
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo‑
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Spahiu et al. BMC Bioinformatics (2024) 25:239
https://doi.org/10.1186/s12859-024-05858-8

BMC Bioinformatics

PyChelator: a Python-based Colab and web
application for metal chelator calculations
Emrulla Spahiu1†, Esra Kastrati2† and Mamta Amrute‑Nayak1*

Abstract

Background: Metal ions play vital roles in regulating various biological systems,
making it essential to control the concentration of free metal ions in solutions dur‑
ing experimental procedures. Several software applications exist for estimating
the concentration of free metals in the presence of chelators, with MaxChelator being
the easily accessible choice in this domain. This work aimed at developing a Python
version of the software with arbitrary precision calculations, extensive new features,
and a user‑friendly interface to calculate the free metal ions.

Results: We introduce the open‑source PyChelator web application and the Python‑
based Google Colaboratory notebook, PyChelator Colab. Key features aim to improve
the user experience of metal chelator calculations including input in smaller units,
selection among stability constants, input of user‑defined constants, and convenient
download of all results in Excel format. These features were implemented in Python
language by employing Google Colab, facilitating the incorporation of the calculator
into other Python‑based pipelines and inviting the contributions from the community
of Python‑using scientists for further enhancements. Arbitrary‑precision arithmetic
was employed by using the built‑in Decimal module to obtain the most accurate
results and to avoid rounding errors. No notable differences were observed compared
to the results obtained from the PyChelator web application. However, comparison
of different sources of stability constants showed substantial differences among them.

Conclusions: PyChelator is a user‑friendly metal and chelator calculator that provides
a platform for further development. It is provided as an interactive web application,
freely available for use at https:// amrut elab. github. io/ PyChe lator, and as a Python‑
based Google Colaboratory notebook at https:// colab. resea rch. google. com/ github/
Amrut eLab/ PyChe lator/ blob/ main/ PyChe lator_ Colab. ipynb.

Keywords: Metal, Chelator, PyChelator, Web application, Python, Calcium, EGTA

Background
The crucial role of metal ions and their ligands, known as chelators, extends across a
myriad of biological phenomena, ranging from hemoglobin interacting with iron to chlo-
rophyll binding magnesium. The term “chelate” originating from the Greek word “chela”
(the great claw of lobsters [1]), refers to the complex formation between the metal ions
and chelators using coordinate bonding.

†Emrulla Spahiu and Esra Kastrati
have contributed equally to this
work.

*Correspondence:
amrute.mamta@mh‑hannover.de

1 Institute of Molecular and Cell
Physiology, Hannover Medical
School, Carl‑Neuberg‑Str. 1,
30625 Hannover, Germany
2 Lassonde School
of Engineering, York University,
Toronto M3J 1P3, Canada

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05858-8&domain=pdf
https://amrutelab.github.io/PyChelator
https://colab.research.google.com/github/AmruteLab/PyChelator/blob/main/PyChelator_Colab.ipynb
https://colab.research.google.com/github/AmruteLab/PyChelator/blob/main/PyChelator_Colab.ipynb

Page 2 of 8Spahiu et al. BMC Bioinformatics (2024) 25:239

Maintaining defined free metal ion concentrations in experimental procedures is
often critical due to the strong regulatory effects on many isolated protein functions
and intracellular systems. Divalent metals like calcium, magnesium, and zinc are com-
monly encountered in biological studies with chelators like EGTA (ethylene glycol-bis(β-
aminoethyl ether)-N,N,N′,N′-tetraacetic acid) also known as Egtazic acid, Adenosine
triphosphate (ATP), and Ethylenediaminetetraacetic acid (EDTA), which are frequently
employed to buffer these metals. However, direct measurement of free metal ions often
presents a challenge due to the limited availability of ion-specific electrodes in many lab-
oratories. Consequently, several software calculators have been developed to estimate
the free metal concentrations, such as ‘SPECS’ by Fabiato [2], ‘Chelator’ by Schoenmak-
ers et al. [3], ‘Bound and determined’ by Brooks and Storey [4], ‘Calcium’ by Föhr et al.
[5], and ‘MaxChelator’ by Bers et al. [6]. The distinguishing factors among these tools
lie in their availability, user interface, and the stability constants utilized, with minor
variations in calculation methodologies. These calculations take into account the affin-
ity of chelators to metal ions and protons at specific temperature, ionic strength, and
pH. As most stability constants are typically measured at standard conditions (e.g., 20 or
25 °C, 0.1 M ionic strength), apparent stability constants are initially computed for the
user-defined experimental conditions, followed by the determination of the distribution
of species in the solution. Variations in results among different calculators arise from
the use of different protonation and metal-affinity stability constants. While older cal-
culators were programmed in languages less accessible today, MaxChelator developed
in JavaScript by Chris Patton in 2010 [6] is readily available through modern browsers.
However, the numerous calculators present in the literature do not allow the selection of
constants from other sources, while some allow only manual editing of the existing con-
stants. Therefore, development of a software that allows easy selection of the available
constants and entry of user-defined constants, alongside improvements in user interface
and accessibility, is expected to be a valuable advancement.

Metal chelator calculations involve multiple arithmetic operations on numbers with
many decimal places, potentially introducing rounding errors, as mentioned for JavaS-
cript-based MaxChelator [6]. JavaScript implicitly converts between strings and float-
ing-point numbers and it relies on the standard double-precision 64-bit binary format,
accurate up to 15 digits for integers and 17 for decimals [7, 8]. This inherent limitation
in precise representation of the decimals as binary can result in accumulated rounding
errors and inaccuracies in computed results. In contrast, Python, a contemporary pro-
gramming language that achieved high popularity in the scientific community, offers
several advantages. Python’s accessibility, extensive scientific libraries and the flexibility
in project integration make it an attractive choice [9]. Notably, Python supports a rich
variety of numeric data types (integer, float, and complex), and includes a built-in Deci-
mals module, facilitating precise handling of the decimals [10]. User-defined precision in
Python yields more reliable results, particularly in scientific computations. Metal-che-
lator calculators could benefit from such arbitrary-precision arithmetic with the aim to
minimize rounding errors.

To address these needs and concerns, we developed PyChelator web application
(https:// amrut elab. github. io/ PyChe lator/), an open source program, based on the well-
established and widely used Maxchelator framework. PyChelator offers enhanced user

https://amrutelab.github.io/PyChelator/

Page 3 of 8Spahiu et al. BMC Bioinformatics (2024) 25:239

experience and customization options. The Python code in a Google Colaboratory note-
book makes the PyChelator functionalities readily available to the Python-using scien-
tific community for further development.

Implementation
PyChelator web application uses JavaScript for calculations and utilizes HTML & CSS
for the frontend interface. In Python format, it is accessible as an interactive research
notebook (.ipynb) within Google Colaboratory, where users can enter the input param-
eters via form fields even without coding experience. Upon initiation of the web applica-
tion, the setup() method is invoked to load the selected chelators and constants, with
default constants sourced from the National Institute of Standards and Technology
(NIST) Database [11]. A schematic representation of the flow of functions to perform
the calculations is depicted in Fig. S1.

Results and discussion
The graphical user interface (GUI) of the PyChelator web application is designed for
simplicity of use and comprises three panels. In the left panel users select the calculation
mode (Free or Total metal concentration), enter the values for different environmental
parameters (i.e., temperature, pH, and ionic equivalence), specify the unit for concen-
tration input, and customize the content of the final report. The top panel features the
fields for users to input the concentrations of chelators and metals, and the middle panel
contains the buttons to do the calculations that are appended one after the other. Finally,
a download option enables users to export the results as a single Excel file. An easy-
to-follow tutorial of an example calculation and manual entry of constants are included
inside PyChelator, and shown in Fig. 1.

Fig. 1 Example uses of PyChelator. A An example shows how to calculate the free calcium concentration
from the total calcium in the assay buffer used in the in vitro motility assay. B The manual entry of stability
constants for other metals and chelators. In this case, constants for Zinc and Calcium buffered using EDTA
and EGTA were used [11]

Page 4 of 8Spahiu et al. BMC Bioinformatics (2024) 25:239

User‑friendly input and structured output
PyChelator facilitates the entry of smaller concentrations of chelators and metals
through a dropdown menu, enabling entry of values from molar (M) to nanomolar
range (M, mM, μM, and nM). Users can utilize the top panel to input the desired val-
ues for calculations in the selected unit. Notably, all results are consistently expressed
in molar units. Temperature is to be written in degrees Celsius (°C) and ionic strength
as equivalence of ions (Ie = 0.5∑Ci|zi|), as explained by Smith and Miller, rather than
the standard ionic strength [12]). A function to calculate the ionic equivalence inside
PyChelator is also included. Regarding the output, checkboxes were implemented in
the “Show in report” section in the left panel, in order to introduce user control over
the comprehensive parameters and the metals/ligands to be included in the report.
Additionally, PyChelator includes an option for the log-transformed values of the free
metal concentrations (− log10[free]), corresponding to the pX values (for example pCa
for free calcium). In the top panel, a field for purity of chelators was introduced, aim-
ing at addressing the reported significant impact of the chelator purity on calcula-
tions [6, 13]. Results are handled in a convenient way. The subsequent calculations
are dynamically appended to the middle panel upon clicking the “Calculate” button,
and all results can finally be downloaded as a single Excel file. A screenshot of the
PyChelator GUI, accompanied by annotations, is presented in Fig. 2. Collectively,

Fig. 2 Screenshot of PyChelator graphical user interface (GUI), illustrating the intuitive layout and
functionality. The left panel offers the selection of the desired mode of calculation (step 1), followed by the
choice of the constants to be utilized (step 2). Four different sources of constants are available. Additionally,
user‑defined constants can be entered. Users can specify the unit for concentration input of metal and
chelators (step 3), the buffer conditions (step 4), and the parameters for inclusion in the final report (step 5).
Subsequently, concentration values of chelators together with the measured or supplier‑indicated purity
should be specified (step 6), followed by the metal concentration (step 7). Finally, results can be calculated
through the “Calculate” button and downloaded as a single Excel file (step 8)

Page 5 of 8Spahiu et al. BMC Bioinformatics (2024) 25:239

these enhancements contribute to an improved user experience for a more efficient
and precise use of the calculator, compared to the pre-existing calculators.

A wide selection and manual input of stability constants
MaxChelator has two sources of absolute stability constants, i.e., the Chelator program
by Schoenmakers et al. [3], and NIST database [11]. The user has to choose the cal-
culator and do the calculations using one of these sources. PyChelator is a single page
application where users can switch constants by the use of a dropdown menu. Addition-
ally, there are two new constant sets added. One is sourced from Fabiato and Fabiato
[2, 14–16], and the other from the Calcium program by Föhr et al. [5]. The equilibrium
constants of ATP were corrected for a temperature of 20 °C, using the standard way by
employing the enthalpy of reactions, as explained in Bers et al. [6]. Results obtained
using the four sets of stability constants were compared using buffers with varying
total calcium concentration, keeping other parameters constant (pH 7.0, temperature
of 20 °C, ionic equivalent (Ie) of 100 mM, 2 mM ATP, 1 mM EGTA, 6 mM MgCl2) as
shown in Fig. 3. Results obtained using different stability constants show substantial dif-
ferences. With a narrow range of pX values playing a significant role, as is the case in
muscle physiology, where a pCa range of 5–6 is critical in muscle activation, and with
results obtained using different constants, it becomes necessary to report the used set of
stability constants during such calculations.

PyChelator further enhances user customization by allowing manual input of user-
defined stability constants. This feature is accessible under the "Constants" dropdown
menu and labeled "Write custom constants". Users can input their data and download it
in JSON format for future use. This feature makes it possible to use PyChelator as “Any
Metal Any Chelator Calculator”. Some commonly used metal-chelator pairs are included

Fig. 3 Comparison of PyChelator results obtained from different stability constants. A PyChelator offers
the selection of stability constants from four sources, and allows the input of user‑defined constants. B
Calculations done in PyChelator using the four sets of stability constants, sourced from the National Institute
of Standards and Technology ‘NIST’ [11], ‘SPECS’ by Fabiato [2], ‘Chelator’ by Schoenmakers et al. [3], and
‘Calcium’ by Föhr et al. [5]. Buffers composed of varying total calcium concentration and constant pH of 7.0,
temperature of 20 °C, Ionic equivalence (Ie) of 100 mM, 2 mM ATP, 1 mM EGTA, and 6 mM MgCl2. Results
represented in a connecting‑line plot show that constants sourced from NIST and Calcium software yield
similar results to each other and differ from those generated using the constants from SPECS and Chelator
program. Notably, the high‑precision calculations performed in PyChelator Colab employing the NIST
constants and arbitrary precision of 50 decimals in calculations (PyNIST), were similar to those obtained from
PyChelator web application using the same constants (NIST)

Page 6 of 8Spahiu et al. BMC Bioinformatics (2024) 25:239

together with references under the “Stability Constants” folder in PyChelator Github
repository.

PyChelator Colab
The aforementioned features of the calculator were composed in a Google Colab Note-
book. It is available in the GitHub Repository for download and as a link in the web
application. PyChelator Colab offers a cloud-based interactive Python environment that
lets users write and execute code in their browsers. Unlike Flask and Django, which are
designed to handle server-side operations and require managing server hosting and
domain registration (which can be costly), PyChelator Colab and PyChelator web appli-
cations do not require server hosting. They can be easily hosted on free platforms like
GitHub Pages without the need for managing server hosting and domain registration.

The main steps to do the metal chelator calculations in this environment are sum-
marized in Fig. 4. The displayed results can be further employed by experienced users
as a part of a pipeline, integrating into a larger project where other data are incorpo-
rated. PyChelator Colab is also modified to use the built-in Python Decimal module,
introducing user-defined precision in the calculations, which are otherwise limited by
double precision in the floating-point arithmetic of Python and JavaScript. The use of
arbitrary precision arithmetic gives a higher precision in calculations. Nevertheless, the
results obtained from the PyChelator web application, which utilizes JavaScript in cal-
culations, compared to PyChelator Colab, did not show a notable difference (Fig. 3B,
NIST vs PyNIST). This implies that any calculations done using MaxChelator algorithms
are not limited by precision issues related to the employed JavaScript language. How-
ever, although the calculated buffers may offer a good approximation with the meas-
ured values, challenges like chelator purity or pH can introduce errors even to the best

Fig. 4 PyChelator Colab GUI. A To run a calculation in PyChelator Colab, the user has to run the first code cell
"Constants" which enables the dropdown for selection/entry of constants, followed by saving the options
through clicking "Save Values". The user can download the constants from "Files" in the left panel. B Next,
the user has to run the code in the following “Calculate Metal‑chelator” section, to input values related to
the buffer and to select the output parameters to be included in the report. A field for decimal precision is
included to specify the level of precision in decimal places, employing arbitrary precision provided by the
Decimals module of Python

Page 7 of 8Spahiu et al. BMC Bioinformatics (2024) 25:239

calculations. Thus, it is always recommended to measure the free metal ions whenever
possible [5, 6, 14]. A general comparison of the features offered by PyChelator compared
to other calculator software is given in Table 1.

Limitations
PyChelator validates the input values for temperature (0–40 °C), ionic equivalence
(0–500 mM), and pH (0–14). No validation could be introduced to the entry of param-
eters for the manual entry of constants. PyChelator was prepared to facilitate improve-
ments in these calculations. Future versions may incorporate features such as the
possibility to use it for multiple metal-chelator calculations, generation of buffer series
with a given composition, calculation of the composition of all complexes in the solu-
tion, and downloadable stability constants calculations under different buffer conditions.

Conclusions
The PyChelator delivers a significant improvement over currently available web appli-
cations by offering a user-friendly metal chelator calculator that allows, among oth-
ers, selection out of four sets of stability constants, input in smaller units, the option to
specify user-defined constants, and the convenient ability to download results as a single
Excel file. The Python-based PyChelator Colab offers easy customization in the mod-
ern programming language with user-defined precision in decimal calculations. Overall,
this study not only expands accessibility to metal-chelator calculations but also paves the
way for further advancements.

Abbreviations
NIST National institute of standards and technology
EGTA Ethylene glycol bis(b‑aminoethylether)‑N,N,N0,N0‑tetraacetic acid
EDTA Ethylenediaminetetraacetic acid
ATP Adenosine triphosphate

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859‑ 024‑ 05858‑8.

Supplementary Material 1.

Table 1 Comparison of PyChelator to other software

Programming
language

Constants Input Output Refs

PyChelator (2024) JavaScript, Python NIST, Schoenmakers,
Fabiato, Chelator,
User‑defined entry

M, mM, μM, nM Choose param‑
eters, Append,
Excel

This work

MaxChelator (2010) JavaScript NIST, Schoenmakers,
Editable constants
file

M One at a time [6]

Calcium (1993) N/A Martell and Smith,
Editable constants

mM One at a time [5]

Chelator (1992) Turbo Pascal Schoenmakers, Edit‑
able constants file

M One at a time [3]

SPECS (1988) Fortran Fabiato and Fabiato,
Editable using
WordStar

M One at a time [2]

https://doi.org/10.1186/s12859-024-05858-8

Page 8 of 8Spahiu et al. BMC Bioinformatics (2024) 25:239

Acknowledgements
We thank Chris Patton for his kind support and feedback during the preparation of the software. We thank Ante Radocaj
for his critical comments on the manuscript.

Author contributions
ES and MA conceived the project. ES and EK developed the software. ES, EK and MA wrote and edited the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was partly supported by a grant from Deutsche
Forschungsgemeinschaft (DFG) to MA (AM/507/2‑1).

Availability of data and materials
Project name: PyChelator. Project home page: https:// amrut elab. github. io/ PyChe lator/. Source code: https:// github. com/
Amrut eLab/ PyChe lator. Archived version: https:// doi. org/ 10. 5281/ zenodo. 10674 753. Operating system(s): Platform inde‑
pendent. Programming language: Python, JavaScript. Other requirements: None. License: GNU GPL v2. Any restrictions to
use by non‑academics: E.g., license needed.

Declarations

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not applicable.

Competing interests
Authors declare no competing interests.

Received: 18 April 2024 Accepted: 9 July 2024

References
 1. Morgan GT, Drew HDK. CLXII.—Researches on residual affinity and co‑ordination. Part II. Acetylacetones of selenium

and tellurium. J Chem Soc Trans. 1920;117:1456–65.
 2. Fabiato A. [31] Computer programs for calculating total from specified free or free from specified total ionic concen‑

trations in aqueous solutions containing multiple metals and ligands. In: Methods in enzymology. Academic press;
1988. pp. 378–417.

 3. Schoenmakers TJM, Visser GJ, Flik G, Theuvenet APR. CHELATOR: an improved method for computing metal ion
concentrations in physiological solutions; 1992.

 4. Brooks SPJ, Storey KB. Bound and determined: a computer program for making buffers of defined ion concentra‑
tions. Anal Biochem. 1992;201:119–26.

 5. Föhr KJ, Warchol W, Gratzl M. Calculation and control of free divalent cations in solutions used for membrane fusion
studies. In: Methods in enzymology. Academic Press; 1993. pp. 149–57.

 6. Bers DM, Patton CW, Nuccitelli R. A practical guide to the preparation of Ca(2+) buffers. Methods Cell Biol.
2010;99:1–26.

 7. JavaScript Numbers. https:// www. w3sch ools. com/ js/ js_ numbe rs. asp. Accessed 28 Feb 2024.
 8. The Floating‑Point Guide—Floating‑point cheat sheet for JavaScript. https:// float ing‑ point‑ gui. de/ langu ages/ javas

cript/. Accessed 12 Mar 2024.
 9. Ekmekci B, McAnany CE, Mura C. An introduction to programming for bioscientists: a python‑based primer. PLOS

Comput Biol. 2016;12:e1004867.
 10. Decimal—decimal fixed point and floating point arithmetic. Python documentation. https:// docs. python. org/3/

libra ry/ decim al. html. Accessed 28 Feb 2024.
 11. Smith RM, Martell A, Motekaitis R, Smith R, Motekaitis R. NIST critically selected stability constants of metal com‑

plexes database; 2004.
 12. Smith GL, Miller DJ. Potentiometric measurements of stoichiometric and apparent affinity constants of EGTA for

protons and divalent ions including calcium. Biochim Biophys Acta BBA Gen Subj. 1985;839(3):287–99.
 13. McGuigan JAS, Kay JW, Elder HY. Ionized concentrations in Ca2+ and Mg2+ buffers must be measured, not calcu‑

lated. Exp Physiol. 2020;105:427–37.
 14. McGuigan JAS, Kay JW, Elder HY. Ionised concentrations in calcium and magnesium buffers: standards and precise

measurement are mandatory. Progress Biophys Mol Biol. 2017;126:48–64.
 15. Fujishiro N, Kawata H. A program for calculating the total concentrations of ligands and metals at any temperature,

ionic strength and pH for solutions with a controlled metal concentration. Comput Biol Med. 1995;25:61–80.
 16. Fabiato A, Fabiato F. Calculator programs for computing the composition of the solutions containing multiple met‑

als and ligands used for experiments in skinned muscle cells. J Physiol. 1979;75:463–505.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://amrutelab.github.io/PyChelator/
https://github.com/AmruteLab/PyChelator
https://github.com/AmruteLab/PyChelator
https://doi.org/10.5281/zenodo.10674753
https://www.w3schools.com/js/js_numbers.asp
https://floating-point-gui.de/languages/javascript/
https://floating-point-gui.de/languages/javascript/
https://docs.python.org/3/library/decimal.html
https://docs.python.org/3/library/decimal.html

	PyChelator: a Python-based Colab and web application for metal chelator calculations
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Results and discussion
	User-friendly input and structured output
	A wide selection and manual input of stability constants
	PyChelator Colab
	Limitations
	Conclusions
	Acknowledgements
	References

