
A permutable MLP‑like architecture 
for disease prediction from gut metagenomic 
data
Cong Jiang1,2, Jian Yang3,4, Xiaogang Peng2* and Xiaozheng Li5,6* 

Introduction
Metagenomics has made significant advances in the fields of microbial ecology, evolu-
tion, and diversity by applying a suite of genomic technologies and bioinformatics tools 
to directly access the genetic content of entire biological communities over the past two 
decades [1]. The development of next-generation sequencing technologies has enabled 
researchers to study the human microbiome, and has made significant progress in the 
characterization of the microbiome associated with healthy and diseased individuals 
[2]. In particular, shotgun metagenomic sequencing technology has enabled research-
ers to obtain a higher resolution profile of the microbial community at the species- and 
strain-levels [3, 4]. Extensive metagenomic studies have shown that the gut microbiota 
is closely associated with various host diseases, including obesity [5], type 2 diabetes [6], 
cirrhosis [7], etc. [8].
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There are trillions of microbes inhabiting the human intestine, forming a complex 
and stable ecosystem that is closely related to human health [9]. The characteristics of 
a metagenomic sample are commonly described by the relative abundance of microbial 
taxa at one of the taxonomic levels(i.e. Phylum, Class, Order, Family, Genus, and Spe-
cies) [10]. Although next-generation sequencing technologies have greatly enhanced our 
capacity to characterize the metagenomic data, we still face challenges related to high 
dimensionality, limited sample sizes, and sparse features in metagenomic data.

In the past few years, disease prediction models based on metagenomic data can be 
broadly categorized into two major types: 1) traditional machine learning-based predic-
tion models, and 2) deep learning-based prediction models. Traditional machine learn-
ing models are commonly used for metagenomic data include Random Forest (RF), Least 
Absolute Shrinkage and Selection Operator (LASSO), and Support Vector Machines 
(SVM) [11–13]. These methods utilize unordered vectors of species-level relative abun-
dance or strain-specific markers for performing supervised classification learning. How-
ever, this high-dimensional and sparse tabular data is not the optimal data format for 
achieving efficient deep learning [14].

One distinctive characteristic of metagenomic data is the phylogenetic tree that estab-
lishes connections among microbial species, with closely related species exhibiting simi-
lar relationships in the environment and disease [15]. Therefore, the input features of 
deep learning models typically integrate phylogenetic information to transform raw data 
into “synthetic images” or 2D matrices. Recent studies have demonstrated that trans-
forming raw metagenomic features into feature representations that incorporate phylo-
genetic tree information can significantly enhance the classification performance of deep 
learning models [10, 15–17]. Marculescu et al. [16] and Nguyen et al. [17] introduced a 
phylogenetic-sorting method that enables effective exploration of convolutional neural 
networks for disease classification. The phylogenetic-sorting approach involves extract-
ing phylogenetic information by sorting the microbial features based on their taxonomic 
annotation in alphabetical order, by concatenating the strings of their taxonomy [16, 17]. 
However, this approach disregards the relationships between species sharing the same 
ancestor but having greater alphabetical distances in their names. Reiman et al. [10] and 
Zhu et  al. [15] respectively developed PopPhy-CNN and Cascade Deep Forest, which 
were trained using 2D matrices incorporating embedded phylogenetic tree informa-
tion as input data. However, their embedding approach [10, 15] uses the 2D matrix that 
includes all nodes of the phylogenetic tree, resulting in sparsity in the upper part of the 
matrix due to the branching and hierarchical structure of the tree.

In this study, we addressed the challenge of data sparsity in the matrix when trans-
forming raw metagenomic features into matrix representations that incorporate phy-
logenetic tree information, achieved by reducing the matrix height to solely focus on 
phylogenetic structure information derived from leaf nodes. This strategy aims to pre-
serve the integrity of the phylogenetic tree structure while enhancing computational 
efficiency, resulting in a denser representation in the form of the 2D matrix. Moreover, 
by drawing inspiration from the successful utilization of a Permutable MLP-like archi-
tecture in the field of image classification [18], we introduced MetaP, the Permutable 
MLP-like architecture for the classification of metagenomic data that incorporates the 
embedded phylogenetic information. We demonstrated the competitive performance 
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and robustness of MetaP in both binary and multiclass classification tasks through 
benchmark testing with several well-established machine learning methods (RF, SVM) 
[11] and other deep learning methods (MetaNN [16], PopPhy-CNN [10]) on three pub-
licly available datasets. Finally, we incorporated the SHAP [19] method for interpretable 
analysis of our model predictions, aiming to uncover the associations between the iden-
tified crucial microbes and specific diseases.

Materials and methods
In this section, we outline the key components as depicted in Fig. 1. Additionally, we dis-
cuss the application of the SHAP method in interpreting model outputs and provide an 
overview of the dataset source.

Representing metagenomic data using 2D matrices

The process of representing metagenomic abundance data using 2D matrices based 
on the phylogenetic tree, similar to PopPhy [20], is depicted in Fig. 1A. We utilized 
PhyloT [21] to generate phylogenetic trees, assuming a constant distance of one 
between nodes in the tree. Each feature in the metagenomic samples is referred to as 
an Operational Taxonomic Unit (OTU), and we use species-level relative abundances 
obtained from metagenomic sequencing as the values for these OTUs. For each raw 
metagenomic dataset, we first filter out OTUs that exhibit a prevalence lower than 
the threshold of 10% in all classes, and then generate a corresponding pruned phylo-
genetic tree based on the observed OTUs. This tree serves as a template to construct 
a populated tree for each sample in the dataset. The leaf nodes are then populated 
with their corresponding OTU abundance values, while the abundance of each non-
leaf node is determined by summing the abundances of its child nodes. The 2D matrix 

Fig. 1 Overview of MetaP model. A Example of populating and embedding phylogenetic tree. We only 
consider embedding the phylogenetic structure information derived from the leaf nodes of the phylogenetic 
tree into the matrix, thereby avoiding data sparsity within the matrix. B Basic architecture of the proposed 
MetaP. We split the matrix into fixed-size patches, linearly embed each of them, and then feed them into a 
sequence of standard Permutators [18] for feature encoding. A global average pooling layer followed by a 
fully-connected layer is finally used to predict the class
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representation is generated by performing a level-order traversal of the phylogenetic 
tree, populating the matrix in a top-to-bottom and left-to-right order, and assigning 
zeros to empty positions without any nodes. However, since the OTU value repre-
sents the species-level relative abundance within the sample, ranging from 0 to 100, 
and with the cumulative sum of each sample equating to 100, employing the afore-
mentioned method to populate the node values of parent nodes as the sum of their 
respective child node values leads to diminished discriminability in the upper por-
tion of the tree. Additionally, the branching and hierarchical structure of the tree 
also result in sparsity in the upper part of the matrix. This prompts us to reduce the 
matrix height to include only the phylogenetic structure information derived from 
the leaf nodes, allowing us to obtain a more compact and efficient matrix representa-
tion of the data.

A permutable MLP‑like architecture

The Permutable MLP-like architecture [18], proposed by Hou et  al., is a conceptu-
ally simple and data efficient MLP-like architecture designed for visual recognition. 
In this study, we explore the application of this architecture in the classification of 
metagenomic data. The basic architecture of the Permutable MLP-like networks can 
be found in Fig. 1B. Our network takes a 2D matrix as input and uniformly splits it 
into a sequence of non-overlapping matrix patches. Each patch is mapped into a lin-
ear embedding (or called token), using the same projection matrix. These tokens are 
subsequently fed into a sequence of Permutators to encode both spatial and channel 
information. The resulting tokens are finally processed using global average pooling 
followed by a linear classifier to make class predictions.

As the bottom-right corner of Fig. 1B illustrates, in order to learn the spatial and chan-
nel information of the matrix, Hou et al. [18] introduces the Permutator block, which 
consists of two components: Permute-MLP and Channel-MLP. As shown in Fig.  2, 
The Permute-MLP module accepts 3-dimensional token representations and consists 
of three branches, each responsible for encoding information along the height, width, 
or channel dimension [18]. The Channel-MLP module shares a similar structure to the 
feed forward layer in Transformers [22] that comprises two fully-connected layers with 
a GELU activation in the middle [18]. Mathematically, given an input C-dim tokens 
X ∈ R

H×W×C , the formulation of Permutator can be written as follows:

Fig. 2 Basic structure of the Permute-MLP layer. The Permute-MLP layer contains three branches dedicated 
to encoding features across the dimensions of height, width, and channel. Subsequently, the outputs from 
these branches are combined through element-wise addition, followed by a fully-connected layer for feature 
fusion
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where, LN refers to LayerNorm [18]. The output Z will serve as the input to the next Per-
mutator block until the last one [18].

Interpreting model predictions using SHAP

Shapley Additive Explanations (SHAP) [19], proposed by Lundberg and Lee in 2017, is a 
method for interpreting the outputs of any complex models. This method is grounded in 
a solid theoretical framework derived from game theory, aiming to estimate SHAP val-
ues, which represent the contribution of each input feature to the final model prediction. 
In our experiment, we employed the Kernel SHAP Explainer module(available at https://
github.com/slundberg/shap), which utilizes a specially-weighted local linear regres-
sion approach to estimate SHAP values. This method relies on a background dataset for 
training and simulates feature absence by substituting the feature with the values it takes 
in the background dataset. The importance of each feature in the kernel Shapley value is 
determined by comparing the prediction value obtained with the feature to the predic-
tion value obtained without it. Positive SHAP values suggest that a feature has a positive 
impact on the model’s prediction, while negative values suggest a negative impact. The 
magnitude of the value indicates the strength of the contribution, with larger magni-
tudes indicating greater influence. In our experiment, to obtain the SHAP values cor-
responding to each feature, we performed a 10-fold cross-validation and computed the 
average of the SHAP values obtained from each fold. During each fold of training, due to 
computational resource limitations, we utilized the k-means [23] function to summarize 
the training dataset as the background dataset for Kernel SHAP, and then calculated the 
average SHAP value for all features of the samples in the test set.

Datasets

In this study, we select publicly available datasets from the MetAML package [11]: 
Cirrhosis, Type 2 Diabetes (T2D), and Obesity datasets. Table  1 provides a summary 
of these datasets. The Cirrhosis dataset comprises 114 cirrhotic patients and 118 
healthy individuals. The T2D dataset consists of 170 patients with type 2 diabetes and 
174 instances of control samples. The Obesity dataset consists of 253 samples, where 
89 samples have a BMI lower than 25 kg/m2 , while the remaining 164 samples have a 
BMI greater than 30 kg/m2 . In the MetAML study [11], all data were obtained through 
metagenomic shotgun sequencing [24], and the OTUs for each sample were obtained 
using MetaPhlAn2 [25] with default parameters. In our study, the OTUs are aggregated 

(1)Y =Permute-MLP(LN(X))+ X,

(2)Z =Channel-MLP(LN(Y))+ Y,

Table 1 Summary of the datasets used in the experiments

Dataset # Total samples # Case samples # Control samples # Features

Cirrhosis 232 114 118 542

T2D 344 170 174 572

Obesity 253 164 89 465
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at the species level within each dataset. For any OTU that is classified as “unclassified” at 
the species level, the label of the next highest taxonomic level is assigned to that OTU.

Results and discussion
In this section, we will provide an exposition of the experimental setup and subsequently 
delve into an analysis and discussion of the experimental results.

Experimental setup

The Permutable MLP-like network structure parameter settings for our model applied to 
metagenomic classification are described as follows. Due to the requirement of ensuring 
divisibility between the patch dimensions and the 2D matrix, we implemented specific 
parameter settings. Specifically, the patch width was set to 3, and during the construc-
tion of the 2D matrix, we ensured that its width was divisible by 3. Furthermore, the 
patch height was set to match the reduced matrix height, which typically does not 
exceed 8. For example, in the T2D dataset, the matrix height was only 5.

There are several hyper parameters in MetaP, including the number of Permutator 
blocks Pn , the channel dimension split segments Sn , the hidden units in the neural network 
hu , the initial learning rate lr of the Adam [26] optimizer, the batch size bs, the number of 
iterations epoch, and two parameters (step size α and decay factor γ ) associated with the 
Step learning rate scheduler (StepLR) provided by PyTorch for learning rate scheduling. 
These parameters are explored over different combinations from the following ranges: 
Pn ∈ {1, 2, 3} , Sn ∈ {2, 4, 6, 8, 10} , hu ∈ {32, 48, 64, 128} , lr ∈ {0.05, 0.005, 0.0005, 0.00005} , 
bs ∈ {16, 32, 64, 128} , epoch ∈ {10, 20, 30, 40, 50} , α ∈ {5, 10} , γ ∈ {0.1, 0.3, 0.5, 0.7} . After 
adjustments, we identified the optimal parameters for MetaP in subsequent experiments 
as Pn = 1, Sn = 8, hu = 48, lr = 0.0005, bs = 32, epoch = 20,α = 5, γ = 0.5.

In order to verify the effectiveness of our proposed method, we compared it with 
the MetAML [11], MetaNN [16], and PopPhy-CNN [10] methods proposed in previ-
ous studies. Besides, for the other comparison models, we followed the recommended 
hyperparameter settings and model architectures outlined in their respective original 
papers or the provided open-source code. In our experiment, we performed 10-fold 
cross-validation 10 times and then computed the average to ensure the accuracy of our 
results. We employed five metrics, namely Area under curve-receiver operating charac-
teristic (AUC), Matthews correlation coefficient (MCC), Precision, Recall, and F1 score, 
to comprehensively evaluate the model from different perspectives.

We separately evaluated the performance of our model in binary and multiclass clas-
sification tasks. For binary classification task, we conducted experiments on the three 
publicly available datasets mentioned in previous sections. For multiclass classification 
task, we created a Multi-Disease dataset consisting of 829 samples with multiple dis-
eases by combining these three datasets based on species-level abundance features pre-
sent in each sample.

The classification performance of models

The classification performance results of different models on the dataset are pre-
sented in Table 2, and for better visual comparison, the corresponding ROC curves 
of RF, SVM, MLPNN, 1DCNN, PopPhy-CNN, and MetaP are shown in Fig. 3. Among 
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the machine learning algorithms, Random Forest(RF) exhibits the best classification 
performance in the metagenomic datasets. Our experimental results demonstrate 
that our proposed MetaP model achieved the best classification performance on the 

Table 2 Classification performance comparison of MetaP with existing methods

Mean AUC, MCC, Precision, Recall, and F1 scores from 10‑fold cross‑validation (repeated 10 times) are reported. Best values 
are highlighted in bold, standard deviation is shown in parentheses

DataSet Metric MetAML MetaNN PopPhy‑
CNN

MetaP

RF SVM MLPNN 1DCNN

Cirrhosis AUC 0.947 
(0.045)

0.934 (0.053) 0.896 (0.063) 0.881 (0.066) 0.922 (0.062) 0.942 (0.049)

MCC 0.759 
(0.119)

0.718 (0.129) 0.638 (0.151) 0.589 (0.165) 0.719 (0.142) 0.749 (0.124)

Precision 0.884 
(0.058)

0.864 (0.064) 0.824 (0.076) 0.801 (0.082) 0.865 (0.069) 0.879 (0.060)

Recall 0.875 
(0.061)

0.855 (0.065) 0.815 (0.075) 0.787 (0.084) 0.854 (0.073) 0.870 (0.065)

F1 0.874 
(0.061)

0.853 (0.066) 0.813 (0.076) 0.784 (0.086) 0.852 (0.074) 0.869 (0.066)

T2D AUC 0.746 (0.075) 0.584 (0.177) 0.680 (0.079) 0.641 (0.073) 0.721 (0.076) 0.784 (0.071)
MCC 0.335 (0.144) 0.193 (0.186) 0.252 (0.153) 0.189 (0.129) 0.304 (0.161) 0.448 (0.134)
Precision 0.669 (0.072) 0.534 (0.186) 0.628 (0.078) 0.597 (0.066) 0.654 (0.082) 0.727 (0.068)
Recall 0.665 (0.071) 0.594 (0.091) 0.624 (0.074) 0.592 (0.063) 0.649 (0.079) 0.721 (0.067)
F1 0.663 (0.072) 0.546 (0.149) 0.620 (0.076) 0.586 (0.064) 0.646 (0.080) 0.719 (0.067)

Obesity AUC 0.652 (0.098) 0.626 (0.107) 0.593 (0.115) 0.543 (0.124) 0.622 (0.110) 0.661 (0.108)
MCC 0.039 (0.169) 0.037 (0.174) 0.141 (0.190) 0.043 (0.205) 0.161 (0.213) 0.166 (0.189)
Precision 0.549 (0.145) 0.533 (0.141) 0.611 (0.089) 0.562 (0.124) 0.620 (0.100) 0.627 (0.097)
Recall 0.640 (0.041) 0.631 (0.056) 0.614 (0.088) 0.614 (0.077) 0.605 (0.098) 0.644 (0.071)
F1 0.542 (0.053) 0.544 (0.065) 0.602 (0.086) 0.561 (0.080) 0.604 (0.098) 0.618 (0.078)

Multi-
disease

AUC – – – – – –

MCC 0.542 (0.062) 0.411 (0.073) 0.437 (0.074) 0.438 (0.085) 0.518 (0.067) 0.558 (0.063)
Precision 0.711 

(0.044)
0.622 (0.049) 0.620 (0.050) 0.632 (0.058) 0.662 (0.053) 0.699 (0.044)

Recall 0.687 (0.040) 0.607 (0.046) 0.614 (0.048) 0.619 (0.055) 0.644 (0.051) 0.693 (0.043)
F1 0.678 (0.042) 0.596 (0.048) 0.610 (0.050) 0.613 (0.057) 0.637 (0.055) 0.691 (0.044)

Fig. 3 Comparing the ROC curves of MetaP and other five methods based on 10-fold cross-validation on the 
three disease datasets
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Obesity, T2D, and Multi-Disease datasets, while exhibiting slightly lower perfor-
mance compared to RF on the Cirrhosis dataset. We attribute the superior classifica-
tion performance of our MetaP model on these datasets to their larger sample size 
compared to the Cirrhosis dataset. Previous studies [27] have also demonstrated that 
deep learning models generally outperform traditional machine learning methods 
when applied to datasets with a larger number of samples.

Additionally, we trained the PopPhy-CNN and MetaP models on both sparse and 
dense matrices. Our experimental results, as shown in Table 3, demonstrate that in 
most cases, reducing the matrix height to mitigate data sparsity does not have an 
adverse impact on the model’s classification performance. On the contrary, the mod-
el’s classification performance exhibits a slight improvement, which may be attrib-
uted to the enhanced focus on important features and the reduction of interference 
from redundant information. However, the PopPhy-CNN model using convolu-
tional neural network experiences a slight decline in classification performance for 
the Obesity dataset with fewer features, whereas our proposed MetaP model remains 
unaffected. Overall, we believe that reducing the matrix height in this manner is 
effective in improving computational efficiency without compromising classification 
performance.

Table 3 Comparison of PopPhy-CNN and MetaP on dense versus sparse matrix classification 
performance

We label the matrix without height reduction as “Sparse” and the matrix with height reduction as “Dense”. The column 
header “Difference” represents the disparity in classification performance of the same model trained on dense matrix 
compared to sparse matrix. Mean AUC, MCC, Precision, Recall, and F1 scores from 10‑fold cross‑validation (repeated 10 
times) are shown. Standard deviation is shown in parentheses

DataSet Metric PopPhy‑CNN MetaP

Sparse Dense Difference Sparse Dense Difference

Cirrhosis AUC 0.922 (0.062) 0.928 (0.048) +0.006 0.934 (0.050) 0.942 (0.049) +0.008

MCC 0.719 (0.142) 0.731 (0.131) +0.012 0.744 (0.153) 0.749 (0.124) +0.005

Precision 0.865 (0.069) 0.872 (0.064) +0.007 0.877 (0.075) 0.879 (0.060) +0.002

Recall 0.854 (0.073) 0.859 (0.067) +0.005 0.867 (0.078) 0.870 (0.065) +0.003

F1 0.852 (0.074) 0.857 (0.068) +0.005 0.866 (0.079) 0.869 (0.066) +0.003

T2D AUC 0.721 (0.076) 0.725 (0.083) +0.004 0.790 (0.070) 0.784 (0.071) −0.006

MCC 0.304 (0.161) 0.324 (0.149) +0.020 0.425 (0.144) 0.448 (0.134) +0.023

Precision 0.654 (0.082) 0.665 (0.077) +0.011 0.715 (0.074) 0.727 (0.068) +0.012

Recall 0.649 (0.079) 0.659 (0.073) +0.010 0.710 (0.071) 0.721 (0.067) +0.011

F1 0.646 (0.080) 0.655 (0.074) +0.009 0.708 (0.071) 0.719 (0.067) +0.011

Obesity AUC 0.622 (0.110) 0.625 (0.110) +0.003 0.667 (0.110) 0.661 (0.108) −0.006

MCC 0.161 (0.213) 0.139 (0.193) −0.022 0.155 (0.199) 0.166 (0.189) +0.011

Precision 0.620 (0.100) 0.609 (0.092) −0.011 0.616 (0.103) 0.627 (0.097) +0.011

Recall 0.605 (0.098) 0.595 (0.089) −0.010 0.643 (0.074) 0.644 (0.071) +0.001

F1 0.604 (0.098) 0.593 (0.089) −0.011 0.615 (0.085) 0.618 (0.078) +0.003

Multi-disease AUC – – – – – –

MCC 0.518 (0.067) 0.527 (0.068) +0.009 0.554 (0.060) 0.558 (0.063) +0.004

Precision 0.662 (0.053) 0.668 (0.053) +0.006 0.696 (0.042) 0.699 (0.044) +0.003

Recall 0.644 (0.051) 0.653 (0.050) +0.009 0.689 (0.041) 0.693 (0.043) +0.004

F1 0.637 (0.055) 0.646 (0.053) +0.011 0.686 (0.041) 0.691 (0.044) +0.005
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Identification of disease‑associated microbial features

To interpret the black box nature of the MetaP model and identify the microbial features 
that play a significant role in classification, we utilized the Kernel SHAP method on our 
model to obtain the SHAP values corresponding to each feature from a 10-fold cross-
validation. In Fig. 4, we present the top 20 important microbial features based on the 
SHAP values in each of the three disease datasets, along with their average relative abun-
dances in the samples. Similarly to previous studies [11], We found that the importance 
of each microbial feature was not strongly correlated with its average relative abundance 
across samples, indicating the complexity of the microbial system.

In the Cirrhosis dataset, which exhibited the best performance in terms of model classifi-
cation, our model identified the following important microbial features: the Veillonella, Lac-
tobacillus, and Streptococcus genera. These important features were also identified in the 
original study [7, 28]. In the T2D and Obesity datasets, which exhibited lower classification 
accuracy, the important microbes identified by our model can serve as candidate sets for 
future experimental studies investigating the association between microbes and diseases. 
And our model also detected important species that have been previously reported in the 
literature. For example, associations between specific species such as Lactobacillus mucosae 
[29] and Olsenella spp. [30] with T2D patients, as well as associations between species like 
Ruminococcus bromii [31] and Eubacterium siraeum [32] with Obesity patients were iden-
tified. Additionally, we observed a correlation between the positive/negative SHAP values 
and the differences in the average abundance of microbes between the patients and healthy 
individuals, particularly in datasets with good classification performance. Microbes that 
have a higher relative abundance in the diseased population often exhibit positive SHAP 
values. For instance, in the Cirrhosis dataset, among the top 20 important microbes, only 
Megamonas spp. and Adlercreutzia equolifaciens showed higher abundance in the healthy 
population with negative SHAP values, while the remaining microbes exhibited higher rela-
tive abundance in the diseased population. In conclusion, we believe that improving the 

Fig. 4 The top 20 microbial features with the highest SHAP values in each of the three disease datasets. For 
each species, the SHAP values on the vertical axis decrease from top to bottom, while the two horizontal 
bars represent the average relative abundance observed in the healthy samples (depicted in green) and the 
diseased samples (depicted in red). The positive or negative signs inside the parentheses indicate the positive 
or negative values of the SHAP values
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classification performance of models on metagenomic data can unveil potential associa-
tions between microbes and diseases, warranting further investigation.

Conclusion
We applied a Permutable MLP-like architecture for disease prediction from metagenomic 
data. This network structure, compared to deep neural networks, allowed us to effec-
tively capture the phylogenetic information of microbes within the 2D matrix formed by 
embedding the phylogenetic tree. Additionally, we improved the embedding method of the 
phylogenetic tree based on PopPhy into the matrix by reducing the matrix height to accom-
modate only the phylogenetic structure information derived from the leaf nodes, thereby 
mitigating data sparsity and redundant information. We evaluated the performance of our 
model on three publicly available datasets and compared its effectiveness with established 
methods such as MetAML, MetaNN, and PopPhy-CNN, for both binary and multi-class 
classification tasks. Lastly, we presented the interpretability of our model’s predictions by 
incorporating the SHAP method.

We believe that our proposed MetaP model has contributed to the advancement of deep 
learning in the field of gut microbiome research, enabling the exploration of potential 
associations between gut microbiome and human diseases. Moreover, we found that deep 
learning models are better suited for large-scale sample datasets, indicating that data aug-
mentation for metagenomic data could be a promising research direction. In recent years, 
both metagenomics research and deep learning techniques have been rapidly advancing, it 
is imperative for us to actively explore the rational integration of these two fields, leveraging 
the research achievements in computer science to propel the development of metagenomic 
data analysis.
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