence assembly, to virus sequence searching. The results generated are compre-
hensive, allowing for thorough quality control, reliability assessment, and interpreta-
tion. We illustrate Entourage’s utility as a streamlined workflow for virus detection 
by employing it to comprehensively search for target virus sequences and beyond in 
raw sequence read data generated from HeLa cell culture samples spiked with viruses. 
Furthermore, we showcase its flexibility and performance on a real-world dataset 
by analysing a preassembled Tara Oceans dataset. Overall, our results show that Entou-
rage performs well even with low virus sequencing depth in single digits, and it can be 
used to discover novel viruses effectively. Additionally, by using sequence data gener-
ated from a patient with chronic SARS-CoV-2 infection, we demonstrate Entourage’s 
capability to quantify virus intrasample genetic variations, and generate publication-
quality figures illustrating the results.

Conclusions: Entourage is an all-in-one, versatile, and streamlined bioinformatics 
software for virome investigation, developed with a focus on ease of use. Entourage 
is available at https:// codeb erg. org/ CENMIG/ Entou rage under the MIT license.
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Background
Pan-viral metagenomic analysis remains a challenging problem. Unlike cellular organ-
isms, viruses lack universally conserved genetic elements akin to 16S rRNA in bacte-
ria [1], or to the nuclear ribosomal internal transcribed spacer region in fungi [2], that 
can serve as universal biomarkers for virus taxonomic identification and detection. Even 
viral proteins that are typically considered as highly conserved, such as the viral hallmark 
capsid proteins and RNA-dependent RNA polymerases, could still exhibit significant 
diversities at deep levels of evolutionary relatedness. For example, detecting similari-
ties among capsid proteins from different viral orders or among RNA-dependent RNA 
polymerases from different viral phyla often necessitates three-dimensional structural 
analysis [3–5]. These examples highlight the immense diversity of viruses on the largest 
scale. Due to this, conventional virus detection methods, such as polymerase chain reac-
tion (PCR) and Sanger sequencing, which heavily rely on high nucleotide similarity, can 
therefore have limited sensitivity for virus discovery, capable of detecting only viruses 
that the methods are designed for, or at least are very closely related to them.

Metagenomic next-generation sequencing (mNGS) offers a promising solution to 
overcome these challenges. This approach typically employs high-throughput 2nd gen-
eration sequencing technologies to sequence the entirety of DNA and/or RNA genetic 
materials in the analysed sample, generating millions of ‘short reads’ in an unbiased 
manner [6]. Unlike PCR and Sanger sequencing, mNGS can provide a comprehensive 
and unbiased overview of the microbial community, enabling detection of any viruses 
without the need for prior target selection. Another advantage of mNGS is its capac-
ity to unbiasedly capture sequence variations within a single sample. While accurately 
determining minor variant frequencies could often be challenging [7], overall intrasam-
ple sequence variation profiles yielded from mNGS analysis have nevertheless proven 
valuable in, for example, studying virus microevolution [8], detecting subpopulations of 
drug-resistant viruses in individual patients [9, 10], and estimating the durations of viral 
infections [11].

One key challenge in utilising mNGS for virome investigation is that data analysis 
can be highly complex, involving numerous data processing steps. To address this chal-
lenge, we present Entourage, a comprehensive, versatile, and streamlined data analysis 
program for virome investigation. Entourage is developed with an emphasis on ease of 
use, and offers a wide range of sequence analysis functionalities, including read qual-
ity control and assembly, contig-based target virus detection, sensitive discovery of viral 
sequences, and intrasample genetic variation profiling. The program allows for multiple 
entry and end points in sequence analysis, accommodating various analytical needs, and 
generates comprehensive results that are straightforward to interpret, facilitating result 
quality control, reliability assessment, interpretation, and further downstream sequence 
analyses.

Methods and materials
Overview of entourage

Entourage is an open-source command-line program designed to facilitate and stream-
line the analysis of short-read assembly, contig-based virus identification and discovery, 
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and quantification of intrasample sequence variations. The program is built using an 
‘entourage’ of well-received, well-established, open-source bioinformatics tools, and 
operates on the Linux operating system. Entourage uses Python3 for output process-
ing, and Snakemake [12] for pipeline management, enabling sequential execution and 
parallelisation. Users can adjust the settings of all methods and software dependencies 
through a single well-structured configuration file, facilitating adjustability, transfer-
ability, and reproducibility. All data processing steps are logged, and reported with their 
execution times and parameters used, ensuring complete traceability of the program’s 
behaviours.

Entourage offers four main sequence analysis functionalities, organised into separate 
modules: (i) read assembly module, (ii) target detection module, (iii) discovery mod-
ule, and (iv) intrasample variation profiling module (Fig. 1). By combining the first three 
modules in different ways, Entourage also provides four workflows for virus sequence 
detection, streamlining sequence analysis according to different needs with just a sin-
gle command line (Fig. 1 top right panel). Detailed descriptions of each sequence analy-
sis module and workflow are provided below. Table 1 shows an overview of Entourage’s 
functionalities compared to several other well-received, and well-established metagen-
omic programs currently available.

Read assembly module

The read assembly module enables de novo assembly from raw paired-end short reads 
using MEGAHIT [21], along with read cleaning with fastp [22], which has been shown 
to be 2–5 times faster than other similar tools such as Trimmomatic [23] or Cutadapt 
[24]. It also offers an option to subtract reads from a specified set of organisms using 
BWA-MEM2 [25] and SAMtools [26]. By using simulated viral metagenomes as bench-
marking datasets, studies have shown that MEGAHIT tends to produce more frag-
mented assemblies compared to other popular short-read assemblers, such as IDBA-UD 

Fig. 1 Overview of the four sequence analysis modules implemented in Entourage. Input files are indicated 
by blue outlines, while output files are indicated by green outlines. Sequence analysis processes are indicated 
by orange rectangles with the names of the program involved shown in square brackets. Optional inputs and 
processes are indicated by dashed outlines. PE – paired-end
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[27] and metaSPAdes [28], but it has a superior, or at least very similar, genome fraction 
recovery rate and a lower misassembly rate ([29], and Table S4 in [30]), and thus it was 
chosen here. The module also performs read back-mapping using BWA-MEM2 [25], and 
computes various useful assembly-related statistics using SAMtools coverage [26].

Target detection module

This module is designed for high-specificity virus sequence detection with prior knowl-
edge of potential viruses in the examined sample. By using BLASTN [31], this module 
searches for a predefined set of viruses within assembled sequences based on nucleotide 

Table 1 Entourage’s features compared to other currently available virus discovery software. Blank 
cells indicate that the feature is not explicitly mentioned in the software manual

Feature Entourage VirusSeeker 
[13]

SURPI 
[14]

GATK 
PathSeq 
[15]

VirFind 
[16]

VIP 
[17]

Lazypipe 
[18]

Genome 
Detective 
[19]

VIRify 
[20]

Functionalities

Read qual-
ity control

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Back-
ground 
sequence 
subtrac-
tion

✓ ✓ ✓ ✓ ✓ ✓ ✓

Read bin-
ning

✓ ✓ ✓ ✓ ✓

Sequence 
assembly:

✓ ✓ ✓ ✓ ✓ ✓ ✓

pre-
taxonomic 
identifica-
tion

✓ ✓ ✓ ✓ ✓

post-
taxonomic 
identifica-
tion

✓ ✓

Target 
detection

✓ ✓ ✓

Virus 
discovery

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Intrasam-
ple 
variation 
profiling

✓

Input flexibility

Use raw 
reads as 
input

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Use 
assembled 
sequence 
as input

✓ ✓ ✓

Software execution

Batch pro-
cessing

✓ ✓

Local 
execution

✓ ✓ ✓ ✓ ✓ ✓ ✓



Page 5 of 23Phumiphanjarphak and Aiewsakun  BMC Bioinformatics          (2024) 25:222  

sequence similarity, and assigns taxonomic groups to them based on their BLASTN top 
hit. Under default settings, the top hit alignment must cover at least 50% of the contig 
with a minimum percentage identity of 90% to be considered a positive hit.

To facilitate downstream analyses, this module generates two FASTA file outputs: one 
containing sequences with positive hits to target viral sequences, and another contain-
ing those without. Besides taxonomic assignments, this module additionally reports 
for each contig its length, and weighted average BLASTN-hit percentage identity (i.e. 

hit_length× %identity / hit_length  ), as a tab-delimited table. If Entourage 
is used to perform read assembly, the table will also include the number of supporting 
reads, back-mapping coverage, and average sequencing depth for each individual contig, 
aiding in result reliability assessment and interpretation.

Discovery module

This module enables sensitive virus sequence detection without requiring prior knowl-
edge, using an amino acid similarity-based searching method. Since protein sequences 
are generally more conserved than nucleotide sequences, this module offers increased 
sensitivity compared to the target detection module, enabling detection of sequences 
not only of known viruses, but also potentially novel viruses that are distantly related 
to the references used. The core search engine employed by this module is MMSeqs2 
taxonomy [32], which has demonstrated superior speed compared to CAT [33], which 
uses DIAMOND [34] at its core. Briefly, the program identifies open reading frames in 
input sequences, translates them, compares them against a reference protein sequence 
database, and then assigns an overall taxonomic identity (of various ranks) to each input 
sequence using an approximate dual BLAST-based last common ancestor strategy. Users 
need to prepare their own MMSeq2 taxonomic reference database to use this module.

One notable feature of MMseq2 taxonomy is that if an input sequence shows compa-
rable similarities (as measured by -log(E value)) to multiple reference sequences from 
multiple taxonomic groups, the program will assign it to the last common ancestor of 
that group. In addition to its speed, this capability makes MMSeq2 taxonomy attrac-
tive for virus discovery, as novel viruses can oftentimes show detectable similarities to 
multiple known reference viruses at low levels. In such cases, assigning them to high 
taxonomic ranks rather than simply to the taxonomic group of the best hit can be more 
appropriate.

After MMseq2 taxonomic assignment, the module selects contigs assigned under the 
virus domain “d_Viruses”, and computes their percentage genome completeness and 
quality score using CheckV [35]. Users need to prepare their own CheckV database for 
this. Sequence quality is divided into five tiers: “Complete”, “High-quality” (> 90% com-
pleteness), “Medium-quality” (50–90% completeness), “Low-quality” (< 50% complete-
ness), and “Not-determined” (no match against any CheckV reference genome with 
high enough similarity and any viral hidden Markov models (HMMs)). To facilitate 
downstream analyses, the program sorts viral contigs of different CheckV quality tiers 
into separate output FASTA files. Those that are annotated as non-viral or cannot be 
assigned into any taxonomic group by MMSeqs2 taxonomy are sorted into another sep-
arate sequence file. Similar to the target detection module, in addition to the CheckV 
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quality score, percentage genome completeness, and contig length, if Entourage is used 
for read assembly, this module also reports information on the number of supporting 
reads, back-mapping coverage, and average sequencing depth for each contig.

Intrasample variation profiling module

This module offers a streamlined procedure for computing sequence variations of a pre-
defined set of viruses known to be present within the analysed sample. First, the module 
maps input sequence reads onto the reference sequences using BWA-MEM2 [25] to cre-
ate a read alignment, and then uses SAMtools mpileup [26] to create a read pileup. Key 
default settings affecting BWA-MEM2 read mapping reliability and behaviours include 
(i) a seed length of 19, (ii) seed occurrences limited to 100, and (iii) ignoring reads with 
unmapped pairs. For SAMtools mpileup, these include (i) discarding anomalous read 
pairs, (ii) a minimum read mapping quality of 30, (iii) a minimum base quality of 30, and 
(iv) exclusion of reads flagged as “UPMAP”, “SECONDARY”, “QCFAIL”, or “DUP”.

The results are then parsed into a tab-delimited table, which can be analysed more 
readily compared to a Variant Calling Format file typically produced by standard vari-
ant callers. For each site, the results include the reference base, its overall sequencing 
depth, mean Phred base quality score, mean Phred read mapping quality score, forward 
and reverse read counts supporting A, T, C, G, deletion, and insertion variants, overall 
strand bias Χ2 test results, frequencies of each variant, and cumulative frequency of non-
major variants. For sites with multiple nucleotide variants and when variant calling is 
supported by both forward and reverse reads, the Χ2 test determines if the variant pro-
files supported by forward and reverse reads are significantly different. Otherwise, i.e. 
when there is only one sequence variant, or when sequencing information comes from 
either forward or reverse reads, the test reports if the distribution of the overall forward 
and reverse read counts are significantly different from a uniform distribution. Regard-
ing insertion variants, forward and reverse read counts of individual distinct insertion 
sequences are also reported, and following the convention, their overall frequencies are 
computed using the depth of the base position on their 5’ end. For deletion variants, 
depths of each individual deleted site are reported, computed based on reads spanning 
the deleted regions. This approach differs from those employed by many variant callers 
(e.g. LoFreq [36], and iVar [37]), which typically report depths of deletion regions only at 
their first 5’ end position.

To facilitate result interpretation, the module also generates a separate table contain-
ing just reliably detected polymorphic sites, which under default settings, are sites with 
(i) a mean Phred base score of ≥ 30, (ii) a mean Phred read mapping quality of ≥ 30, (iii) 
a sequencing depth of ≥ 100 × , (iv) at least one minor allele supported by ≥ 10 reads, 
and (v) a cumulative “supported” minor allele frequency of ≥ 5%. In addition, it produces 
a png figure illustrating the distribution of detected polymorphic sites, which can be 
readily used for publication. An interactive HTML version of the figure is also generated 
using the Plotly library [38] to facilitate detailed result inspection.

Four virus sequence detection analysis workflows

Entourage offers four end-to-end workflows designed to streamline virus sequence 
detection analysis with one command line (Fig.  1 top right panel). One combines the 
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read assembly module with the target detection module, facilitating the direct identifica-
tion of a predefined group of target viruses from mNGS data. Another workflow com-
bines the read assembly module and the discovery module together, allowing users to 
perform a more sensitive search for viral sequences directly from mNGS data without 
a predefined list of target viruses. The program also has a workflow that joins the read 
assembly module, the target detection module, and the discovery module together, ena-
bling users to comprehensively search for both target viruses and beyond directly from 
their mNGS data. In addition, for uses with pre-assembled sequences, the program pro-
vides a workflow to search for target viral sequences and beyond within their assembled 
sequences as well. These workflows simplify the process of virus sequence detection, and 
at the same time offer flexibility to accommodate various analytical needs.

Demonstration datasets

We illustrated the utility of Entourage for virus sequence detection using two publicly 
available mNGS datasets.

One dataset was raw sequence reads generated from HeLa cell culture samples spiked 
with four viruses, including Epstein-Barr virus (EBV), human respiratory syncytial virus 
(RSV), feline leukemia virus (FeLV), and human reovirus type 1 (REO1), published by 
Khan et al. [39] (Table S1). The viruses were spiked at concentrations of either 3 or 0.1 
genome copies per HeLa cell (referred to as 3 × and 0.1 × samples, respectively). Both 
DNA and RNA sequences were combined for the analysis demonstration. HeLa cells 
are known to harbour 10–50 subgenomic sequences of human papillomavirus type 18 
(HPV18) [40]; thus HPV18 sequences were also expected to be detected in this dataset 
with high sequencing depths. This dataset was used to demonstrate the read assembly—
target detection—discovery workflow.

The second dataset was preassembled mNGS contigs generated from four marine 
samples subjected to different filtration schemes; all were collected during the Tara 
Oceans expedition at Station 125 in the South Pacific Ocean at 3–7 m below the surface 
level (Table S1). A previous analysis revealed that these samples are complex, containing 
diverse phages [20]. This dataset was used to demonstrate Entourage’s capability to ana-
lyse preassembled sequences and to test the performance of the program, particularly 
the discovery module, against real-world data.

To demonstrate the functionality of Entourage’s intrasample variation profiling mod-
ule, we used it to analyse sequence data from a coronavirus disease 2019 (COVID-19) 
patient with chronic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infection (sample P01A0207) published by Wang et al. [41]. Read cleaning and removal 
of human and phiX174 reads were performed using Entourage’s read assembly module. 
SARS-CoV-2 contigs were identified by comparing the assembled sequences against the 
reference Wuhan-Hu-1 SARS-CoV-2 genome (accession number NC_045512.2) using 
BLASTN. We found that the methods implemented in Entourage successfully assembled 
a full-length complete genome of the virus, covering > 99% of the reference sequence. 
“N”s were added to the beginning and the end of the assembly to adjust the base posi-
tions to match those of the reference Wuhan-Hu-1 SARS-CoV-2 genome. To ensure that 
the assembly was correct, we remapped clean high-quality reads to the assembly using 
BWA-MEM2 [25], used SAMtools [26] to remove reads with mapping scores ≤ 50 from 
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the alignment, and created the major-variant sequence with iVAR [37] (i.e. having allele 
frequencies at all sites ≥ 50%). This sequence assembly and the clean reads were then 
analysed using the intrasample variation profiling module to detect polymorphic sites 
under default settings.

Performance benchmarking

The performance of Entourage in virus sequence detection was benchmarked against 
two popular pipelines, including Lazypipe [18] and VIRify [20], using Khan et al.’s data-
set. Both programs, like Entourage, offer a single command-line workflow for virus 
sequence detection, but their detection methods differ significantly.

Briefly, Lazypipe can perform read cleaning, background read subtraction, read assem-
bly, and virus sequence annotation (Table 1). For this analysis, Lazypipe v3.0 was used. 
MEGAHIT was selected for sequence assembly, and the pre-set strategy “vi.nt” was 
employed to detect virus sequences (i.e., virus sequences were identified and annotated 
by mapping the assembled contigs to viral sequences from the NCBI nt database using 
minimap2, and BLASTN); other options used were default options. Unexpected viral 
sequences detected by the program (lengths ≥ 400 bases) were validated using reciprocal 
BLASTN analyses against the entire NCBI nt database.

VIRify, on the other hand, only offers virus sequence discovery in assembled sequence 
data (Table  1). The program uses VirFinder [42], VirSorter [43], and PPR-Meta [44], 
to initially predict virus contigs, and then annotates the predicted virus contigs using 
a database of virus protein HMM profiles, ViPhOGs [20]. The program subsequently 
assigns the annotated contigs to a taxonomy group that has at least 2 ViPhOG hits, 
with ≥ 60% of all ViPhOG hits linked to that one particular taxon [20]. Here, VIRify 
v2.0.0 was used with default settings to analyse the pre-assembled contigs generated by 
the Entourage read assembly module.

Computational setup

Khan et al.’s dataset was analysed by Entourage, Lazypipe, and VIRify using a standalone 
computer running Ubuntu 20.04.2 LTS with 16 cores and 128 GB of memory available 
(see the Results section for the computational resources used). For the analysis of the 
Tara Oceans preassembled data and the demonstration of the intrasample variation 
profiling, we used a high-performance computing system running Ubuntu 20.04.2 LTS 
under the Slurm Workload Manager with 64 cores and 512 GB of memory. The analysis 
of the Tara Oceans preassembled data by the discovery module took 14.40  h to com-
plete. For the demonstration of the intrasample variation profiling, the read assembly 
module took 0.07 h, and the intrasample variation profiling module took 0.10 h.

Results
Demonstration of virus sequence detection with the read assembly—target detection—

discovery workflow

To demonstrate Entourage’s capability as a comprehensive workflow for virus sequence 
detection, we applied the read assembly—target detection—discovery workflow to ana-
lyse an mNGS dataset generated from human HeLa cell culture samples spiked with four 
viruses (EBV, RSV, FeLV, and REO1) at concentrations of 3 and 0.1 genome copies per 
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HeLa cell (designated as 3 × and 0.1 × samples, respectively) published by Khan et  al. 
[39]. Since HeLa cells are known to harbour HPV18 sequences [40], HPV18 sequences 
were thus expected to be found within this dataset as well. The reference database for 
the target detection analysis included 6560 “complete genomes” or “complete sequences” 
of the five expected viruses obtained from the NCBI nt database (EBV: 482 sequences, 
RSV: 5,126, FeLV: 24, REO1: 601, and HPV18: 327; Table S2). For the subsequent discov-
ery analysis, the entire NCBI nr database was used as the reference database.

The read assembly module was used to clean the raw reads, subtract human and 
phiX174 reads, and generate assembled contigs. For each contig, the module reported 
its length, the number of supporting reads, back-mapping coverage, and average 
sequencing depth, facilitating assessment of read assembly quality (Supplementary File 
1). Overall, the analysis revealed that < 0.5% of the high-quality reads were non-human 
/ non-phiX174, and the program generated a total of 6,706 contigs with a minimum 
length of 400 bases from these reads across the two samples under default settings.

The target detection module successfully detected all five expected viruses in the 
3 × sample, identifying 25 contigs as targeted viral sequences, showing percentage iden-
tities against target reference best hits between 93.64 and 100.00% (Table 2). In addition 
to taxonomic assignments, the raw outputs from this module included various statistics 
(see Methods), facilitating result reliability assessment and interpretation (Supplemen-
tary File 1). Some of the outputs are described and discussed below.

For the four spiked viruses, the numbers of supporting reads and depths of the 
detected contigs ranged between 19–8,673 reads and 4.69–105.03 × , respectively, while 
those of HPV18 were between 2,130–144,366 reads and 201.84–5,782.25 × , respec-
tively. These much greater sequencing depths of HPV18 sequences were expected given 

Table 2 Summary of the target detection module outputs from Khan et al.’s dataset analysis.

See Supplementary File 1 for raw outputs
* length weighted average. See sequencing depth of each individual segment in Table S3
† estimated mapping clean non-human / non-phiX174 reads against selected reference sequences (Table S3)

Virus Overall 
sequencing 
depth ( ×)†

# of contigs Contig 
lengths 
(bases)

Contig 
supporting 
reads

Contig 
sequencing 
depths ( ×)

% identities 
against target 
reference best 
hits

3 × sample

EBV 16.22 7 2349–42,533 495–6558 15.53–105.03 99.25–100.00

RSV 57.59 1 15,407 8673 55.80 99.97

FeLV 6.21 3 649–4093 56–357 8.37–8.72 97.17–100.00

REO1 (11 seg-
ments)

51.98* 
(8.49–77.90)

11 407–3920 19–2697 4.69–77.83 93.64–100.00

HPV18 3,651.84 3 1053–2761 2130–144,366 201.84–
5782.25

99.96–100.00

0.1 × sample

EBV 0.45 3 427- 977 12–44 2.80–5.21 100.00–100.00

RSV 4.38 7 407–1176 13–180 3.23–17.93 99.77–100.00

FeLV 0.55 – – – – –

REO1 (11 seg-
ments)

0.47* 
(0.05–0.82)

– – – – –

HPV18 7,888.71 2 1262–5868 7514–402,649 596.71–
6844.17

99.96–100.00
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that they are endogenous virus sequences in the HeLa cells. The overall virus sequenc-
ing depths estimated using a direct read-mapping approach ranged between 6.21 and 
57.59 × for the four spiked viruses, and 3651.84 × for HPV18 (Table  S3) falling within 
the range of individual contigs’ sequencing depths reported by Entourage. Altogether, 
these results support that the methods implemented in Entourage are sensitive, and still 
remain effective even when the average sequencing depth is in single digits.

For the 0.1 × sample, the module reported the detection of EBV (overall sequencing 
depth = 0.45 ×), RSV (4.38 ×), and HPV18 (7,888.71 ×) sequences, but did not detect 
FeLV (0.55 ×) and REO1 (0.05–0.82 ×) sequences (Table 2, Table S3, and Supplementary 
File 1). These findings revealed a decline in the performance of the methods used by our 
program when the sequencing depth is lower than 1 × . Indeed, genome assembly under 
such conditions is highly challenging, expected to produce highly fragmented and short 
contigs, explaining the results.

In this workflow, contigs not identified as target virus sequences are then passed to the 
discovery module. Briefly, the discovery module determines the taxonomic identity of 
input sequences using MMseq2 taxonomy [32], and computes the percentage genome 
completeness and quality score of each sequence annotated as viral by using CheckV 
[35], as well as reports various assembly-related summary statistics if the user employs 
Entourage for read assembly, allowing for thorough result assessment and examination. 
The outputs are summarised and discussed below.

Following the target detection analysis, the discovery module identified 3 and 9 addi-
tional contigs as viral sequences in the 0.1 × and 3 × samples, respectively, each contain-
ing at least one CheckV viral protein-coding sequence. Among these, one was annotated 
as a REO1 sequence and one as a HPV18 sequence (Table 3, and Supplementary File 1). 
Further investigation revealed that the REO1 sequence was missed by the target detec-
tion module as it showed only 89% identity to the best-hit target reference, falling below 
the default 90% threshold. For the HPV18 sequence, its target reference best-hit showed 
less than 50% contig coverage, and thus it was not reported by the target detection mod-
ule; however, we found that the rest of the sequence actually also showed high similarity 
to some papillomavirus sequences in the NCBI database, but they were not included in 
the target reference database as their sequence records were not annotated as “complete 
genomes” or “complete sequences”. The remaining 10 contigs were identified as short 
sequences of phages (401–1173 bases), with supporting reads and sequencing depths 
ranging between 9 and 50 reads, and 1.99–4.73 × , respectively. Reciprocal BLASTN 
analyses against the entire NCBI nt database gave results consistent with those produced 
by Entourage (Table 3). Combined, these sequences were thus likely contaminated phage 
sequences in the samples. These results showcase the utility and high-sensitivity and 
specificity of our pipeline for virus discovery, as well as highlight the utilisation of both 
the target and discovery modules to maximise virus sequence detection capability.

Compared to two highly popular virus sequence detection pipelines, including 
Lazypipe [18] and VIRify [20], we found that Entourage is equally, if not more, sensi-
tive in detecting virus sequences. For the 3 × sample, both Entourage and Lazypipe 
accurately detected sequences of all five expected viruses at the species level, whereas 
VIRify only detected sequences of EBV and RSV at the genus level, and sequences 
of REO1 at the subfamily level, but did not detect sequences of FeLV and HPV18 
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(Table  4). For the 0.1 × sample, while Entourage detected EBV, RSV, and HPV18 
sequences, Lazypipe detected only EBV and RSV sequences, and VIRify did not 
detect any viral sequences (Table 4).

In addition, while VIRify did not report any unexpected viruses in this dataset, 
Lazypipe detected some unexpected viral sequences in both the 3 × and 0.1 × sam-
ples, similar to Entourage, including one Orthopneumovirus bovis sequence (which 
belongs to the same genus as RSV) and several other viral sequences (Table  4, and 
S4). However, unlike the results generated by Entourage (Table  3), none of these 
results by Lazypipe were corroborated by reciprocal BLASTN analyses, which instead 
suggested that most of them were bacterial sequences, and the one Orthopneumo-
virus bovis sequence was more likely a misidentified RSV sequence (Table S4). These 
results indicated that Entourage outperforms Lazypipe in terms of taxonomic assign-
ment specificity and accuracy.

Regarding computation resource requirement (evaluated on a standalone computer 
with 16 cores and 128 GB of memory, Table 4), Lazypipe required 16.75 h, while Entou-
rage was slightly faster, completing the analysis in 15.06 h. VIRify, which only performed 
sequence identification and taxonomic assignment, finished in 0.92  h. Entourage had 
the largest memory footprint, reaching a maximum memory usage of 116.00  GB, fol-
lowed by Lazypipe at 73.02 GB, and VIRify at 1.61 GB. Inspection of Entourage’s log files 
revealed that this large memory consumption was due to the discovery analysis, which 
employed the entire NCBI nr database as a reference. The read assembly and target 
detection modules, on the other hand, did not require large memory, utilising only 23.42 
and 0.25 GB of memory, respectively.

Virus sequence detection performance against a real‑world dataset

Entourage is highly flexible, allowing for multiple entry points in sequence analysis, and 
can also be used to analyse preassembled sequence data. To demonstrate this capability 
and at the same time showcase the program’s performance against real-world data, we 
used the discovery module to analyse preassembled sequences from the Tara Oceans 
expedition, previously analysed by VIRify [20].

Table 4 Performance comparison of Entourage, Lazypipe, and VIRify for virus detection in Khan 
et al.’s dataset

*  Expected viruses – EBV, RSV, FeLV, REO1, HPV18
†  VIRify identifies viral sequences at the genus level and above
‡  VIRify does not include read cleaning and de novo assembly steps

Entourage Lazypipe VIRify

3 × sample 0.1 × sample 3 × sample 0.1 × sample 3 × sample 0.1 × sample

Number of groups 
of expected viruses 
 detected*

5 3 5 2 3† –

Number of groups of 
unexpected viruses 
detected

2 6 5 8 – –

Total time (hours) 15.06  16.75  0.92‡

Maximum memory 
usage (GB)

116.00  73.02  1.61
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Table 5 Virus sequences detected in the Tara Oceans dataset

Taxon Viral contigs detected by Entourage VIRify

CheckV quality score

Complete High/medium/low 
quality

Total

Uroviricota 16,664 16,664

 Caudoviricetes 16,664 16,664 290

  Crassvirales 4 4

  Methanobavirales 2 2

    Anaerodiviridae 2 2

  Unclassified order 16,658 16,658

    Ackermannviridae 1 1

    Arenbergviridae 5 5

    Assiduviridae 1 1

    Autographiviridae 402 402 5

    Demerecviridae 15 15

    Drexlerviridae 6

    Herelleviridae 5 5 25

    Kyanoviridae 4165 4165

    Pachyviridae 1 1

    Salasmaviridae 3 3

    Stanwilliamsviridae 2 2 9

    Straboviridae 5 5 216

    Zobellviridae 18 18

Nucleocytoviricota 1138 1138

 Megaviricetes 1094 1094 127

  Algavirales 335 335 10

    Phycodnaviridae 335 335 10

  Imitervirales 703 703 207

    Allomimiviridae 34 34

    Mimiviridae 366 366 107

    Schizomimiviridae 277 277

  Pimascovirales 25 25

    Iridoviridae 16 16

    Marseilleviridae 9 9

 Pokkesviricetes 3 3

  Chitovirales 3 3

    Poxviridae 3 3

Phixviricota 1 21 22

 Malgrandaviricetes 1 21 22

  Petitvirales 1 21 22

    Microviridae 1 21 22

Preplasmiviricota 10 10

 Maveriviricetes 8 8

  Priklausovirales 8 8

    Lavidaviridae 8 8

 Polintoviricetes 1 1

  Orthopolintovirales 1 1

    Adintoviridae 1 1

 Tectiliviricetes 1 1

  Vinavirales 1 1

    Corticoviridae 1 1
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Of the 1,534,855 assembled sequences, the discovery module annotated 30,232 as 
viral sequences with a CheckV quality score of the “Low-quality” tier or higher (Table 5 
and Supplementary File 2). Among these, 10 were determined as CheckV complete 
sequences, while 11, 64, and 30,147 sequences had CheckV quality scores of “High-
quality”, “Medium-quality”, and “Low-quality”, respectively. Of these sequences, 17,836 
sequences were classified into five distinct phyla, with most of the sequences classified 
to the Uroviricota phylum (n = 16,664). The remaining 12,396 sequences were classi-
fied as viral, but MMSeq2 taxonomy could not further classify them into any lower taxa. 
Entourage detected all viral taxa detected by VIRify, except for the Drexlerviridae family, 
and notably vastly broadened the diversity of detected viruses to include three additional 
phyla and five classes.

Among the sequences not previously reported in [20] were 10 sequences detected as 
complete viral sequences by our program, including one Microvidae virus sequence, one 
Cressdnaviricota virus sequences, and eight sequences of unclassified viruses (Table 5). 
Upon searching these sequences against the entire NCBI nr database using BLASTP, we 
found that six of them likely represent sequences of novel phages from various taxo-
nomic groups, containing structural protein-coding regions showing relatively low to 
medium percentage identities to known phage’s proteins (Table 6). In addition to high-
lighting the program’s flexibility, these results further underscore Entourage’s capability 
to detect novel viruses.

Polymorphic site detection with Entourage

As an example of profiling intrasample variation with Entourage, we analysed high-
depth sequence data from a patient with chronic SARS-CoV-2 infection published by 
Wang et al. [41], which had been reported to have a relatively high level of intra-host 
sequence variation. Under the following criteria: (i) base quality > 20, (ii) sequencing 
depth of paired-end mapped reads ≥ 10, (iii) > 5 reads supporting the minor allele, (iv) 
minor allele frequency ≥ 5%, (v) strand bias ratio of reads with the minor allele and reads 
with major allele less than ten-fold, and (vi) having just one minor allele, they reported 7 
polymorphic sites and 1 variant (but non-polymorphic) site with respect to the Wuhan-
Hu-1 sequence.

It has been suggested that, precision in variant frequency estimation generally scales 
with sequencing depth, and to reliably estimate variant frequency, the overall sequenc-
ing depth of a polymorphic site should be 10 times the reciprocal of the variants’ fre-
quency [45]. This can be mathematically translated to that minor variants should have at 

Table 5 (continued)

Supplementary File 2 shows the full report of discovered viruses by the discovery module

Taxon Viral contigs detected by Entourage VIRify

CheckV quality score

Complete High/medium/low 
quality

Total

Cressdnaviricota 1 1 2

Unclassified viruses 8 12,388 12,396

Total 10 30,222 30,232 417
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least 
(

1/f × 10
)

× f  = 10 supporting reads to be considered well-supported; where f  is 
the variant frequency. As such, under default settings, our module reports polymorphic 
sites with a minimum base and read mapping quality score of 30, sequencing depth of 
100 × , having at least one minor allele supported by at least 10 reads, and a cumulative 
minor allele frequency of 5% excluding unsupported minor alleles (i.e. having < 10 sup-
porting reads). However, these thresholds can be adjusted to be more (or less) conserva-
tive to best suit specific analytical needs. In addition to these, various statistics related 
to base and read mapping quality, variant supporting read counts and frequencies, and 
strand bias are reported as a tab-delimited table to facilitate result assessment.

Using the major-variant sequence of the virus in the sample as the reference, Entou-
rage detected 40 polymorphic sites in the virus (Fig. 2), with sequencing depths rang-
ing between 159 and 22,682 × , mean Phred base quality scores ranging between 36 
and 45, and all having mean Phred mapping quality scores of 60 (capped by BWA-
MEM2). Based on Χ2 tests and Bonferroni multiple testing correction, Entourage 
reported that only 8 sites showed no overall strand bias (i.e., variant profiles sup-
ported by forward and reverse reads were not significantly different at the standard 
p-value threshold of 0.05). Figure 3 displays an example of a publication-ready figure 

Table 6 Ten complete viral sequences detected by Entourage’s discovery module in the Tara 
Oceans dataset

Sequence Taxon assigned 
by Entourage 
discovery 
module

Protein 
length 
(aa)

BLASTP best hit 
protein

Protein 
identity 
(%)

Contig 
coverage 
(%)

Organism of the 
BLASTP best hit 
protein

CEVC01358167.1 Prokaryotic 
dsDNA virus sp.

136 hypotheti-
cal protein 
(QDP59218.1)

100 100 Prokaryotic 
dsDNA virus sp.

CEVA01064070.1 Prokaryotic 
dsDNA virus sp.

320 hypotheti-
cal protein 
(QDP53221.1)

100 100 Prokaryotic 
dsDNA virus sp.

CEUT01008241.1 Prokaryotic 
dsDNA virus sp.

953 hypotheti-
cal protein 
(QDP50869.1)

100 100 Prokaryotic 
dsDNA virus sp.

CEUT01067160.1 Prokaryotic 
dsDNA virus sp.

1620 hypotheti-
cal protein 
(QDP59032.1)

100 100 Prokaryotic 
dsDNA virus sp.

CEUT01145058.1 Unclassified virus 312 putative 
capsid protein 
(AXH74836.1)

63.18 91 Cressdnaviricota 
sp.

CEUT01007640.1 Unclassified virus 174 hypotheti-
cal protein 
(AGA18343.1)

61.14 100 Uncultured 
marine virus

CEVA01513457.1 Microviridae sp. 286 DNA pilot 
protein 
(AXL15467.1)

45.77 46 Microviridae sp.

CEUT01145857.1 Cressdnaviricota 361 putative 
capsid protein 
(AXH76634.1)

45.48 94 Circoviridae sp.

CEVA01237671.1 Circular genetic 
element sp.

137 hypotheti-
cal protein 
(AXH79062.1)

35.21 99 Circular genetic 
element sp.

CEUT01055600.1 Prokaryotic 
dsDNA virus sp.

2332 hypotheti-
cal protein 
(QDP64034.1)

32.77 99 Prokaryotic 
dsDNA virus sp.
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Fig. 2 Polymorphic sites in SARS-CoV-2 from a chronic COVID-19 patient (sample P01A0207) published 
by Wang et al. [41]. Sites detected by our intrasample variant profiling module are shown at the top, and 
those reported by Wang et al. [41] are shown at the bottom. Lighter colours indicate strand bias. Only 
well-supported minor alleles (i.e., those with at least 10 supporting reads) are shown

Fig. 3 (Top) publication-ready png figure generated by Entourage for visualising the detected polymorphic 
sites, and (bottom) interactive HTML versions of the output, zoomed to show details of polymorphic sites 
at the positions 680–700 (left) and 21,700–22,200 (right). Vertical stacked colour bars indicate the detected 
polymorphic sites, with each colour corresponding to a different nucleotide variant, and lighter colours 
indicate strand bias. The height of each colour bar indicates the proportion of each nucleotide variant (left 
axis). The dotted line indicates the site-wise sequence depth on a logarithmic scale (right axis)



Page 17 of 23Phumiphanjarphak and Aiewsakun  BMC Bioinformatics          (2024) 25:222  

generated by Entourage, along with interactive versions of the figure (Supplemen-
tary File 3) for magnifications of some specific positions. Supplementary File 4 pro-
vides the raw outputs from the program and details of polymorphic sites identified by 
Entourage, enabling further detailed analyses and examination of the detected poly-
morphic sites if desired. 

To highlight some key results, we found that Entourage successfully detected all 
7 polymorphic sites reported by Wang et  al. [41] with comparable minor allele fre-
quency estimates (Fig. 2), and 3 of these sites showed strand bias under the Entourage 
default criteria. At site 11,083, besides the minor T allele variant (20.98%, 2,442 sup-
porting reads) reported by Wang et  al. [41], Entourage also identified an additional 
deletion variant (5.21%, 606 supporting reads) at this position. Moreover, Entourage 
detected 9 additional contiguous polymorphic sites (sites 686–694) characterised 
by having only one major minor deletion variant (5.06–6.33%, 703–724 supporting 
reads), which we therefore believe is a single contiguous 9-base deletion variant that 
was also previously overlooked by the original study. Sites 306, 29,865, and 29,871 
were also identified by Entourage as polymorphic sites with only one major well-sup-
ported minor allele (Fig. 2), but their number of forward and reverse reads support-
ing their minor allele differed by more than 10 folds (Supplementary File 4), possibly 
explaining why they were not reported by Wang et al. [41]. The remaining polymor-
phic sites showed multiple alternative alleles, explaining the remaining differences 
in our results. These results illustrate how Entourage outputs can facilitate detailed 
result inspection.

Discussion
Metagenomic sequencing is a powerful tool for studying viromes, but sequence data 
analysis can be complex. Here, we introduce Entourage, a comprehensive all-in-one bio-
informatics tool for short-read sequence assembly, contig-based virus sequence detec-
tion, and intrasample sequence variation profiling (Fig.  1, and Table  1). The program 
is versatile, enabling both hypothesis-driven virus sequence detection with the target 
detection module, and exploratory virus discovery analysis with the discovery mod-
ule. Entourage offers multiple entry points to accommodate different input data types, 
and provides several streamlined workflows for automated, end-to-end virus sequence 
detection analysis with different analytical needs. The results produced by the program 
are highly comprehensive, facilitating result quality control and reliability assessment. 
Additionally, Entourage supports batch processing, allowing efficient handling of a large 
number of datasets by automating data processing with preconfigured parameters.

Two distinct viral sequence detection modules are implemented in Entourage: the 
target detection module, and the discovery module. By using BLASTN [31] as a search 
engine, the target detection module offers a relatively faster search for viral sequences 
showing high nucleotide similarity to the user-defined target viral sequences. This mod-
ule is particularly suitable for investigations where prior knowledge of the viruses pre-
sent in the samples is available. The discovery module, on the other hand, allows for viral 
sequence discovery without prior knowledge of the viruses present in the sample. It uses 
MMSeqs2 taxonomy [32] as its core search engine, detecting viral sequences based on 
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protein sequence similarity searching. Both modules require assembled sequences as 
input, necessitating users to perform sequence assembly, either by using the read assem-
bly module provided within Entourage or alternative software tools. Although this pre-
requisite may impose greater computational time and resource demands compared to 
other programs, it is expected that this issue will become increasingly less of a concern 
as computer hardware and software continue to advance.

One notable advantage of the contig-based approach to virus sequence detection (as 
opposed to read-based approaches, see below) is that it can offer a relatively higher sen-
sitivity for virus sequence detection, for instance, by enabling detection of nucleotide 
regions with low similarity to viruses in the reference database but of significant lengths. 
In addition, by examining assembled sequences, it becomes possible to identify complete 
open reading frames, and infer their corresponding full-length protein products. Since 
protein sequences are generally more conserved than nucleotide sequences, this method 
can potentially offer greater sensitive than nucleotide similarity searching, allowing for 
detection of viruses that are distantly related to those in the reference database. Indeed, 
this approach has facilitated the discovery of many novel viruses [46–48]. Moreover, var-
ious in-depth sequence analyses, such as detailed virus characterisation, exploration of 
genome structural variations, functional analysis, and phylogenetic studies, often neces-
sitate viral sequence assemblies. Therefore, sequence assembly should not be regarded 
as excessive in this context, but as a crucial step that enhances virus detection, and at the 
same time facilitates comprehensive downstream analyses of the detected viruses.

To illustrate Entourage’s utility as a streamlined pipeline for virus sequence detection, 
we applied the read-assembly—target detection—discovery workflow to analyse raw 
mNGS data generated from HeLa cell culture samples spiked with viruses previously 
published by Khan et  al. [39] (Tables  2 and 3, and Supplementary File 1). The results 
were compared against those generated by two popular virus discovery tools, includ-
ing Lazypipe, and VIRify (Table 4, and S4). Also, to demonstrate the program’s flexibil-
ity and performance with real-world data, we applied the discovery module to search 
for virus sequences in a preassembled Tara Oceans dataset (Tables 5 and 6, and Supple-
mentary File 2). Overall, our findings indicate that the methods implemented in Entou-
rage work well for virus sequence detection, even when the virus sequencing depth may 
be in single digits, and they can be used to discover novel viruses effectively. By using 
Khan et al.’s dataset as a benchmarking dataset, we showed that Entourage has greater 
sensitive in detecting virus sequences than Lazypipe and VIRify especially those with 
low sequencing depths, with more accurate and precise taxonomic assignments overall 
(Table 4 and S4). In addition, we showcased how detailed outputs generated by Entou-
rage can be meaningfully interpreted and are useful for result quality control and reli-
ability assessment.

Of note, we observed a decline in Entourage’s performance for virus sequence detec-
tion when the overall virus sequencing depth dropped below 1 × . These results were 
perhaps anticipated, as genome assembly becomes highly challenging when certain 
parts of the genome regions are missing, resulting in highly fragmented and short con-
tigs. In such cases, read-based methods may be more preferable. These methods might 
involve direct mapping of sequence reads to a diverse set of virus reference sequences 
(e.g., VIP [17], Genome Detective [19], and MetaShot [49]), or comparing the nucleotide 
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k-mer profiles of sequence reads to a k-mer profile database generated from a wide 
array of sequences (e.g., Bracken [50], Kraken2 [51], and CLARK [52]). In addition, read 
sequences covering coding regions, in part or in whole, can be used for a more sensi-
tive read-based search at the amino acid level (e.g. BLASTX [31], TBLASTX [31], DIA-
MOND [34], UBLAST/USEARCH [53], and Kaiju [54]). While it has been shown that 
read-based methods often fall short in virus discovery, for instance, an analysis of marine 
viromes reported that up to 91% of the metagenomic reads generated from marine sam-
ples could not be taxonomically identified based on sequence similarity to known taxa 
even when BLASTX was used [55], these methods may offer advantages when sequenc-
ing depths are very low.

We also observed that, with short reads, genome assemblies of some viruses, par-
ticularly those with large genomes, can still be fragmented even with adequate 
sequencing depth. For example, while our pipeline could recover 93% of the EBV 
genome from the spiked 3 × sample, its assembly was found to consist of 7 contigs 
instead of just one single contiguous sequence even with an overall sequencing depth 
of 16.22 × . This highlights a well-known limitation of short-read sequence de novo 
assembly, especially for large genomes with repetitive elements, and the importance 
of thorough result examination, and verification. Long-read sequencing and hybrid 
assembly may offer solutions to this problem, potentially allowing for more accurate 
and more contiguous assembled sequences. While Entourage currently does not sup-
port long-read and/or hybrid assembly, the target detection and discovery modules 
can be independently executed on assembled sequence data. Thus, users can assem-
ble their own (long-read and short-read) sequences (should they have them) using 
other bioinformatics tools such as metaSPAdes [48], metaviralSPAdes [49], metaFlye 
[50], or viralFlye [51], and subsequently use our program to analyse the assembled 
sequences in FASTA format. This approach may help improve the recovery of large 
and more complete virus genomes.

In the broader context of virus discovery and detection, the choice of reference 
database can significantly impact result reliability. Horizontal gene transfers between 
viruses and cellular life forms are well documented [56, 57]. Also, while the process of 
mutation is random, natural selection is not, and thus, at least in theory, convergent 
evolution has the potential to cause non-viral sequences to look somewhat like viral 
sequences even in the absence of gene transfers (i.e. in this context, showing detect-
able sequence similarities and/or E-values that are much lower than 1 in sequence 
searches). As such, if the reference database contains just viral sequences, chances 
are that some non-viral sequences could be systematically incorrectly identified as 
viral sequences, especially with highly sensitive search engines. Indeed, our results 
revealed that, with a virus-only reference database, Lazypipe can sometimes misi-
dentify bacterial sequences (as suggested by reciprocal BLASTN analyses against the 
entire NCBI nt database) as viral sequences (Table S4). Thus, with the discovery mod-
ule, we recommend using the entire NCBI nr database as the reference database to 
minimise false positives, especially with diverse samples. Indeed, with this approach, 
we demonstrated that Entourage did not show these kinds of false-positive calls. In 
addition, since virus taxonomy is still not complete and is still evolving [58], and 
that the taxonomic assignments by MMSeq2 taxonomy relies heavily on the NCBI 
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taxonomy tree, we recommend users to regularly update the tree of the MMSeq2 
database to ensure accurate taxonomic assignments.

Analysis of mNGS data also enables intrasample variation profiling. We showed that 
Entourage can effectively quantify virus intrasample sequence variation. As shown in 
the Result section, this module generates comprehensive outputs that can help with 
result quality assessment and interpretation. In addition, to the best of our knowl-
edge, Entourage is the first program to offer a single-step procedure form analysing 
mNGS data to produce intrasample variation profiles in a tabular format, detail-
ing site-wise compositions of all bases and indels, to generating publication-quality 
figures illustrating the results. This information can reveal new mutations and/or 
coexistence of multiple virus variants, enabling one to gain a deeper insight into the 
dynamics of viral populations within a single sample.

Availability and requirements

Project name: Entourage
Project home page: https:// codeb erg. org/ CENMIG/ Entou rage
Operating system: Linux
Programming language: Bash and Python
Other requirements: Python3.10, Snakemake, and other third-party software 
like fastp, MEGAHIT, BLAST, MMseq2, etc. Check the manual for a complete list 
(https:// codeb erg. org/ CENMIG/ Entou rage# depen dency- insta llati on).
License: MIT
Any restrictions to use by non‑academics: None

Abbreviations
PCR  Polymerase chain reaction
mNGS  Metagenomic next-generation sequencing
EBV  Epstein-Barr virus
RSV  Human respiratory syncytial virus
FeLV  Feline leukemia virus
REO1  Human reovirus type 1
HPV18  Human papillomavirus type 18
COVID-19  Coronavirus disease 2019
SARS-CoV-2  Severe acute respiratory syndrome coronavirus 2
HMM  Hidden Markov model
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Additional file1: Raw outputs generated by Entourage from the analysis of Khan et al.’s dataset, containing 6 tables. 
These include (i) read cleaning results, (ii) read subtraction results, (iii) read assembly statistics, (iv) read back-mapping 
results, (v) the reports from the target detection module, and (vi) the report from the discovery module.

Additional file2: Report file generated by Entourage from the analysis of the Tara Oceans dataset using the discovery 
module.

Additional file3: Interactive version of the polymorphic site graph (Figure 2) in HTML format generated by Entourage 
from the polymorphic site detection analysis of SARS-CoV-2 from a chronic COVID-19 patient (sample P01A0207) 
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Additional file4: Report outputs generated by Entourage’s intrasample variation profiling module from the analysis 
of SARS-CoV-2 from a chronic COVID-19 patient (sample P01A0207) published by Wang et al., containing 2 tables. 
These include (i) nucleotide variant profiles of all sites, and (ii) nucleotide variant profiles of polymorphic sites only.

Additional file5: Table S1 Dataset compositions and sources. Table S2 Reference sequences used in the analysis of 
Khan et al.’s dataset with the target detection module. Table S3 Average mapping coverages and depths of viruses 
in Khan et al.’s dataset. Table S4 Reciprocal BLASTN results for unexpected viral sequences detected in Khan et al.’s 
dataset by Lazypipe. 
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