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Background
Advancements in DNA sequencing technology and computational power have the 
potential to transform the landscape of medicine, allowing for personalized treatments 
based on patients’ genetic information. Variant call format (VCF) is the primary storage 
format for genetic variant data, playing a fundamental role in genomic analyses. VCF 
files store sequencing data based on how a given sequence deviates from a reference 
sequence. Each point of deviation is described by the chromosome and position within 
that chromosome it occurred on, the base(s) found at that position in the reference, and 
the corresponding base(s) in the given sequence. This is a great strength of the format as 

Abstract 

Background: Advancements over the past decade in DNA sequencing technology 
and computing power have created the potential to revolutionize medicine. There 
has been a marked increase in genetic data available, allowing for the advancement 
of areas such as personalized medicine. A crucial type of data in this context is genetic 
variant data which is stored in variant call format (VCF) files. However, the rapid growth 
in genomics has presented challenges in analyzing and comparing VCF files.

Results: In response to the limitations of existing tools, this paper introduces a novel 
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storing entire sequences is not needed given the high degree of similarity between dif-
ferent genomes. Still, despite this greater optimality, VCF files frequently contain thou-
sands to millions of variants. This presents a challenge to researchers seeking insights 
into the diverse set of VCF files they are working with.

One of the main questions faced when obtaining VCF files from sequencing data is 
which tools to use for the various steps involved in that process. These steps contain, 
for example, aligning the given sequence to the reference sequence and determining if a 
deviation from the reference at a certain position indicates a variant at that position. The 
choice of which set of tools (commonly called pipelines) to use can determine whether 
an analysis provides meaningful and actionable results. Due to the varying strengths of 
different tools, in many cases it is worthwhile to run analyses using different pipelines 
and pick variants based on the outputs of a combination of them providing the best 
results given the issue at hand [1–3]. This requires the comparison and benchmarking of 
the VCF files produced by the various pipelines.

Editing, comparing, and visualizing VCF files are frequently done tasks in genom-
ics. The availability of software tools with graphical user interfaces (GUIs) is crucial in 
broadening the usefulness of the high volumes of data made available to researchers 
[4–6]. More specifically, enabling individuals lacking programming experience to view, 
analyze, and understand the data they have is a crucial step in expanding the utilization 
of genomics in medical/clinical settings. Genomics data has much unrealized potential 
to be a catalyst for advancements in personalized medicine. Taking advantage of the 
full potential of genomics is critical for the transition of healthcare practice toward a 
paradigm of treatment tailored for individuals. By using individuals’ genetic makeups, 
healthcare systems can provide personalized treatments and enhance diagnostic accu-
racy and treatment effectiveness.

There currently exist many tools to address the various challenges in VCF file handling. 
Table  1 summarizes major tools’ capabilities and compares them with VCF Observer, 
the tool we are presenting in this paper. VCFtools, a command line application, is the 
most fundamental tool available which operates on VCF files. It is a tool that was devel-
oped alongside the variant call format and facilitates many basic operations commonly 
performed on VCF files, such as filtering and comparison. It does not, however, pro-
vide visualizations and is not available outside of the command line [7]. BCFtools is 
another major command line utility that promises greater performance than VCFtools 

Table 1 Summary of VCF file handling tools and their capabilities

Features present in various tools for handling VCF files are marked with a cross. Only command line tools allow the 
comparison of VCF files while they do not provide visualization capabilities. Filtering capabilities offered by VCF‑Miner, 
BrowseVCF, and 123VCF allow the use of custom annotations while the others do not

Comparison GUI Filtering Benchmarking Visualization Metadata

VCFtools × ×
BCFtools × ×
BrowseVCF × ×
VCF-miner × ×
VIVA × × ×
123VCF × ×
VCF observer × × × × × ×
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but requires prior compression and indexing of VCF files before performing operations 
such as comparison on them. BCFtools also does not have a graphical interface, does not 
provide visualizations, and does not offer support for grouping or benchmarking VCF 
files [8]. VCFtools and BCFtools do not offer distinct benchmarking capabilities, how-
ever, they can be used to put together benchmarking results based on their comparisons.

VCF-Miner [9], BrowseVCF [10], and 123VCF [11] are tools that allow users to fil-
ter VCF files dynamically according to the annotations present in them and by genomic 
regions. They provide graphical interfaces and allow users to concentrate on the sub-
set of variants they are interested in. BrowseVCF allows exporting the filtering steps 
that have been used for a given query, to provide reproducibility for the filtering, while 
123VCF performs filtering based on a user-specified file for the same purpose. These 
tools, however, are not capable of comparisons between different files and do not offer 
visualizations.

VIVA is a software tool that is available both on the command line and as a Julia pack-
age [12]. It was developed to simplify the visualization process of VCF files. It can filter a 
VCF file and produce visualizations. It accepts metadata related to samples present in a 
VCF file, allowing the metadata’s use for sorting and filtering. It provides heatmaps and 
scatter plots which can express genotype and read depth information for samples and 
variants. It also offers multiple file formats in which to export the figures it produces. 
VIVA does not offer a graphical interface to users. It does not compare VCF files with 
one another and does not provide benchmarking capabilities.

We have developed VCF Observer, a VCF file analysis and comparison web tool, to 
address these issues. It can calculate similarity between VCF files and benchmark them 
based on user-provided validation sets. It supports the dynamic grouping of multiple 
VCF files based on user supplied metadata, facilitating the interpretation of relations 
between different sets of VCF files. It can also filter VCF files based on genomic regions 
and the filter status of variants. Results are provided in the form of visualizations, CSV 
(comma separated values) files, and VCF files.

The primary focus of this software tool is enabling researchers to conveniently per-
form basic analyses and comparisons, which are often cumbersome using existing tools. 
Unlike many current VCF file analysis methods that lack graphical interfaces, VCF 
Observer offers a seamless and intuitive user experience. Researchers can upload their 
VCF files to the web interface and efficiently analyze them, using the most commonly 
preferred visualizations in bioinformatics: Venn diagrams, clustergrams, and precision–
recall plots. They can also download the results of their analyses in the form of images 
and variant lists.

VCF Observer facilitates VCF file metadata integration via CSV files. A data matrix 
containing each VCF file being analyzed and a user-chosen number and variety of prop-
erties for each file is accepted to dynamically group VCF files prior to analysis. This can 
be used, for example, to group VCF files based on which tools produced them, thus facil-
itating the exploration of how functionally equivalent tools compare to one another.

VCF Observer was developed using the Python 3 programming language and the 
Dash library for web application development. It was designed to have a user-friendly 
and uncluttered interface and can be used both by those unfamiliar with bioinformatics 
and by more experienced users. By offering filtering and analysis of variant data, widely 
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used visualizations, and metadata-driven file grouping, it enables researchers and clini-
cians to perform quick, high-level analyses on VCF files.

Implementation

The main functionality of VCF Observer is the analysis, comparison, and visualization of 
VCF files. It was developed using the Python (3.10.8) programming language and makes 
extensive use of the Dash (2.7.1) library for web development. Dash provides a frame-
work for creating interactive data visualization web applications based on Flask and 
React.js. We used the Dash Bootstrap Components (1.2.1) library to design the applica-
tion’s layout and the Dash Bootstrap Templates (1.0.7) library for styling. VCF files are 
loaded by the application via the scikit-allel library and stored in Pandas data frames. 
Visualizations are produced using the common Python data visualization libraries Mat-
plotlib (3.6.2), venn (0.1.3), Plotly (5.11.0), and Dash Bio (1.0.2). VCF Observer can be 
run on any platform that supports Python 3.8 or later, such as Windows 10. Standalone 
versions of the application (created using cx_Freeze) that do not require Python to be 
installed on the system are also provided for Windows, MacOS, and Linux operating 
systems. The source code and standalone releases of the application are available on 
GitHub. The application can also be reached via https:// bioin forma tics. itu. edu. tr/ vcf- 
obser ver. User data uploaded to this address is temporarily stored for 24 h after which i̇t 
is deleted. When the application is run locally, no data leaves the user’s device.

The Dash framework is structured such that a layout definition for the app is specified 
then “callback” functions define the interactive behavior of the application by describ-
ing how the layout will update according to the user’s actions. This means that software 
developed using Dash follows the model–view–controller (MVC) software design pat-
tern. The model is the data being used and visualizations being produced, the view is the 
layout, and the controller is the set of callback functions.

VCF Observer works in two stages: loading data and performing analysis. When data 
is uploaded by the user i̇t is processed into data frames and cached by the server. All file 
uploads accept multiple files. VCF files compressed with GZip or Zip are also accepted. 
If any errors are encountered, they are presented to the user and the data in question is 
not cached. Due to technical limitations, there is a size limit of 200 MB per file. Three 
file formats are accepted: variant call format (VCF), comma separated values (CSV), 
and browser extensible data (BED). Uploaded VCF files are categorized into two groups: 
“compare set” and “golden set”. The compare set contains files that are to be analyzed, 
compared, and visualized while the golden set is used to calculate the precision and 
recall values of the compare set for benchmarking. VCF files describe variants according 
to the variants’ chromosome, position, reference, and alternative. When loading variant 
data, VCF Observer uses this information to create an ID for each variant. Filter column 
information is also loaded to allow for the filtering of variants when performing analysis.

CSV files are used to store data that is in tabular form. VCF Observer supports the 
use of CSV files to describe the properties of each VCF file in the compare set. This 
data matrix is expected to contain a column labeled “FILENAME” and list each file 
in the compare set under this column. It can have as many other columns as desired 
by the user, describing the properties of the files in the compare set. These properties 
can then be used to dynamically group files and juxtapose data of differing origin, 

https://bioinformatics.itu.edu.tr/vcf-observer
https://bioinformatics.itu.edu.tr/vcf-observer


Page 5 of 16Emül et al. BMC Bioinformatics          (2024) 25:290  

for example. BED files contain information about genomic regions. They can be used 
to describe portions of interest in a genome and allow researchers to filter genomic 
information, such as variant lists. Our application provides VCF file filtering accord-
ing to genomic regions provided by the user, as well as regions offered by the applica-
tion. Genomic regions offered by the application can be configured on the server side 
by placing BED files in the application directory. Filtering according to variant type 
(SNP/indel) and chromosome number is also provided.

When VCF Observer receives an analysis request, and the files necessary to fulfill 
this request have been successfully loaded, i ̇t first performs filtering on the compare 
set by keeping or removing variants based on their filter column information and then 
based on the selected genomic regions as well as chromosome and variant type. Then, 
if metadata was provided and columns by which to group VCF files were selected, 
files in the compare set are grouped according to their metadata such that the vari-
ants they hold are pooled. There are three methods offered for combining files: union 
(variants are included if they are present in any file in the group), intersection (vari-
ants are included only if they are present in all files in the group), and majority (vari-
ants are included only if they are present in > 50% of files in the group). These groups 
are used as the basis of analysis similarly to files. When labeling groups, a subset of 
the properties of each group can be returned based on user selection. This is useful 
when the user is interested in a specific property of the groups.

VCF Observer offers four analysis types: tabulated variant counts, Venn diagrams, 
clustergrams, and precision–recall plots. Tabulated variant counts contain listings of 
the number of variants in each file in the compare set. If metadata is used to generate 
groups, pivoting functionality is also provided where each axis of the table contains 
different group properties.

Venn diagrams are used to visualize the degree of overlap between the variants 
present in files. Up to 6 sets can be visualized in this way. An option to generate a 
"pseudo-Venn diagram" that provides more readability for cases with 6 sets is also 
provided. Clustergrams (heatmaps with dendrograms showing clusters of rows and 
columns) are used to compare files based on their Jaccard distance (the number of 
variants in their intersection divided by the number of variants in their union). Pre-
cision–recall plots provide benchmarking capabilities based on the uploaded golden 
set. Data points can be customized to reflect metadata. For example, data point colors 
may be based on one column and shapes based on another, providing a way for the 
user to view performance variations in different categories on the same plot. Figure 1 
summarizes VCF Observer’s operation.

Precision is calculated as the ratio of the number of correct variants in a file (or 
grouping) from the compare set to the number of variants in that file. Recall is cal-
culated as the ratio of the number of correct variants in a file (or grouping) from the 
compare set to the number of variants in the golden set. The correct variants are 
defined as those in the intersection of a file (or grouping) in the compare set with the 
golden set. A variant is taken to be in the intersection of two sets if there is an exact 
match in both sets. If the set of variants in a compare set file (or grouping) is C and 
the set of variants in the golden set is G, the following equations give precision and 
recall:
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Filtering based on genomic regions is done using an algorithm we developed that we 
implemented in Python. Variant positions are kept or removed based on whether they fall 
within regions specified in the BED files chosen by the user. In our initial design, the algo-
rithm checked every possible region for each variant, yielding an algorithmic complexity of 
O(n2). We noticed that, because we sorted genomic regions and variant lists before caching 
them, we could ignore checking later regions for a variant if the variant had a position fall-
ing after a given region. This meant that each set (variants and regions) only needed to be 
iterated over once. Thus, in cases where the assumption of sortedness can be made, this 
type of optimization allows for a time complexity of O(n). Test results comparing our initial 
algorithm’s performance with that of the optimized version are given in Performance.

All analysis results provided by VCF Observer are made available for download. Cluster-
grams and precision–recall plots can be downloaded using the download option in their 
interactive windows while Venn diagrams are provided with a separate download button. 
All images are made available as PNG files. Text-based results are provided as CSV files 
while variant intersection sites are made available as compressed VCF files.

Results and discussion
We developed VCF Observer, a graphical web tool that can analyze, compare, bench-
mark, and visualize VCF files. Although there are various tools for comparing VCF files, 
none provide a graphical interface or visualizations. Our software tool provides this 
functionality and makes working on VCF files more accessible.

Precision =
|C ∩ G|

|C|
Recall =

|C ∩ G|

|G|

Fig. 1 Overview of the inputs, outputs, and internal workflow of VCF Observer. VCF files for comparison are 
required inputs while validation sets (also VCF), metadata (CSV), and stringency (BED) are optional. Workflow 
steps include checking for errors, loading data, applying PASS filtering, applying genomic regions filtering, 
grouping variants using metadata, and analysis and visualization. If errors are detected, they are returned to 
the user, instead of the following steps being executed. Venn diagrams, clustergrams, and precision–recall 
plots can be generated
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User interface

VCF Observer’s user interface is separated into two parts: a navigation bar (navbar) 
is present on the left side of the screen and a display area covers the rest. Maintaining 
visual consistency has been a key consideration throughout the development process 
to ensure an intuitive and user-friendly experience. The navbar provides users a way 
to navigate the website and the display area presents the results of user actions, such 
as uploading files and requesting analyses. There are three tabs available in the navbar: 
Welcome, Upload, and Analyze. Each updates the display area with its information when 
selected. When first visiting the website, users are greeted with the Welcome tab that 
describes the functionality of the website and its overall layout. They can use the button 
at the bottom of the navbar to continue to the Upload tab. There, they can upload files 
they are interested in working with and move on to the Analyze tab. Lastly, they can 
select an analysis, request i̇t, and view its result. On subsequent visits, users are auto-
matically navigated to the upload tab.

The Upload tab contains 4 upload boxes for the file categories accepted by the appli-
cation. These are the compare set, golden set, metadata, and genomic regions. The dis-
play area shows 4 upload result summary cards corresponding to the 4 file categories. 
Files can be dragged-and-dropped onto the upload boxes or the boxes may be clicked to 
open the browser’s file selection dialog for the upload of files. If uploads are not success-
ful, users are notified with a message below the upload box and details of the problem 
are shown in the display area. Upon successfully loading a category of files, the num-
ber of files loaded in that category are shown below the upload box. When the compare 
set or the golden set is successfully loaded, the number of variants present in each file 
that has been uploaded is shown in their respective upload result summary cards, listed 
according to each file’s number of variants in descending order. VCF files describe vari-
ants according to the variants’ location in the genome and the change that was detected 
there. VCF Observer assigns IDs to variants in each VCF file using this information for 
use during analysis. Upon successful loading of metadata, the columns describing the 
compare set present in the metadata are shown in the display area. For genomic regions, 
the display area lists the filenames of uploaded files and only shows the aggregate count 
of the number of regions loaded. The Upload tab and its display area showing the results 
of uploads for all categories can be seen in Fig. 2.

The Analyze tab has a radio selector containing the 4 analysis types offered by VCF 
Observer: Data Summary, Venn Diagram, Clustergram, and Precision–Recall Plot. Data 
Summary offers 3 views: variant counts per file, variant counts based on compare set 
grouping, and listings of loaded data. Variant counts per file in either the compare set 
or golden set can be viewed as a histogram or as a table. Variant counts based on com-
pare set grouping are generated using the metadata of files in the compare set. Files are 
grouped together based on dynamically defined properties in the metadata. There are 
three methods provided when grouping files: union, intersection, and majority (see 
Implementation for details). This style of grouping is also available for the Venn diagram, 
clustergram, and precision–recall plot analyses. In this view, there is also the option to 
pivot the table such that some metadata columns are present along the x-axis rather than 
the y-axis. The last data summary view provides a raw listing of the data loaded into VCF 
Observer in the form of tables.
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Venn diagrams are available for visualizing up to 6 sets (files or groups of files). 
There is an option to generate a pseudo-Venn diagram for cases with 6 sets to aid in 
visual clarity. The variants in the intersection of all sets are provided for download 
as well as the figure image. Clustergrams (heatmaps with dendrograms visualizing 
the similarity of rows and columns) are provided to visualize similarity among files 
in the compare set using their Jaccard distance. Both axes of the heatmap contain all 
files to be compared and comparisons are shown for each file pair. The labels shown 
for files can be determined based on metadata such that any combination of meta-
data columns may be used for labeling. Rows and columns can also be color-coded 
based on their labels to increase the readability of the clustergram. Various coloring 
schemes for the heatmap are also provided to the user. Precision–recall plots are pro-
vided for the purpose of benchmarking. For each file being benchmarked, precision 
is shown on the x-axis and recall on the y-axis in the form of a scatter plot. Labels 
can be chosen for each file in the same way as described for clustergrams. Addition-
ally, the shapes and colors of data points on the plot can be set according to values in 
one or more metadata columns, allowing for patterns resulting from differences in file 
properties to be more easily visible. All visualizations are provided with the option 
of setting the font size, allowing for effective use in various styles of presentation. 
Lastly, the bottom of the navbar Analyze tab contains options for filtering variants 

Fig. 2 The Upload tab of VCF Observer. Successful upload results are shown. The upload status of files can be 
seen under each upload box in the navbar on the left. The successful upload results for all categories of files 
can be seen in the display area to the right
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prior to analysis. VCF files contain a FILTER column describing whether each vari-
ant passed the filters imposed by the calling algorithm that found i ̇t. Variants that 
have passed such filtering are marked with a value of PASS in their filter columns. In 
VCF Observer, variants that have a FILTER column value of PASS can be selected for 
analysis exclusively. Also, variants can be filtered according to whether they fall inside 
or outside of certain genomic regions. Genomic regions can be provided by the user 
or by the server. Filtering options based on variant type and chromosome number are 
also present. The Analyze tab and its display area showing a generated Venn diagram 
can be seen in Fig. 3.

For all analysis types, upon successful completion of the analysis, an option to down-
load resultant data is provided. For clustergrams and precision–recall plots, the down-
load option is given in the figures’ interactive windows. Images are provided as PNG files 
and text-based results are provided as CSV files. Variant intersection sites computed as 
part of the Venn diagram are provided as compressed VCF files.

Use cases

VCF Observer’s main utility is comparing and benchmarking VCF files and visualizing 
the results of these operations. To this end, it provides additional capabilities such as fil-
tering and grouping. It can be used, for example, to determine which set of tools is best 
suited to call variants from a given set of sequence reads, by benchmarking the results 
produced by each candidate. As another example, given a set of whole genome variant 
lists derived from various samples, it can be used to filter out intron variants and show 

Fig. 3 The Analyze interface of VCF Observer. A Venn diagram generated with the settings presented in the 
navbar on the left is shown. The numbers of variants in each intersection of 5 sets is shown along with the 
percentages these represent in parentheses
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the degree of similarity between the variants in the exomes of these samples using a clus-
tergram. To concretely demonstrate these capabilities, we used two pre-existing datasets 
provided by the SEQC2 consortium: WGS-based (whole genome sequencing) germline 
variant call sets and WES-based (whole exome sequencing) somatic variant call sets 
[13]. We chose these datasets due to their inclusion of VCF files produced using various 
different tools (differing aligners and callers in both cases) but using the same sequence 
reads. Comparing such files was our primary motivation during development.

From the germline calling dataset we selected 4 VCF files created with two different 
aligners (BWA and Bowtie2) and two different callers (GATK’s HaplotypeCaller and 
GATK’s VarScan2). We chose files that had GRCh38 as their reference and that were 
marked as being derived from well A01. In order to observe how these files differed from 
one another, we produced a Venn diagram (Fig. 4A). Here, we saw that, of the ~ 5.7 mil-
lion unique variants (~ 19 million including duplicates), ~ 4.1 million were present in 
all 4 files, corresponding to ~ 71.4% of all unique variants. The two BWA files shared a 
distinct ~ 5.8% between them while the Bowtie2 files shared a distinct ~ 1.3%. The Var-
Scan2 files shared another ~ 10.6% in addition to the prior ~ 71.4% and the Haplotype-
Caller files shared another ~ 3.9%. We concluded that the VCF files produced from BWA 
alignments were more similar amongst themselves than those from Bowtie2 alignments. 
Similarly, the VCF files generated by VarScan2 were more similar than those generated 
by HaplotypeCaller. To obtain a simpler overview of similarity information, we gener-
ated a clustergram (Fig. 4B). Here we saw that the lowest similarity score (Jaccard dis-
tance) was ~ 0.75, loosely mirroring the ~ 71.4% shared variants amongst all files. Jaccard 

Fig. 4 Visualizations generated using 4 VCF files from the SEQC2 consortium’s germline WGS analysis of 
NA10835. A Venn diagram comparing variants in VCF files. B Clustergram showing pairwise Jaccard distances 
of VCF files. C Precision–recall plot calculated based on highly reproducible regions created by the SEQC2 
consortium. D Precision–recall plot where the golden set is the intersection of all 4 VCF files
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distance is calculated pairwise for each case and thus is not directly related to overall 
similarity, although we can observe loose correlation in this case due to the latter’s high 
value. Files were clustered by their callers, while aligners appeared to have a less signifi-
cant effect on similarity. Lastly, we wanted to benchmark these VCF files. We chose the 
highly reproducible regions provided by the SEQC2 consortium [14] as a golden set and 
produced a precision–recall plot (Fig. 4C). Recall values for all 4 VCF files were > 0.99, 
with the VCF file generated using BWA and HaplotypeCaller having the highest value. 
Precision values, on the other hand, showed greater variation in the range of 0.67–0.81, 
with VarScan2’s results being worse than HaplotypeCaller’s. To demonstrate the variant 
intersection sites selection of VCF Observer, we downloaded the intersection variant set 
provided via the above-described Venn diagram analysis and uploaded it as a golden set. 
We generated a precision–recall plot using this new golden set (Fig. 4D). All recall values 
were 1.0, because the golden set in this case was a subset for all files. We observed that 
the VCF file obtained using Bowtie2 and HaplotypeCaller was the most similar to the 
intersection set of all four files, while the file obtained using Bowtie2 and VarScan2 was 
the least similar.

From the somatic calling dataset we selected 12 VCF files created using 2 different 
aligners (BWA and Bowtie2), 3 different callers (Mutect2, SomaticSniper, and Strelka), 
and 2 different library preparation methods. To get an overview of the VCF files, we 
generated a histogram showing variant counts (Fig. 5A). Here we noticed that some VCF 
files produced by Strelka had significantly more variants (on the order of 100,000) while 
those produced by SomaticSniper had significantly fewer (on the order of 1000). The rest 
of the files had variant counts on the order 10,000. This indicated a possibility that some 
of these files had been PASS-filtered by their respective callers while others had not. For 
this reason, we applied a PASS filter on all files and generated a new histogram (Fig. 5B). 
In this visualization we saw that all VCF files had variant counts on the order of 1000, 
confirming our prior conjecture. We performed all subsequent analysis with the PASS 
filter option enabled. We created a CSV file containing the aligner, caller, and library 
preparation associated with each file, so that we could group and label them dynami-
cally. We produced a Venn diagram after grouping the files with a union operation using 
their callers (Fig. 5C). We saw that, of all unique variants, ~ 22.2% were common to all 
three callers’ groups. Strelka had variants in common with Mutect2 and SomaticS-
niper at ~ 6.8% and ~ 6.7% respectively. We also observed that SomaticSniper had twice 
as many uniquely identified variants compared with the other two callers. To see the 
effect of library preparation on the similarity between VCF files produced, we generated 
a clustergram where labeling excluded the library preparation so that files differing only 
in that aspect were marked with the same color (Fig. 5D). This showed that other than 
for files produced by Mutect2, the library preparation method explained the least differ-
ence between files, and the caller explained the most. In the case of Mutect2, however, 
there was a remarkable degree of similarity (Jaccard =  ~ 0.81, ~ 0.82) when the library 
preparation was the same (we regenerated the figure with library preparation type as a 
label to be certain of this). For Mutect2, file pairs sharing library preparation type (but 
differing in aligner type) were more similar to other callers than to one another (Mutect2 
& LibPrep1 differed significantly from Mutect2 & LibPrep2). We benchmarked this data 
using high-confidence regions taken from [15]. We first produced a precision–recall plot 
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showing values for all 12 VCF files, where data points were labeled by their aligners and 
callers. Data point colors showed caller type and their shapes showed library prepara-
tion type (Fig. 6A). All VCF files had recall values of > 0.85 and precision values in the 
range of 0.21–0.38. VCF files produced by SomaticSniper had the lowest precision and 
recall values. One of the two VCF files produced using BWA and Strelka had the highest 
recall value at ~ 0.99, while one of the two produced using BWA and Mutect2 had the 
highest precision value at ~ 0.37. Next, to investigate the effect of grouping pairs of files 
produced using the same aligner and caller combination, we generated two precision–
recall plots where files differing only in the library preparation type were combined. In 
one plot, grouping was done using the intersection of the files (Fig. 6B) and in the other, 
i̇t was done using their union (Fig. 6C). In both cases, the highest recall was achieved 
by the variant list created using BWA and Strelka. Without grouping, the highest recall 
value for this combination was ~ 0.99. When grouping via union, there was a marginal 
increase in recall. When grouping via intersection, recall decreased to ~ 0.94. When 
grouping via union, the highest precision was achieved by the variant list obtained using 
Bowtie2 and Strelka (~ 0.31, as opposed to ~ 0.32 without grouping), in contrast to BWA 
and Mutect2, which produced the highest precision without grouping. This can be 
attributed to the decrease in the precision values of variant lists associated with Mutect2 

Fig. 5 Visualizations generated using 12 VCF files from the SEQC2 consortium’s somatic WES analysis of 
HCC1395BL (normal) and HCC1395 (tumor). B–D were produced after the 12 VCF files were PASS filtered. 
A Histogram of variant counts for each file with no preprocessing applied. B Histogram of variant counts 
for each file with PASS filter applied. C Venn diagram comparing variants, generated after files produced by 
the same callers were grouped via union. D Clustergram showing pairwise Jaccard distances of VCF files. 
SomSnip: SomaticSniper
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when grouping via union. This effect, however, was not present when grouping via inter-
section. Mutect2’s variant lists produced using both BWA and Bowtie2 had higher preci-
sion values at ~ 0.44 and ~ 0.45 respectively, compared to values < 0.40 without grouping.

Performance

In order to produce an overview of VCF Observer’s performance, we performed various 
tests of its functionality on a 2022 M2 MacBook Air with 16 GB of RAM. We ran 4 types 
of tests: comparing two VCF files to generate a Venn diagram, benchmarking a VCF file 
to produce a precision–recall plot, applying genomic regions filtering (using a BED file) 
to a VCF file, and applying a PASS filter to a VCF file. Each test was performed using 5 
different VCF file sizes, giving a total of 20 test configurations. Each test configuration 
was run 10 times and their averages are presented in Table 2.

The VCF file sizes used were 1000 variants, 10,000 variants, 100,000 variants, 1,000,000 
variants and 10,000,000 variants. For the tests generating Venn diagrams and precision–
recall plots, two VCF files were used where the files both contained the aforementioned 
number of variants each. In the BED filtering test, a BED file listing exome regions was 
used.

When working with 100,000 variants or less, VCF Observer can provide analysis 
results in less than 3 s (assuming an analysis consists of both filtering options and a visu-
alization). For 1 million variants, i̇t produces results in 10–30 s. For 10 million variants 
results are produced in 4 min or less.

Fig. 6 Precision–recall plots generated using 12 VCF files from the SEQC2 consortium’s somatic WES analysis 
of HCC1395BL (normal) and HCC1395 (tumor) as well as high-confidence regions created by the SEQC2 
consortium as the golden set. A Scatter plot showing benchmarking results for all 12 VCF files. B Scatter plot 
showing benchmarking results for the intersections of VCF files sharing the same aligner and caller. C Plot 
showing benchmarking results for the unions of VCF files sharing the same aligner and caller
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We performed genomic regions filtering tests twice: once with an unoptimized and 
once with an optimized algorithm (see Implementation for details). Comparing the two 
genomic regions filtering test results, we saw that the unoptimized version of our algo-
rithm performed more slowly as the number of variants being processed increased. For 
tests with 1000 and 10,000 variants, the unoptimized algorithm had a shorter run time, 
whereas i̇t performed twice as slowly for tests with 1 million and 10 million variants. The 
theoretical time complexity calculations described in Implementation were not observ-
able in the test results. This is because only the variant list sizes were varied while the 
number of genomic regions was constant.

Future work

VCF Observer provides comparisons of VCF files and visualizes these comparisons. It 
offers a user-friendly graphical interface. During future development, we plan to pro-
vide more varieties of visualizations such as violin plots to show the read depths of vari-
ants in VCF files and idiograms to mark the positions of variants to allow for patterns 
amongst different VCFs to be clearly visible. We also plan to normalize variants so that 
different representations of the same underlying variation are not treated as distinct. 
Furthermore, we plan on providing a variant comparison methodology which is capable 
of assessing calls based on their similarity to expected results. A contemporary tool that 
provides this functionality on the command line is vcfdist [16].

Implementing a dedicated screen for users to directly add metadata information 
through the web interface would improve user experience and data organization. Fur-
thermore, providing a metadata extraction option that leverages VCF file headers and 
filenames to deduce certain aspects of metadata would reduce manual input efforts. Pro-
viding long-term storage of user data and analyses by implementing user accounts would 
be helpful for users to compare their past analyses with one another as well as to rerun 
them with different options.

Commonly used golden sets could be made available by the server directly. The option 
to use precompiled high performance software tools for VCF file filtering could be pro-
vided to reduce processing times. Lastly, preserving VCF file annotations and allowing 
their use within the application for filtering and analysis would allow for greater flexibil-
ity in VCF Observer’s usage.

Table 2 Performance test results showing times (in seconds (s)) for various operations performed 
by VCF Observer

Each row contains the average running time of 10 runs of a particular test performed with various input file sizes. There 
are five tests: “Generating Venn Diagram”, “Generating Precision–Recall Plot”, “Applying PASS Filtering”, and 2 instances of 
“Applying BED Filtering”. *The latter BED filtering test was performed using an earlier implementation of our genomic 
regions‑based VCF filtering algorithm to demonstrate the effectiveness of the optimization described in Implementation. k: 
1000, M: 1,000,000

1 k 10 k 100 k 1 M 10 M

Generating venn diagram (s) 0.12 0.15 0.96 9.95 120.17

Generating precision–recall plot (s) 0.05 0.13 0.86 8.6 101.43

Applying PASS filtering (s) 0.01 0.05 0.45 4.4 49.1

Applying BED filtering (s) 0.73 0.77 1.23 5.95 63.5

Applying BED filtering* (s) 0.62 0.72 1.78 12.6 137.09
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Conclusions
This paper introduces VCF Observer, a novel software tool for analyzing, comparing, 
and visualizing VCF files. VCF Observer is a web tool with a user-friendly graphi-
cal interface that offers commonly performed functionality. It aims to aid in the 
preliminary analysis of the rapidly growing volume of genomic data produced as a 
result of advances in NGS. There are currently no graphical software tools for com-
paring or benchmarking VCF files, as well as many other common operations. VCF 
Observer addresses this issue by providing a graphical user interface through which 
many common operations including comparison, benchmarking, filtering (PASS filter 
and stringency), grouping (based on file metadata), and visualization (Venn diagrams, 
clustergrams, and precision–recall plots) can be performed. VCF Observer provides 
an intuitive interface for researchers and clinicians to gain a high-level understanding 
of variant data without needing any programming knowledge, enhancing the acces-
sibility of bioinformatics.
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