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Abstract 

Background: The matched case–control design, up until recently mostly pertinent 
to epidemiological studies, is becoming customary in biomedical applications as well. 
For instance, in omics studies, it is quite common to compare cancer and healthy tissue 
from the same patient. Furthermore, researchers today routinely collect data from vari-
ous and variable sources that they wish to relate to the case–control status. This 
highlights the need to develop and implement statistical methods that can take these 
tendencies into account.

Results: We present an R package penalizedclr, that provides an implementa-
tion of the penalized conditional logistic regression model for analyzing matched 
case–control studies. It allows for different penalties for different blocks of covariates, 
and it is therefore particularly useful in the presence of multi-source omics data. Both 
L1 and L2 penalties are implemented. Additionally, the package implements stability 
selection for variable selection in the considered regression model.

Conclusions: The proposed method fills a gap in the available software for fitting 
high-dimensional conditional logistic regression models accounting for the matched 
design and block structure of predictors/features. The output consists of a set 
of selected variables that are significantly associated with case–control status. These 
variables can then be investigated in terms of functional interpretation or validation 
in further, more targeted studies.

Keywords: Case–control studies, Conditional logistic regression, Multiple blocks of 
predictors/features, Stability selection

Background
The matched case–control design is widely employed in biomedical studies, since 
matching on potentially confounding variables can significantly improve efficiency 
and statistical power, while mitigating the effect of potential confounders. This design 
has become popular in studies involving high-throughput assays, leading research-
ers to propose novel methods for the analysis of high-dimensional matched data, also 
with the aim of feature or variable selection [12]. As many of these ignore the study 
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design and apply methods not designed for the matched design, this strategy can lead 
to sub-optimal results [see for instance 2, 18] and potentially missing some impor-
tant associations. A classical method for taking into account the matched design is 
offered by conditional logistic regression, either applied to each variable individually 
or applied to all variables jointly in a multiple regression model [see for instance 2] 
which is the approach we consider here.

Studies containing several types of high-dimensional measurements for each indi-
vidual – for instance, DNA methylation, copy number variation and mRNA expres-
sion – are becoming increasingly common. Integrating such heterogeneous data 
layers poses an additional challenge to variable selection, as the optimal penalty 
parameters can vary across different layers. An intuitively simple solution is to gener-
alize a well-investigated method of penalized conditional logistic regression to allow 
for different penalties for different data layers. This approach can be particularly use-
ful when the proportions of relevant variables are expected to vary across layers.

The method proposed here is similar in spirit to the popular IPF-lasso [3] and IPF-
StructPenalty [19] which also consider blocks of covariates. With respect to these 
packages, in penalizedclr, the emphasis is on variable selection, so that the pack-
age also includes a function for performing stability selection in an automatic way, see 
below. This is different from IPF-lasso and IPFStructPenalty that can be used for both 
prediction and variable selection. This difference stems from the fact that in condi-
tional logistic regression models, intercept terms are treated as nuisance, rendering 
predictions for new observations impossible. In view of this, in the context of multi-
omics data, this method is designed to address the initial challenge of selecting prom-
ising biomarker candidates.

Table  1 shows R packages that include functions for estimating penalized logistic 
regression models. As can be seen from this overview, none of the available packages 
were designed to take into account both matching and blocks of covariates. The R 
package penalizedclr is intended to fill this gap.

Results of variable selection procedures in high dimensional settings are known 
to suffer from limited replicability. To address this issue, our package provides an 
implementation of stability selection, a general method in which results of the selec-
tion procedure are aggregated over different data subsamples [14]. To develop good 
prediction algorithms useful from a diagnostic and clinical perspective, a biological 

Table 1 Overview of methods and associated R packages for estimating penalized logistic 
regression models in R

Implementation Multiple penalties Matching

clogitlasso [1] No Yes

ipflasso [3] Yes No

penalized [5] No Yes

glmnet [4] Yes No

IPFStructPenalty [20] Yes No

penalizedclr Yes Yes
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interpretation of the selected candidates would be conducted and they should be fur-
ther investigated in a prospective study.

Implementation
penalizedclr is implemented in R and available from CRAN. A development version 
is also available from github https:// github. com/ verad jordj ilovic/ penal izedc lr.

In what follows, we describe the two main functions of the package, penalized.
clr, estimating a penalized conditional logistic regression model allowing for differ-
ent penalties for different blocks of covariates, and stable.clr.g performing stabil-
ity selection of variables in the penalized conditional regression model. We then discuss 
other important aspects of the implementation, such as the choice of the penalization 
parameters and computation time.

penalized.clr function

This is a wrapper function for the penalized function of the well-established R pack-
age of the same name [5, 6]. A routine for conditional logistic regression is not directly 
available in penalized, but we exploit the fact that the likelihood of a conditional 
logistic regression model is the same as that of a Cox model with a specific data struc-
ture. In the input, we need to specify the response vector, the stratum membership of 
each observation, i.e. in case of 1:1 matching, the id of the case–control pair the observa-
tion belongs to; the overall matrix of covariates to be penalized, the sizes of the blocks of 
covariates and the ( L1 ) penalties to be applied to each block. The output is a list includ-
ing the estimated regression coefficients, along with other useful information regarding 
the fitted model. It should be stressed, that the vector of penalties has no default value 
and thus needs to be specified by the user.

stable.clr.g function

To increase the replicability of research findings – in this case selected variables – we 
aim to select variables that are robust to small perturbations in the data. To this end, 
we have implemented stability selection [14] in the function stable.clr.g. Here, 
most of the required input arguments are the same as in penalized.clr, with the 
argument lambda.list replacing lambda. The argument lambda.list consists 
of vectors of L1 penalties to be applied to each penalized block of covariates. Each vec-
tor has length equal to the number of blocks. For advice and considerations regarding 
how to specify lambda.list in practice, we refer to data applications in Sections "The 
NOWAC lung cancer dataset" and "The TCGA lung adenocarcinoma dataset" and Sec-
tion "Choice of the tuning parameters" in Appendix. For each vector, 2B random sub-
samples of ⌊n/2⌋ (out of the total of n) matched pairs are taken and a penalized model is 
estimated ( B = 100 by default). The factor 2 in 2B is due to a variant of stability selection 
that includes complementary pairs of subsamples [17]. For each variable and vector of 
penalties, a selection probability is estimated as the proportion of fitted models in which 
the associated coefficient estimate is different from zero. Finally, the estimate of the 
selection probability of a variable is obtained by taking the maximum selection probabil-
ity over all considered penalty vectors. The user can then select the variables whose esti-
mated selection probability is above a desired threshold, typically in the range 0.55− 0.9.

https://github.com/veradjordjilovic/penalizedclr
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Data adaptive choice of penalty parameters

The user needs to specify penalties to be applied in the main functions. In general, 
choosing the appropriate amount of penalization is challenging, and even more so in the 
presence of multiple blocks of predictors with different penalties. Let � = (�1, �2, . . . , �P) 
represent a vector of L1 penalties, where �i is the penalty applied to the i− th block, and 
P is the number of blocks. In principle, the optimal value can be found by performing a 
grid search over a P-dimensional grid. However, this approach is computationally pro-
hibitive, and less computationally demanding alternatives are typically considered. For 
instance, in [20] the authors propose a stochastic search over a grid. We follow a dif-
ferent strategy and combine a grid search for a scalar parameter with a heuristic data 
adaptive strategy as follows. The problem of setting � can be decomposed into two sub-
problems to be solved independently, as we can write � = �(1, �2/�, . . . , �P/�) , where 
� can be viewed as the overall level of penalization, while the vector (1, �2/�, . . . , �P/�) 
represents the relative penalties with respect to the first block. In analogy with ipfl-
asso, we refer to this vector as the vector of penalty factors. Our package offers two 
functions: default.pf that performs a heuristic search for the data adaptive vector of 
penalty factors (see below), and find.default.lambda that, given a vector of penalty 
factors, finds � that maximizies the cross-validated conditional log-likelihood, see Sec-
tion "Choice of the tuning parameters" in Appendix for further details.

To find a data adaptive vector of penalty factors, we follow the heuristic approach of 
[16]. In this extension of the original IPF-lasso method, a tentative conditional logistic 
regression model is fitted to all covariates, and for each block, the (relative) penalty is 
set to be inversely proportional to the mean of the estimated coefficients pertaining to 
that block. In this way, a block with larger estimated coefficients will have a lower pen-
alty, and vice-versa. This step can be performed for each block separately, i.e. by fitting P 
tentative models, or jointly with all blocks included within a single model, see argument 
type.step1. Once a vector of penalty factors is obtained in this way, we can call find.
default.lambda to find the value of � determining the overall extent of penalization. 
For more details, we refer to [16] and the penalizedclr package documentation.

Elastic net penalty

The main focus of the package is on L1 or lasso penalty which, resulting in sparse esti-
mated models, is appropriate for variable selection. Nevertheless, it is well-known that 
with L1 penalty, the presence of highly correlated variables can have a negative impact 
on selection stability [11]. Adding a small L2 or ridge penalty can alleviate this issue: our 
implementation offers this possibility by including the mixing parameter alpha, see 
package documentation and Section "Choice of the tuning parameters" in Appendix for 
details.

Computation time

The computational cost of estimating a penalized conditional logistic model with a 
given vector of penalties equals the cost of estimating a penalized Cox model. The time 
consuming part of the analysis is stability selection, which requires fitting 2Bs models, 
where s is the number of the vectors of penalties in lambda.list. Fortunately, stability 
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selection is highly amenable to parallelization, which greatly reduces computation time 
especially when using a cluster of computers (see argument parallel of function 
stable.clr.g).

Results
Simulation study

We illustrate the proposed method with a small simulation study. This simulation study 
is by no means meant to be exhaustive since many different simulation settings can be 
envisioned. The main purpose of this study is to illustrate some of the numerous factors 
that influence performance of the proposed method in real applications. The R code files 
for reproducing the results reported here are available on github https:// github. com/ 
verad jordj ilovic/ Simul ations_ penal izedc lr.

We considered six different settings described in Table 2, where pi and ai denote the 
dimension and the number of active variables in block i, respectively, while βi is the coef-
ficient of an active variable in block i, i = 1, 2 . Common for all settings is the number of 
blocks (2), the number of matched pairs (200), the total number of covariates (100) and 
the total number of active variables (20).

For each setting, we generated 100 datasets, to which we applied a variable selection 
procedure based on conditional logistic regression as follows. First, we computed data 
adaptive penalties, as described in Section "Data adaptive choice of penalty parameters". 
Next, we ran stability selection with B = 50 on penalized conditional logistic regres-
sion with these penalties (Sect. "stable.clr.g function") and a default α = 1 . Finally, 
covariates with selection probability exceeding 0.55 were selected.

We evaluated performance by estimating power, defined as the proportion of active 
variables identified by our procedure, and false discovery rate (FDR), defined as the pro-
portion of false discoveries among all discoveries; in this case, the proportion of inactive 
variables among the selected variables. Power and FDR were averaged over 100 datasets.

We compared our approach to two approaches that in practice could also be consid-
ered and applied in this context. The first one is IPF-Lasso [3] with an unconditional 
logistic regression model, and the second one is the conditional logistic regression with 
a single block of covariates. The former method, implemented in the package of the 
same name, takes into account the presence of different types of covariates, but ignores 
matching, the latter, implemented in the R package clogitL1 [15] fits the conditional 
logistic regression model but ignores the block structure of covariates.

Table 2 Simulation study: description of simulation settings and the related performance

Setting Parameters penalizedclr IPF-Lasso clogitL1

p1 p2 a1 a2 β1 β2 Power FDR Power FDR Power FDR

1 50 50 10 10 4 4 0.59 0.23 0.70 0.34 0.85 0.46

2 50 50 3 17 4 4 0.70 0.23 0.65 0.28

3 50 50 20 0 4 0 0.84 0.18 1.00 0.69

4 20 80 10 10 4 1 0.50 0.26 1.00 0.79 0.64 0.48

5 20 80 15 5 4 4 0.81 0.21 1.00 0.57

6 20 80 5 15 4 4 0.58 0.21 0.90 0.68

https://github.com/veradjordjilovic/Simulations_penalizedclr
https://github.com/veradjordjilovic/Simulations_penalizedclr
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Results are shown in Table 2. We fit clogitL1 only in settings 1 and 4, since in the 
unconditional model all settings but setting 4 are equivalent, differing only in the posi-
tion of active variables. We first notice that, in general, the two competing approaches 
select more variables then our method. In particular, the conditional model achieves 
reasonable power: 0.85 and 0.64, respectively, with quite high FDR: slightly below 50%. 
IPF-Lasso in settings 3, 4, 5 and 6 identifies almost all active variables. However, there 
are also many false positives (FDR in the range of 0.57−0.79). Note that this is expected 
since variable selection with IPF-Lasso and clogitL1 was performed based on a single 
model fit. Coupling stability selection with these methods is expected to decrease the 
number of selected null variables. In settings 1 and 2, the number of selected variables 
with IPF-Lasso is close to that of our approach, with the latter showing a slightly better 
performance in terms of power and FDR. For our approach, the power is lowest in set-
tings 1, 4 and 6, in which either there is no (considerable) difference in the proportion of 
active variables in the two blocks (1 and 6) or the signal in one of the blocks is relatively 
weak. On the other hand, the highest power is achieved in setting 3, in which all active 
variables belong to the first block. Good power can also be observed in setting 5, where 
the majority of active variables is in the first block. As for the empirical FDR, it seems 
comparable across settings, varying in the range 0.18–0.26.

We set the threshold for selection to 0.55, which is at the low end of the suggested 
range (Sect. "stable.clr.g function"). To evaluate the impact of this choice, we com-
puted the empirical power and FDR for a grid of potential thresholds across the sug-
gested range (0.55− 0.9) . Results are shown in Fig. 1.

As expected, both power and FDR decrease with an increasing threshold for selec-
tion, since a stricter criterion for selection leads to fewer selected variables, both active 

Table 3 Simulation study: performance for different sample sizes

Performance Sample size

n = 50 n = 100 n = 200 n = 500

Power 0.08 0.44 0.81 0.97

FDR 0.07 0.11 0.21 0.22

Fig. 1 Empirical power and false discovery rate as a function of the threshold of the proposed variable 
selection procedure in 6 considered settings
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and inactive. Ordering of the settings is largely preserved across different thresholds 
(with some exceptions, for instance, the power for settings 3 and 5). Interestingly, set-
ting 4 stands out from the rest: while its FDR decreases with the increasing threshold, 
as expected, its power remains constant. Recall that in setting 4, the number of active 
variables is equal among the two blocks, but the signal strength in the second block is 
lower. Indeed, this signal seems to be too low to be picked up, and the variable selection 
procedure selects only the variables of the first block.

A related question is how the proposed method behaves with varying sample size. To 
investigate this issue, we considered setting 5 and generated 50 datasets of sample sizes 
50, 100 and 500. Estimated power and FDR are shown in Table 3.

We see that for the given signal strength (see Table 2) the method has no power for 
the smallest sample size. Already for n = 100 , nearly half of the active variables are 
identified. For n = 500 , the method almost always identifies all active variables. The 
estimated FDR remains around 0.2. When the sample size is large, and it is desirable to 
keep the number of false positives low, we might increase the threshold for selection. 
For instance, in our example, for n = 500 , by increasing the threshold to 0.95, the power 
decreases to 0.86 and FDR to 0.06.

The main purpose of the presented simulation study and the data application is to 
illustrate the possibilities and limitations of the proposed method. The comparison with 
IPF-Lasso and clogitL1, methods that take into account the block structure, but 
ignore matching, or vice versa, was reported, since, to the best of our knowledge, there 
are no other methods that implement penalized estimation of the conditional logistic 
regression model with multiple blocks of predictors.

The small simulation study has showed, in line with the reported results for the IPF-
lasso [3], that taking into account the block structure of predictors brings an advantage 
when the blocks are indeed different, in terms of signal strength and/or the number or 
proportion of active variables. Otherwise, it is of course beneficial to treat all variables 
on equal standing, since in that case we are dealing with fewer tuning parameters. The 
comparison between conditional and unconditional penalized logistic models was also 
studied in [15]. Their results show that estimating conditional models when data come 
from a matched study is beneficial, especially when strata are large and the number of 
covariates is moderate.

The NOWAC lung cancer dataset

To illustrate the proposed method in practice, we consider a lung cancer matched 
case–control study nested within the Norwegian Women and Cancer Study (NOWAC) 
[13], a prospective cohort study. Our data consist of 125 case–control pairs matched by 
time since blood sampling and year of birth, identified in the NOWAC cohort. Meth-
ylation levels and gene expression were measured in peripheral blood. We have focused 
on CpGs and genes that have previously been reported to be associated with smoking. 
In particular, we considered a list of CpGs differentially methylated between current 
smokers and nonsmokers according to [10]. Since the total number of reported CpGs, 
18760, precludes us from including them all in a considered multivariate model, we have 
selected the top 5000 CpGs according to their reported p-values. After restricting atten-
tion to complete observations, we were left with 4370 CpGs. Similarly, we considered a 
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list of differentially expressed genes between current smokers and nonsmokers reported 
in [9]. Here, of the 1270 reported genes, in NOWAC we have information on 943 which 
we included in our analysis.

Our goal was to select genes and CpGs that are associated with lung cancer status. 
Assuming a conditional logistic regression model, this amounts to selecting variables in 
the joint model that have a non-zero coefficient.

We started our analysis by searching for the data adaptive vector of penalty factors. 
We set the elastic net mixing parameter α = 0.6 and ran the function default.pf 
three times, since this function relies on cross validation for selecting the penalty in the 
tentative model producing results that may vary between runs. In our case, the aver-
age vector of penalty factors was proportional to (1, 3.6). We then ran find.default.
lambda, to find �1 = 5.3.

For stability selection, we have considered the following list of penalty vectors: (5, 1), 
(5, 2), (5, 5), (5, 10), (5, 15), (5, 20). We intentionally included combinations of penalties 
that appear to be far from the estimated data adaptive penalty factor, both to allow for 
less overall penalization and to explore different relative penalties for the two blocks. 
Our motivation comes from the observation that when conducting stability selection, it 
is more desirable to err on the side of too little penalization than too much. In the for-
mer case, non-active variables are expected to vary randomly across different subsam-
ples and achieve low selection probability. In the latter case, however, the large amount 
of penalization might negatively affect the power to identify active variables.

We set 0.55 as the threshold for selection, and ended up with selecting two CpGs: 
cg27039118 (estimated selection probability: 0.56), cg17065712 (0.56), and four genes: 
MAPRE2 (0.63), KCNMB1 (0.78), ATP1B1 (0.61) and SLC9A2 (0.6). Although they were 
all included in the analysis based on their reported association with smoking, none of 
these selected genes nor CpGs seem to have an established link to lung cancer.

The TCGA lung adenocarcinoma dataset

We further illustrate our method on LUng Adenocarcinoma Dataset (LUAD) publicly 
available from TCGA. We downloaded the data from https:// openml. org/ search? type= 
data & status= any & id= 42297, following the instructions in [7].

Data consist of survival times for 426 subjects diagnosed with lung adenocarcinoma. 
For each subject, data include information on a small number of clinical variables (age, 
sex, smoking history and cancer stage) as well as gene expression level (mRNA) and copy 
number variation (cnv).

To illustrate our method, we defined a binary response variable describing survival 
status at a three year mark (1 = alive, 0 = dead). Subjects that were censored prior to the 
three year mark were excluded from the main analysis.

This dataset does not come from a case control study, so for the purpose of the illus-
tration, we matched subjects on the basis of the available clinical information. The 1:1 
matching was exact on sex and based on the Mahalanobis distance for age and smoking 
history (for further details, we refer to the documentation of the R package MatchIt 
[8]. This left us with 65 case–control pairs.

Our goal was to identify, among measured features, those that are associated with 
the survival status three years from diagnosis. The total number of available mRNAs 

https://openml.org/search?type=data%20&status=any%20&id=42297
https://openml.org/search?type=data%20&status=any%20&id=42297
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and copy number variations was more then 80000, so we performed initial filtering 
to select 1000 to include in the conditional logistic regression model. To this aim, we 
defined a binary variable having value 1 if the subject was diagnosed with stage III 
cancer and 0 otherwise (stages Ib and IIa). We then carried out two sample t-tests 
comparing mean levels of each feature in stage III group vs. others and selected those 
having lowest p-values. Among 1000 selected features, 802 were copy number vari-
ations and 198 were mRNAs. Filtering was performed on data not used in the main 
analysis, that is, on subjects not included in the 65 matched case - control pairs.

Our algorithm for data adaptive choice of penalty factors suggested excluding cnv 
from further analysis. For illustration purposes, we decided to keep them and consid-
ered an adhoc vector of penalty factors (4, 1) that corresponds to penalizing the cnv 
block 4 times as much as that of mRNA. For this vector of penalty factors, we found 
the optimal � = 9.37 . We thus fit a penalized conditional logistic regression model 
with the vector � = (40, 10)⊤ and α = 0.6 . This gave us 8 non-zero coefficients for 
the mRNA block, six of which are shown in Fig. 2. The remaining two correspond to 
novel genes, at the moment not annotated. No cnvs were selected.

We then performed stability selection with the list of penalty vectors: (7,  4),  (15, 
5),    (4, 8), (2, 6). As in the previous example, we considered a wider range of penalty 
vectors to give variables of each block a chance to enter the model. For the choice 
B = 50 , the analysis took 26 s on a personal computer. Estimated selection probabili-
ties are shown in Fig. 3. We see that setting the threshold at 0.55 leads to three stably 
selected features, all mRNAs also present in Fig. 2, shown in green. The importance of 
these features in the given context is, however, unclear.

Conclusions
In this work we have presented our implementation of an algorithm that allows for 
fitting high dimensional conditional logistic regression models with covariates com-
ing from different data sources. The output of the proposed method is a set of vari-
ables significantly associated with case–control status. To the best of our knowledge, 
no such software has so far been available in the statistical software R.

Fig. 2 Non-zero estimated coefficients in the LUAD study. Those selected by stability selection are plotted in 
green
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In the simulation study and the data application, we considered 1:1 matching, but the 
proposed method is suitable also for a general 1:k matching, for k ≥ 1 , where each case 
is matched to k controls.

In our implementation, we have opted for a data adaptive method for selecting penalty 
parameters that estimates tentative penalized model(s) and assigns less penalty to blocks 
that have higher mean estimated coefficients. Of course, there are many other sensible 
options for the choice of data adaptive penalty factors (see ipflasso R package). The 
user is free to combine the proposed estimation procedure with an arbitrary procedure 
for selecting penalty parameters.

We have implemented stability selection with the aim of stabilizing the obtained 
results in terms of selected variables. However, stability selection can also be used for 
Type 1 error control. In particular, [14] show how to bound the expected number of 
selected inactive variables by means of stability selection. Nevertheless, their method for 
ensuring error control relies on a nontrivial choice of tuning parameters, which is an 
interesting research question on its own. For this reason, we did not pursue this question 
in the present contribution.

Availability and requirements
penalizedclr is implemented in R. Release versions are available on CRAN and 
work on all major operating systems. The development version is available at https:// 
github. com/ verad jordj ilovic/ penal izedc lr.

Project name: penalizedclr R package
Project home page: https:// CRAN.R- proje ct. org/ packa ge= penal izedc lr
Operating system(s): Platform independent.
Programming language: R
Other requirements: No.
License: MIT + file LICENSE
Any restrictions to use by non-academics: No.

Fig. 3 Selection probabilities for the considered features. The dashed line y = 0.55 represents the considered 
threshold for inclusion

https://github.com/veradjordjilovic/penalizedclr
https://github.com/veradjordjilovic/penalizedclr
https://CRAN.R-project.org/package=penalizedclr
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Appendix A: Technical details
The conditional logistic regression model

We consider a binary outcome Y and its association with a vector of covariates X 
grouped into P blocks: X1,X2, . . . ,XP , where P ≥ 2 . We assume that available observa-
tions come from a matched case–control study, so that they are grouped into n clusters, 
each with one case and at least one control. We assume that the relationship between Y 
and X = (X1, . . . ,XP) can be described by the conditional logistic regression model:

where each observation is indexed by two indices: the first one indicating the clus-
ter i ∈ {1, . . . , n} , and the second one indicating the observation within the cluster 
l = 1, . . . ,K  , where K is the size of the cluster, common for all clusters.

Estimation

The interest lies in estimating β , while cluster specific effects β0i , i = 1, . . . , n are treated 
as nuisance. If, without loss of generality, we assume that the index of a case is 1 within 
each cluster, the inference is based on the so-called conditional likelihood:

representing the likelihood conditional on there being exactly one case within each 
cluster.

Usually, the estimate of β is obtained by maximizing the conditional log likelihood 
log L(β) . When the dimension of the parameter is high with respect to available sample 
size, this approach fails and the problem of estimation is commonly addressed by intro-
ducing a penalty term. The estimate of β is then obtained by minimizing:

where � > 0 is a tuning parameter, and the L1 norm, denoted as ‖β‖1 , represents a popu-
lar penalty choice.

In the presence of blocks of covariates, β naturally partitions into subparamateres cor-
responding to the P blocks as β = (β1, . . . ,βP) . In our approach we allow for different 
penalites for different blocks, so that the estimate of β is obtained by minimizing:

We also consider and implement the elastic net penalty so that the estimate of β is 
obtained by minimizing:

(A1)logit[P(Yil = 1)] = log
P(Yil = 1)

1− P(Yil = 1)
= β0i + X

⊤
il β ,

(A2)L(β) =

n
∏

i=1

Li(β) =

n
∏

i=1

exp
{

X
⊤
i1β

}

∑K
l=1 exp

{

X
⊤
il β

}
,

(A3)− log L(β)+ ��β�1,

(A4)− log L(β)+

P
∑

p=1

�p�β
p�1.

(A5)− log L(β)+

P
∑

p=1

�p�β
p�1 +

1− α

2α

P
∑

p=1

�p�β
p�2,
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where α ∈ (0, 1] is the so-called ”mixing” parameter. Note that this is a slightly different 
parametrization of the penalty term from the one analogous to the glmnet

Note also that our algorithm is not able to estimate pure ridge models α = 0.

Choice of the tuning parameters

Fitting the penalized conditional logistic regression model in (A5) requires setting P + 1 
parameters: the vector of penalties � = (�1, . . . , �P)

⊤ and the elastic net parameter α.
The elastic net parameter determines the balance between the L1 and the L2 penalty 

and is typically considered a higher order parameter that is either set apriori on subjec-
tive grounds or after experimenting with a few different values, see “An introduction to 
glmnet” https:// glmnet. stanf ord. edu/ artic les/ glmnet. html.

The vector � = (�1, . . . , �P)
⊤ determines the level of penalization. In penalizedclr, 

the vector of penalties is parameterized as the product of the scalar � , determining the 
overall level of penalization and the vector of penalty factors: (1, . . . , �P/�)⊤ , determin-
ing the relative penalization for different blocks.

The scalar parameter is determined by cross-validation as follows. A subset of strata 
is left out at random. Without loss of generality, we assume that strata indexed 1, . . . ,m 
are left out. A penalized conditional logistic regression model is fit to the non left out 
strata for a sequence of � . For each � , the cross validated log conditional likelihood is 
computed as

where log L(m) is the conditional log likelihood computed on strata 1, . . . ,m , and β̂−(m) 
is the estimate of β obtained by minimizing the penalized conditional log likelihood in 
(A5) on data excluding strata 1, . . . ,m . The optimal � maximizes (A6). In our implemen-
tation, we choose the value of � following the “1 standard error” rule: we choose � that 
selects the simplest model with estimated CV (�) within 1 standard deviation of the min-
imum CV.

The vector of penalty factors is chosen in a data adaptive fashion by a heuristic strat-
egy described in Section  "Data adaptive choice of penalty parameters". Note that we 
set relative penalties inversely proportional to the mean of estimated coefficients from 
a tentative conditional logistic model in (A3), however different functions of estimated 
coefficients could be used instead. For instance, an empirical study in [16] compares the 
performance of the method based on the arithmetic and geometric means.

A related question is how to specify the set of penalty vectors when performing sta-
bility selection. Our advice is to use the vector found by the data adaptive strategy and 
cross validation as a starting point, and to include vectors with lower levels of overall 
penalization as well as those with different vectors of penalty factors. In this way, the 
power to select important variables should increase, and variables of all blocks are given 
a chance to enter the model. We refer to examples in Sections "The NOWAC lung can-
cer dataset" and "The TCGA lung adenocarcinoma dataset" for illustration.

α

P
∑

p=1

�p�β
p�1 +

1− α

2

P
∑

p=1

�p�β
p�2.

(A6)CV (�) = log L(m)(β̂−(m)),

https://glmnet.stanford.edu/articles/glmnet.html
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