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Abstract 

Promoters are essential elements of DNA sequence, usually located in the immedi-
ate region of the gene transcription start sites, and play a critical role in the regulation 
of gene transcription. Its importance in molecular biology and genetics has attracted 
the research interest of researchers, and it has become a consensus to seek a com-
putational method to efficiently identify promoters. Still, existing methods suffer 
from imbalanced recognition capabilities for positive and negative samples, and their 
recognition effect can still be further improved. We conducted research on E. coli pro-
moters and proposed a more advanced prediction model, iProL, based on the Long-
former pre-trained model in the field of natural language processing. iProL does 
not rely on prior biological knowledge but simply uses promoter DNA sequences 
as plain text to identify promoters. It also combines one-dimensional convolutional 
neural networks and bidirectional long short-term memory to extract both local 
and global features. Experimental results show that iProL has a more balanced 
and superior performance than currently published methods. Additionally, we con-
structed a novel independent test set following the previous specification and com-
pared iProL with three existing methods on this independent test set.
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Introduction
Promoters are important components of the DNA sequence, ranging from tens to thou-
sands of base pairs in length. They are usually located in the vicinity of the gene TSS [1]. 
The promoter has a crucial role in regulating the activation or repression of transcrip-
tion of specific genes in biological cells by binding to RNA polymerase to ensure that 
DNA transcription proceeds normally. In bacteria, for instance, cells regulate their tran-
scription programs by adjusting RNA polymerase activity and altering the combination 
of promoters to which RNA polymerase can bind, thereby adapting to changing environ-
ments [2]. In eukaryotes, promoters consist of three promoter regions: core promoter, 
proximal promoter, and distal promoter [3]. The core promoter is the smallest pro-
moter region, and the TATA-box is one of its most prominent elements. In prokaryotes, 
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functionally specific σ factors have varying degrees of preference for different promot-
ers, and σ factors and RNA polymerases recognize specific promoters and bind specific 
regions of the promoter to initiate transcription [4, 5].

In the past decade, computational methods and wet experiments have commonly 
identified E. coli promoters. However, with the rapid development of high-throughput 
sequencing technology, access to vast amounts of gene sequences has exploded. The 
time-consuming and expensive experimental methods have been brutal to support the 
processing of biological sequence data of this magnitude. Therefore, the search for a fast 
and efficient computational method for accurately identifying promoters has become 
the current research focus among many researchers in bioinformatics. According to sta-
tistics, more than 50 promoter benchmark datasets have been published since 2000, and 
there are also hundreds of computational methods for prokaryotic or eukaryotic pro-
moter identification [6]. Overall, these computational methods can be roughly classi-
fied into three categories according to the tasks: promoter identification, promoter type 
identification, and promoter strength identification.

Some researchers have developed prediction models to identify σ 70 promoters, such as 
IBPP [7] based on evolutionary patterns and iPro70-PseZNC [8] based on pseudo nucle-
otide compositions. There are also two methods based on combining multiple features, 
namely70ProPred [9] and Sigma70Pred [10]. Other researchers have started to propose 
prediction models for identifying promoters and their type or strength. For example, 
computational methods such as iPromoter-2L [11], MULTiPly [12], iPromoter-BnCNN 
[13], iPro2L-PSTKNC [14], pcPromoter-CNN [15] and Expositor [16], as well as the 
location-based feature PPred-PCKSM [17] and the multi-source feature fusion-based 
PredPromoter-MF(2L) [18], predicted promoter types. In addition, Xiao et al. presented 
a benchmark dataset and the first two-layer prediction model iPSW(2L)-PseKNC, for 
predicting promoters and promoter strengths in 2019 [19]. This two-layer prediction 
model first uses PseKNC for feature encoding and then uses support vector machine 
(SVM) for prediction. Subsequently, from 2019 to 2022, researchers successively pro-
posed computational methods with better prediction based on the dataset constructed 
by Xiao et al.: CNN-FastText [20], iPSW(PseDNC_DL) [21], iPromoter-ET [22], dPro-
moter-XGBoost [23] and BERT-Promoter [24]. The model CNN-FastText classifies pro-
moters via deep learning and a combination of continuous FastText N-grams. The model 
iPSW(PseDNC_DL) uses convolutional neural networks to automatically learn sequence 
features and combines pseudo dinucleotide composition (PseDNC) to identify promot-
ers and their strength. The method iPromoter-ET Identify promoters and their strength 
by extremely randomized tree-based feature selection. The method dPromoter-XGBoost 
uses four feature extraction methods and analysis of variance ANOVA for feature selec-
tion, and finally XGBoost for recognition. The BERT-Promoter method encodes DNA 
sequences using the BERT pre-training model, uses SHAP for feature selection, and uses 
different machine learning methods to predict promoter and promoter strength.

In our study, we have studied the sequence recognition of E. coli promoters in detail. 
We attempted two pre-trained models based on the attention mechanism of the NLP 
field, BERT [25] and Longformer [26], as well as different CNN structures, to propose 
a deep learning framework based on Longformer pre-trained model, iProL. In iProL, 
DNA sequences are treated as natural sentences and tokenized as the input of the model. 
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After Longformer embedding, the obtained promoter DNA vector is fed into CNN and 
BiLSTM. Finally, the feature vector is fed to the full connected layer, and the predic-
tion result is output. Experimental results show that iProL, which does not rely on any 
biological features, outperforms the state-of-the-art methods in identifying promoter 
sequences of E. coli through five-fold cross-validation. The source codes and datasets 
for the promoter predictions have been uploaded to https:// github. com/ 20032 303092/ 
iProL.

Materials and methods
Prediction framework of the proposed iProLs

In our study, we propose iProL, an advanced promoter prediction tool. Figure 1 depicts 
our entire experimental framework, including three parts: dataset construction, model 
structure, and five-fold cross-validation. The dataset construction part was fully 
described in the next section, and here we focus on the model architecture. As shown 
in part B of Fig. 1, iProL mainly consists of the input layer, Longformer embedding layer, 
CNN layer, BiLSTM layer, fully connected layer, and output layer. First, the input layer 
receives 81-bp long DNA sequences, split into 2-mer nucleotide segments with a stride 
of 1 before being fed into the model. Next, after processing through the Longformer 
embedding layer, we obtain DNA embedding vectors with dimensions of 79 × 768. Due 
to the large number of parameters in the Longformer pre-trained model and the lim-
ited size of our dataset, we avoided overfitting by not fine-tuning the pre-trained model. 
Subsequently, a three-layer one-dimensional CNN and BiLSTM form our feature extrac-
tor for obtaining 96-dimensional feature vectors. The three one-dimensional CNN lay-
ers have output channels of 128, 64, and 32, respectively, while the BiLSTM layer has a 
hidden size of 16 with one layer. Each one-dimensional convolution layer is followed by 
a batch normalization layer, ReLU activation function, max pooling layer, and dropout 
layer in sequence, except for the third convolution layer, which does not use a dropout 
layer. Finally, we feed the 96-dimensional feature vector into two fully connected layers 
activated by the ReLU function and the Sigmoid function, respectively, and then obtain 
the prediction result at the output layer. As shown in part C of Fig. 1, we evaluate the 
proposed model using five-fold cross-validation.

Fig. 1 iProL overview. It includes A dataset construction, B model framework, and C five-fold cross-validation, 
where the data from the benchmark dataset and the independent test dataset do not overlap

https://github.com/20032303092/iProL
https://github.com/20032303092/iProL


Page 4 of 14Peng et al. BMC Bioinformatics          (2024) 25:224 

Datasets

Our experimental data are derived from RegulonDB (version 9.4) [27]. This database is 
mainly used to store transcriptional regulatory sequences of the E. coli K-12 genome. 
Complete data can be downloaded from the official website of RegulonDB (available 
at https:// regul ondb. ccg. unam. mx). In this study, a benchmark dataset consistent with 
BERT-Promoter was used to facilitate comparison with the latest computational meth-
ods [23, 24]. This dataset was first provided by Xiao et al., and the detailed dataset col-
lection process is available in iPSW(2L)-PseKNC. In summary, each promoter sequence 
was obtained by truncating an 81-bp fragment (from − 60 to + 20 relative to the TTS 
located at 0) in the region near the TSS on the K-12 genome, and the non-promoter 
sequence part here includes introns, exons and intergenic sequences. Non-promoter 
sequences were obtained by randomly extracting equally long sequence segments from 
the non-promoter sequence part of the K-12 genome. The obtained promoter and non-
promoter sequences were both processed using the CD-HIT [28] software to ensure 
that the sequence similarity did not exceed 85%. Finally, the benchmark dataset contains 
3382 promoter samples and 3382 non-promoter samples.

Furthermore, following the conventions of previous studies [12, 13, 18, 29], we con-
structed a novel independent test dataset based on the latest version of promoter data 
provided by RegulonDB (version 11.1) to validate the generalization performance of our 
model. To ensure that there is no overlap between the independent test dataset and the 
benchmark dataset, we first obtained the latest version of promoter data from Regu-
lonDB and then removed the promoter samples that appeared in the benchmark dataset. 
Specifically, we compared the promoter sequences in the benchmark dataset with those 
in the independent test dataset through a two-layer traversal process. For each sequence, 
we conducted a pairwise comparison. If an exact match was found between a sequence 
in the test dataset and any sequence in the benchmark dataset, it indicated that the 
sample was already present in the benchmark dataset. Consequently, we removed such 
duplicated promoter sequence samples from the independent test dataset. Finally, we 
applied CD-HIT software with a same threshold of 0.85 to remove redundant data from 
the remaining samples. The independent test dataset consists of a total of 395 promoter 
samples.

In E. coli, the promoter is recognized by six σ factors with different regulatory effects. 
According to this, the types of promoters can be divided into six categories, which are 
σ 24, σ 28, σ 32, σ 38, σ 54 and σ 70 respectively. Additionally, depending on the strength of 
transcription activation and expression, promoters can be classified as strong or weak 
promoter strengths. Therefore, we provide a comprehensive description of the distri-
bution of promoter samples in both datasets in terms of promoter types and promoter 
detailed information about the benchmark dataset and the independent test dataset is 
presented in Table 1, and the total number of samples in the category corresponding to 
the promoter is also recorded together in the table.

Longformer embedding

With the continuous development of the NLP field, especially the large language model 
(LLM) with the theme of attention mechanism [30], many researchers in the field of 

https://regulondb.ccg.unam.mx
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bioinformatics have begun to transplant the concept of NLP to bioinformatics problems, 
such as DNABERT [31]. Longformer, a variant of the Transformer architecture, has been 
specifically designed to handle long sequential data and has also found application in 
sequence-to-sequence tasks. Longformer’s attention mechanism is a combination of 
windowed local-context self-attention and task-inspired global attention. This unique 
combination enables the Longformer to retain global contextual information while also 
introducing a focus on deep features within sequences. To mitigate computational costs 
and complexity, Longformer employs a sparse attention mechanism. This implies that 
each position calculates attention with only a small subset of other positions, rather 
than the entire sequence. Longformer has demonstrated promising performance in cer-
tain bioinformatics tasks [32, 33]. Inspired by this, we incorporate Longformer into our 
research question. The results indicate that the utilization of the Longformer enhances 
predictive performance.

In our study, we use a pre-trained Longformer model to obtain embeddings of pro-
moter DNA sequences. Specifically, we utilize the pre-trained model named “long-
former-base-4096”, which supports text sequences up to a maximum length of 4096 and 
can embed each word into a vector of 768 dimensions. The pre-trained model can be 
downloaded from Hugging Face [34], and the specific download link is https:// huggi 
ngface. co/ allen ai/ longf ormer- base- 4096/ tree/ main.

Although Longformer is developed for long text content processing, the experimental 
results show that the pre-trained model is still highly effective for our research problem. 
Perhaps this is because the pre-trained Longformer model captures additional long-
term dependence information with a larger field of view, which is particularly helpful for 
identifying promoter sequences. A point worth stating is that when using BERT-like pre-
trained models, researchers usually add special tokens to the input text sequence, such 
as CLS tokens placed at the beginning of the text to represent the sentence vector. We 
assume that these special tokens do not have real biological significance and therefore 
do not add them to the DNA sequence.

Feature extraction

In NLP, CNN and LSTM have been widely used by researchers to extract text features. 
Due to this characteristic, CNN and LSTM have also been used in bioinformatics to 

Table 1 Details of the E. coli promoter dataset

Dataset Activity Promoter Non promoter All

σ 24 σ 28 σ 32 σ 38 σ 54 σ 70 σ unknown

Benchmark dataset Strong 68 10 61 116 17 758 561 / 1591

Weak 418 123 222 41 74 886 27 / 1791

486 133 283 157 91 1644 588 /

3382 3382

Independent test dataset Strong 4 0 12 74 5 69 47 / 211

Weak 30 5 17 11 0 98 8 / 169

Confirmed 1 0 0 9 0 1 4 / 15

35 5 29 94 5 168 59 /

395 0

https://huggingface.co/allenai/longformer-base-4096/tree/main
https://huggingface.co/allenai/longformer-base-4096/tree/main
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extract feature vectors from genomic sequences. In our study, we use a three-layer one-
dimensional CNN for extracting local features of promoter DNA sequences and a BiL-
STM to obtain global features.

Table  2 summarizes the detailed parameters of all components in the three one-
dimensional CNN layers in the order of module connection. For each CNN layer, we use 
the structural order of CBAPD to build the network (C, B, A, P, and D refer to the convo-
lutional layer, batch normalization layer, activation function, pooling layer, and dropout 
layer, respectively). Here, the ReLU function is used as the activation function of CNN. 
To reduce tensor dimensions and prevent overfitting, we connect a max pooling layer. 
The kernel size and stride of each max pooling layer are set to 3 and 1, respectively. To 
avoid overfitting, we also add dropout layers for the first two convolutional layers, with a 
random dropout probability of 0.8. For the parameters of the three convolutional layers, 
the number of convolutional kernels is set to 128, 64, and 32, and their kernel sizes are 
set to 8, 8, and 3, respectively, with a stride of 2 for each layer.

Model setting and evaluation metrics

In this study, we used Python 3, PyTorch framework, and Hugging Face toolkit trans-
formers 4.11.3 for the implementation of iProL. The source code for the implementation 
of the model for identifying promoters is available at https:// github. com/ 20032 303092/ 
iProL. We conducted the model training on the Ubuntu system and utilized CUDA to 
accelerate the training process. The model was trained for a total of 250 epochs with a 
batch size of 32, and the initial learning rate was set to 0.0005. The cross-entropy loss 
function was used to calculate the model error, and the Adam optimization algorithm 
was used to update the model weights. Additionally, we used the PyTorch StepLR strat-
egy to adjust the learning rate to achieve the optimal model. During the training process, 
the learning rate decayed by 0.6 times every 50 epochs.

To objectively and fairly evaluate the performance of our proposed promoter predic-
tor iProL, we adopted the five-fold cross-validation and five widely accepted evaluation 
metrics based on Chou’s five-step rule [35]. The five evaluation metrics are sensitivity 
(Sn), specificity (Sp), accuracy (Acc), Matthews correlation coefficient (MCC), and area 
under the receiver operating characteristic curve (AUC) [36, 37]. Sn and Sp represent 
the prediction ability of the predictor for positive and negative samples, respectively. Acc 
measures the prediction accuracy of the predictor. MCC describes the correlation coeffi-
cient between the true classification and predicted classification. The receiver operating 

Table 2 Hyperparameters of all components in each convolutional layer

CNN layer Conv1d BatchNorm1d MaxPool1d Dropout

Layer-1 Filter = 128
Kernel size = 8
Stride = 2

Num
Features = 128

Kernel size = 3
Stride = 1

p = 0.8

Layer-2 Filter = 64
Kernel size = 8
Stride = 2

Num
Features = 64

Kernel size = 3
Stride = 1

p = 0.8

Layer-3 Filter = 32
Kernel size = 3
Stride = 2

Num
Features = 32

Kernel size = 3
Stride = 1

Not used

https://github.com/20032303092/iProL
https://github.com/20032303092/iProL
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characteristic curve reflects the relationship between Sn and Sp at different thresholds, 
and the AUC value closer to 1 indicates better model performance. The formulas for cal-
culating Sn, Sp, Acc, and MCC are shown below:

where TP, TN, FP, and FN represent true positive (correctly predicted positive sample 
number), true negative (correctly predicted negative sample number), false positive 
(incorrectly predicted positive sample number), and false negative (incorrectly predicted 
negative sample number), respectively.

Sequence analysis and model interpretation

Understanding how the model works is of significant importance for validating its reli-
ability. With the widespread application of interpretability in deep learning methods, 
we have developed a great interest in the logic behind iProL’s accurate predictions. 
Therefore, in our research, we employed motif analysis tools such as WebLogo [38] and 
STREME [39], along with the interpretability method called LIME [40], to analyze our 
model. By utilizing WebLogo and STREME, we were able to identify enriched motif 
patterns within DNA sequences. LIME allowed us to generate explanations for specific 
DNA sequence samples, thereby enabling us to analyze the interpretability of the mod-
el’s predictions for those samples. Specifically, for the input promoter DNA sequences, 
we focused on the 2-mer fragments that the model emphasized during the prediction 
process. We compared these fragments with the identified enriched motif patterns to 
explore the extent of their alignment, aiming to enhance our understanding of the model 
and validate its reliability.

Results and discussion
Sequence analysis

Understanding and analyzing the consensus motif of DNA sequences has positive sig-
nificance for the identification of promoter sequences. To analyze the nucleotide dis-
tribution of promoter sequences, we generated the corresponding sequence logos for 
the non-promoter sample set and promoter sample set in the benchmark dataset, and 
all samples in the independent test dataset, respectively. Figure 2 reveals the conserved 
regions of promoter DNA sequences, where the x-axis subscript 0 represents the TSS, 

(1)Sn =
TP

TP + FN
,

(2)Sp =
TN

TN + FP
,

(3)Acc =
TP + TN

TP + FN + TN + FP
,

(4)MCC =
TP × TN − FP × FN

√
(TP + FP)× (TP + FN )× (TN + FN )× (FN + FP)

,
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and the y-axis represents the conservation score. As shown in Fig.  2, the consensus 
motifs of promoter sequences are mainly enriched around the − 10 to − 5 region and 
the − 35 to − 30 region, as well as the TSS. On the other hand, the conservation score 
of non-promoter sequences is significantly lower than those of promoter samples, and 
there are no representative conserved regions present.

The effect of different embedding methods

Since our promoter input sequence is only 81bp long, it is not comparable to long text 
sequences. In addition, Longformer is specifically designed for long text processing, 
while BERT handles text sequences with a maximum length of 512. Therefore, we dis-
cuss the classification effect of both pre-trained models, Longformer and BERT. There-
fore, we conducted a comparative study of the classification performance of Longformer 
and BERT, using the most popular BERT pre-training model, bert-base-multilingual-
cased, available on the Hugging Face platform. The size of Kmer also had an impact on 
the experimental results. We found that the BERT pre-trained model’s vocabulary only 
fully maps individual nucleotides, while the Longformer pre-trained model also supports 
2-mer mapping. Therefore, we designed three experiments in total, and Table 3 lists all 
the experimental results. When using 1-mer, Longformer outperformed BERT in terms 
of Acc, MCC, and AUC scores by 0.73%, 1.09%, and 0.43%, respectively. This indicates 
that the Longformer pre-trained model using the new form of attention mechanism has 
an advantage over BERT for the promoter sequence recognition problem.

When using 2-mer, the Sn and Sp scores are further drawn together, which indicates 
that the model has a more balanced ability to identify positive and negative samples. In 
summary, using 2-mer to divide the sequences and using the Longformer pre-trained 
model as the embedding layer helps us to obtain a better and more balanced promoter 
recognition tool.

Fig. 2 Analysis of sequences using WebLogo

Table 3 Comparison of two pre-trained models using Longformer and BERT

Bold values indicate the highest score in the column

Model Sn(%) Sp(%) Acc(%) MCC AUC 

BERT, 1-mer 79.51 90.27 84.89 0.7021 0.9164

Longformer, 1-mer 83.97 87.26 85.62 0.7130 0.9207

Longformer, 2-mer (iProL) 84.62 86.61 85.62 0.7130 0.9211
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Discussion on the effects of each module of the model

To ensure that an optimal model can be obtained, we also discussed the impact of 
other module parts in the iProL model,including the CNN layer and BiLSTM layer. In 
more detail, inspired by the model design of SPEID [41], we also added a comparative 
experiment on the location of the batch normalization layer to compare the influence 
of CBAPD and CAPBD network structure order on the experimental results. Tables 4, 5 
and 6, respectively, record the performance of different combinations of three different 
modules, as analyzed below.

First, to explore the influence of the number of CNN layers on the prediction results, 
we construct three comparative models except for iProL. These models contain 0, 1, and 
2 one-dimensional CNN layers, respectively, and the scores of the four models on all 
metrics are shown in Table 4. It can be seen that although the performance of the four 
models is close to each other, iProL constructed by three-layer one-dimensional CNN 
wins the biggest advantage. Second, for the role played by the BiLSTM layer, we designed 
a comparison model without the BiLSTM layer. The experimental results are shown in 
Table  5. Except for Sp, iProL is higher than the comparison model in Sn, Acc, MCC, 
and AUC by 0.93%, 0.77%, 1.49%, and 0.71%, respectively. We believe that BiLSTM 
effectively extracts the long-term dependence information of the promoter sequences, 
which brings better prediction performance to the model. Finally, Table 6 records the 
experimental results of CAPBD and CBAPD, and the experiment shows that the CBAPD 
sequential structure is more conducive to the model’s recognition of the promoter 
sequence. To sum up, iProL, composed of different optimal modules, can bring us the 
best prediction performance.

Table 4 Effect of different numbers of CNN layers on the performance of the model

Bold values indicate the highest score in the column

Model Sn(%) Sp(%) Acc(%) MCC AUC 

CNN ×0 82.55 87.14 84.85 0.6981 0.9140

CNN ×1 84.12 86.72 85.42 0.7095 0.9196

CNN ×2 84.00 86.40 85.20 0.7048 0.9198

CNN ×3 (iProL) 84.62 86.61 85.62 0.7130 0.9211

Table 5 Effect of the BiLSTM module on the performance of the model

Bold values indicate the highest score in the column

Model Sn(%) Sp(%) Acc(%) MCC AUC 

BiLSTM ×0 82.55 87.14 84.85 0.6981 0.9140

BiLSTM ×1 (iProL) 84.62 86.61 85.62 0.7130 0.9211

Table 6 Effect of batch normalization layer location on the performance of the model

Bold values indicate the highest score in the column

Model Sn(%) Sp(%) Acc(%) MCC AUC 

CAPBD 82.52 86.66 84.59 0.6926 0.9125

CBAPD (iProL) 84.62 86.61 85.62 0.7130 0.9211
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Performance comparison on the benchmark dataset

To ensure an objective and unbiased evaluation of our proposed prediction model, on 
the premise of ensuring that the benchmark dataset is consistent, we compared the 
model with the method proposed by Xiao et al. and three recently published methods. 
The four methods are iPSW(2L)-PseKNC, iPromoter-ET, dPromoter-XGBoost and 
BERT-Promoter. The final comparison is shown in Table 7, where the symbol “/” indi-
cates the missing value. It is worth noting that the method BERT-Promoter used ten-fold 
cross-validation to compare with the previous methods, so we adopted the experimental 
results of BERT-Promoter in the comparison.

First of all, in terms of scores, our method achieved the highest scores on Sp, Acc, 
MCC, and AUC, with 86.61%, 85.62%, 0.7130, and 0.9211, respectively. From the per-
spective of Sn and Sp, iPSW(2L)-PseKNC focuses on the recognition of positive sam-
ples, dPromoter-XGBoost focuses on the recognition of negative samples, while our 
predictor has more balanced recognition performance and good recognition ability for 
both positive and negative samples. Secondly, compared with the latest two classifiers, 
dPromoter-XGBoost and BERT-Promoter, iProL outperforms these two predictors in 
all aspects except that it is weaker than dPromoter-XGBoost in Sn. Specifically, iProL 
is 1.91% higher than BERT-Promoter on AUC, 4.69%, and 3.6% higher than dPromoter-
XGBoost on Sp and MCC, respectively. In addition, compared to the remaining two pre-
dictors, iProL completely outperforms iPromoter-ET and iPSW(2L)-PseKNC, scoring a 
maximum of 5% higher. To sum up, our iProL is better than the previous methods in 
most metrics and has a more balanced prediction performance. This suggests that our 
proposed iProL has a positive significance in predicting promoters.

Performance comparison on the independent test dataset

To further demonstrate the generalization capability of our model, we conducted inde-
pendent testing on the independent test dataset and compared it with iPromoter-2L, 
iPromoter-BnCNN and PredPromoter-MF(2L). Comparisons with other existing meth-
ods were not made here because the source code they provide is not successfully run 
or the web server they provide is no longer available, while iPromoter-2L, iPromoter-
BnCNN and PredPromoter-MF(2L) are the three available methods we found whose 
source code provides a runnable python script. The experimental results on the inde-
pendent test dataset are shown in Table 8. Since the independent test dataset only con-
tains positive samples, the results are recorded in the format of "TP/FP" in each cell, 

Table 7 Performance comparison of predictors using fivefold cross-validation on benchmark 
dataset

Bold values indicate the highest score in the column

Predictor Sn(%) Sp(%) Acc(%) MCC AUC 

iPSW(2L)-PseKNC 81.37 84.89 83.13 0.6630 0.9054

iPromoter-ET 84.23 86.04 85.14 0.7030 0.9193

dPromoter-XGBoost 85.72 81.92 83.81 0.6770 /

BERT-Promoter 84.34 86.56 85.45 / 0.9020

iProL (ours) 84.62 86.61 85.62 0.7130 0.9211
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where TP represents the number of correctly identified promoters and FP represents 
the number of incorrectly identified promoters. From the experimental results, it can be 
concluded that the recognition rates of promoters by iPromoter-2L, iPromoter-BnCNN, 
PredPromoter-MF(2L) and iProL predictors on the independent test dataset are 87.59%, 
91.14%, 91.39% and 92.91%, respectively. Our proposed iProL method achieves the high-
est recognition accuracy among the four predictors.

Interpretation

So far, the results have demonstrated the excellent performance of our model in identify-
ing promoter sequences. To gain insights into the driving features behind the model pre-
dictions, we employed the model interpretability technique LIME to identify key 2-mer 
fragments that are important for prediction. The 2-mer fragment is chosen because our 
model input is a 2-mer mapping. In summary, LIME helps us to deeply understand the 
behavior and decision-making process of iProL, while providing intuitive visual inter-
pretation of the prediction results.

Initially, to further explore the relatively enriched motif patterns in promoter 
sequences compared to non-promoter sequences, we set the non-promoter sample set 
as the control sequences and utilized the motif discovery tool STREME to accurately 
estimate the statistical significance of motifs using Fisher exact test. Figure  3a, b pre-
sent the top three important consensus motifs discovered by STREME in the benchmark 
dataset and the independent test dataset, respectively. The sequence composition and 
p value of the corresponding motifs are shown below each motif logo. Supplementary 

Table 8 Performance comparison between iPromoter-2L, iPromoter-BnCNN, PredPromoter-MF(2L) 
and iProL on the independent test dataset (TP/FP)

Bold value indicates the best performance

Predictor σ 24 σ 28 σ 32 σ 38 σ 54 σ 70 σ unknown All

iPromoter-2L 25/10 5/0 27/2 93/1 2/3 152/16 42/17 346/49

iPromoter-BnCNN 30/5 5/0 26/3 91/3 2/3 156/12 50/9 360/35

PredPromoter-MF(2L) 31/4 5/0 26/3 86/8 3/2 159/9 50/8 361/34

iProL (ours) 30/5 5/0 26/3 91/3 4/1 159/9 52/7 367/28

Fig. 3 Motifs detected by STREME and LIME visualization explanation. It includes the consensus motifs 
detected by STREME in the benchmark dataset and the independent test dataset (a, b), and the visual 
explanations obtained using LIME on six promoter sequence samples (c)
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Table S1 provides detailed explanations for non-DNA base letters, while the complete 
set of consensus motifs in the benchmark dataset and the independent test dataset can 
be found in Supplementary Figs. S1 and S2. Next, we selected the promoter samples in 
the independent test set where only iProL identified correctly for model interpretation 
and used LIME to compute feature weights for the 2-mer fragments at each position to 
determine the fraction with the greatest impact on the final results. Figure 3c illustrates 
the preference of our prediction model for 2-mer fragments, and an analytical compari-
son reveals that promoter sequences are highly enriched in motifs containing base A and 
base T. Additionally, the sequence patterns (reconstructed from consecutive 2-mer frag-
ments and indicated by red lines in the Fig. 3c) of interest to our model closely align with 
the consensus motifs revealed by STREME. This indicates that our model focuses on the 
consensus motifs that hold crucial significance for predictions and produces reliable and 
accurate predictions.

Conclusion
In this study, we propose a novel prediction tool, iProL, which first utilizes the Long-
former pre-trained model with attention mechanism as the embedding layer, then uses 
CNN and BiLSTM to extract sequence local features and long-term dependency infor-
mation, and finally obtains the prediction results through two fully connected layers, 
achieving state-of-the-art performance. In particular, the successful application of the 
pre-trained Longformer model in the promoter recognition problem further confirms 
the availability of BERT-like pre-trained models learned from human natural language 
data in the field of bioinformatics, indicating that there may be some consensus between 
genomic language and human language. In addition, through a series of analyses, we find 
that each module of iProL has a positive effect on the promoter recognition task. Com-
pared with the current state-of-the-art methods, our method has better prediction per-
formance, which provides the possibility for detecting new promoters. To further extend 
the applicability of our model, we will focus on optimizing the model framework in the 
future, hoping to successfully apply iProL to related problems such as promoter type 
identification and strength identification.
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Supplementary material 1

Acknowledgements
The authors would like to thank the Editors and the anonymous reviewers for their valuable comments and suggestions 
which has helped to improve the quality and clarity of the paper.

Author contributions
BCP: Writing—review and editing, Writing—original draft, Supervision, Project administration, Data curation, Methodol-
ogy, Investigation, Conceptualization. GCS: Resources, Project administration, Validation, Writing—review and editing. 
YXF: Resources, Supervision, Writing—review and editing.

Funding
This work was supported in part by the National Natural Science Foundation of China under Grant 62162015 and Grant 
61762026, in part by the Guangxi Natural Science Foundation under Grant 2023GXNSFAA026054, in part by the Innova-
tion Project of GUET Graduate Education under Grant 2024YCXB12.

https://doi.org/10.1186/s12859-024-05849-9


Page 13 of 14Peng et al. BMC Bioinformatics          (2024) 25:224  

Availability of data and materials
The datasets supporting the conclusions of this article are included with article. Project name: iProL. Project home page: 
https:// github. com/ 20032 303092/ iProL. Project inclusion: All datasets and the code needed to replicate the experiment.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 29 April 2024   Accepted: 19 June 2024

References
 1. Haberle V, Lenhard B. Promoter architectures and developmental gene regulation. Semin Cell Dev Biol. 

2016;57:11–23.
 2. Browning DF, Busby SJ. Local and global regulation of transcription initiation in bacteria. Nat Rev Microbiol. 

2016;14(10):638–50.
 3. Yella VR, Kumar A, Bansal M. Identification of putative promoters in 48 eukaryotic genomes on the basis of DNA free 

energy. Sci Rep. 2018;8(1):4520.
 4. Feklístov A, Sharon BD, Darst SA, Gross CA. Bacterial sigma factors: a historical, structural, and genomic perspective. 

Annu Rev Microbiol. 2014;68:357–76.
 5. Ramprakash J, Schwarz FP. Energetic contributions to the initiation of transcription in E. coli. Biophys Chem. 

2008;138(3):91–8.
 6. Zhang M, Jia C, Li F, Li C, Zhu Y, Akutsu T, Webb GI, Zou Q, Coin LJM, Song J. Critical assessment of computational 

tools for prokaryotic and eukaryotic promoter prediction. Brief Bioinform. 2022;23(2):bbab551.
 7. Wang S, Cheng X, Li Y, Wu M, Zhao Y. Image-based promoter prediction: a promoter prediction method based on 

evolutionarily generated patterns. Sci Rep. 2018;8(1):17695.
 8. Lin H, Liang ZY, Tang H, Chen W. Identifying Sigma70 promoters with novel pseudo nucleotide composition. IEEE/

ACM Trans Comput Biol Bioinform. 2019;16(4):1316–21.
 9. He W, Jia C, Duan Y, Zou Q. 70ProPred: a predictor for discovering sigma70 promoters based on combining multiple 

features. BMC Syst Biol. 2018;12:99–107.
 10. Patiyal S, Singh N, Ali MZ, Pundir DS, Raghava GP. Sigma70Pred: a highly accurate method for predicting sigma70 

promoter in Escherichia coli K-12 strains. Front Microbiol. 2022;13:1042127.
 11. Liu B, Yang F, Huang DS, Chou KC. iPromoter-2L: a two-layer predictor for identifying promoters and their types by 

multi-window-based PseKNC. Bioinformatics. 2018;34(1):33–40.
 12. Zhang M, Li F, Marquez-Lago TT, Leier A, Fan C, Kwoh CK, Chou KC, Song J, Jia C. MULTiPly: a novel multi-layer pre-

dictor for discovering general and specific types of promoters. Bioinformatics. 2019;35(17):2957–65.
 13. Amin R, Rahman CR, Ahmed S, Sifat MHR, Liton MNK, Rahman MM, Khan MZH, Shatabda S. iPromoter-BnCNN: 

a novel branched CNN-based predictor for identifying and classifying sigma promoters. Bioinformatics. 
2020;36(19):4869–75.

 14. Lyu Y, He W, Li S, Zou Q, Guo F. iPro2L-PSTKNC: a two-layer predictor for discovering various types of promoters by 
position specific of nucleotide composition. IEEE J Biomed Health Inform. 2021;25(6):2329–37.

 15. Shujaat M, Wahab A, Tayara H, Chong KT. pcPromoter-CNN: a CNN-based prediction and classification of promoters. 
Genes (Basel). 2020;11(12):1529.

 16. Bernardino M, Beiko R. Genome-scale prediction of bacterial promoters. In: 2021 IEEE conference on computational 
intelligence in bioinformatics and computational biology (CIBCB). 2021. 01–08.

 17. Bhukya R, Kumari A, Amilpur S, Dasari CM. PPred-PCKSM: a multi-layer predictor for identifying promoter and its vari-
ants using position based features. Comput Biol Chem. 2022;97:107623.

 18. Wang M, Li F, Wu H, Liu Q, Li S. PredPromoter-MF(2L): a novel approach of promoter prediction based on multi-
source feature fusion and deep forest. Interdiscip Sci. 2022;14(3):697–711.

 19. Xiao X, Xu ZC, Qiu WR, Wang P, Ge HT, Chou KC. iPSW(2L)-PseKNC: a two-layer predictor for identifying promoters 
and their strength by hybrid features via pseudo K-tuple nucleotide composition. Genomics. 2019;111(6):1785–93.

 20. Le NQK, Yapp EKY, Nagasundaram N, Yeh HY. Classifying promoters by interpreting the hidden information of 
DNA sequences via deep learning and combination of continuous FastText N-Grams. Front Bioeng Biotechnol. 
2019;7:305.

 21. Tayara H, Tahir M, Chong KT. Identification of prokaryotic promoters and their strength by integrating heterogene-
ous features. Genomics. 2020;112(2):1396–403.

 22. Liang Y, Zhang S, Qiao H, Yao Y. iPromoter-ET: identifying promoters and their strength by extremely randomized 
trees-based feature selection. Anal Biochem. 2021;630:114335.

 23. Li H, Shi L, Gao W, Zhang Z, Zhang L, Zhao Y, Wang G. dPromoter-XGBoost: detecting promoters and strength by 
combining multiple descriptors and feature selection using XGBoost. Methods. 2022;204:215–22.

https://github.com/20032303092/iProL


Page 14 of 14Peng et al. BMC Bioinformatics          (2024) 25:224 

 24. Le NQK, Ho QT, Nguyen VN, Chang JS. BERT-Promoter: an improved sequence-based predictor of DNA promoter 
using BERT pre-trained model and SHAP feature selection. Comput Biol Chem. 2022;99:107732.

 25. Devlin J, Chang M-W, Lee K, Toutanova K. Bert: pre-training of deep bidirectional transformers for language under-
standing. 2018. arXiv: 18100 4805.

 26. Beltagy I, Peters ME, Cohan A. Longformer: the long-document transformer. 2020. arXiv: 20040 5150.
 27. Gama-Castro S, Salgado H, Santos-Zavaleta A, Ledezma-Tejeida D, Muñiz-Rascado L, García-Sotelo JS, Alquicira-

Hernández K, Martínez-Flores I, Pannier L, Castro-Mondragón JA. RegulonDB version 9.0: high-level integration of 
gene regulation, coexpression, motif clustering and beyond. Nucl Acids Res. 2016;44(D1):D133–43.

 28. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformat-
ics. 2012;28(23):3150–2.

 29. Li F, Chen J, Ge Z, Wen Y, Yue Y, Hayashida M, Baggag A, Bensmail H, Song J. Computational prediction and interpre-
tation of both general and specific types of promoters in Escherichia coli by exploiting a stacked ensemble-learning 
framework. Brief Bioinform. 2021;22(2):2126–40.

 30. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: 
Advances in neural information processing systems, vol. 30. 2017.

 31. Ji Y, Zhou Z, Liu H, Davuluri RV. DNABERT: pre-trained bidirectional encoder representations from transformers 
model for DNA-language in genome. Bioinformatics. 2021;37(15):2112–20.

 32. Wang Z, Zhang Y, Yu Y, Zhang J, Liu Y, Zou Q. A unified deep learning framework for single-cell ATAC-seq analysis 
based on ProdDep transformer encoder. Int J Mol Sci. 2023;24(5):4784.

 33. Li Y, Wehbe RM, Ahmad FS, Wang H, Luo Y. A comparative study of pretrained language models for long clinical text. 
J Am Med Inform Assn. 2023;30(2):340–7.

 34. Jain SM. Hugging face. In: Introduction to transformers for NLP: with the hugging face library and models to solve 
problems. Berlin: Springer; 2022. pp. 51–67.

 35. Chou K-C. Some remarks on protein attribute prediction and pseudo amino acid composition. J Theor Biol. 
2011;273(1):236–47.

 36. Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006;27(8):861–74.
 37. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiol-

ogy. 1982;143(1):29–36.
 38. Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 

2004;14(6):1188–90.
 39. Bailey TL. STREME: accurate and versatile sequence motif discovery. Bioinformatics. 2021;37(18):2834–40.
 40. Ribeiro MT, Singh S, Guestrin C. "Why should I trust you?" Explaining the predictions of any classifier. In: Proceedings 

of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016. pp. 1135–44.
 41. Singh S, Yang Y, Póczos B, Ma J. Predicting enhancer-promoter interaction from genomic sequence with deep 

neural networks. Quant Biol. 2019;7:122–37.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/181004805
http://arxiv.org/abs/200405150

	iProL: identifying DNA promoters from sequence information based on Longformer pre-trained model
	Abstract 
	Introduction
	Materials and methods
	Prediction framework of the proposed iProLs
	Datasets
	Longformer embedding
	Feature extraction
	Model setting and evaluation metrics
	Sequence analysis and model interpretation

	Results and discussion
	Sequence analysis
	The effect of different embedding methods
	Discussion on the effects of each module of the model
	Performance comparison on the benchmark dataset
	Performance comparison on the independent test dataset
	Interpretation

	Conclusion
	Acknowledgements
	References


