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Introduction
Proteins, complex chains of amino acids, are fundamental in orchestrating most biologi-
cal activities [1]. Intriguingly, proteins often do not operate in isolation but rather rely 
on protein–protein interactions (PPI) to effectuate cell functions [2]. PPI sites are the 
interfacial residues of a protein that interact with other protein molecules [3]. There are 
two main areas in PPI site prediction. One is pairwise interaction site prediction, which 
mainly predicts the interfacial residues of a pair of proteins [4]. The other, which is the 
topic of this paper, predicts the putative interaction sites when there is only an isolated 

Abstract 

Background: Proteins play a pivotal role in the diverse array of biological pro-
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protein without knowing the information of its partner protein or protein complex [5]. 
The latter prediction task is more formidable due to the paucity of information regarding 
its binding partner protein.

Currently, PPI site prediction methods are categorized into traditional biological 
methods and computational methods. The former, while reliable, are laborious and time-
consuming, thus inadequate for addressing various research needs [6]. As a result, more 
expedient computational methods have achieved the rapid development. These can be 
segmented into three groups: (1) protein–protein docking and modeling; (2) structure-
based methods and (3) sequence-based methods [7]. Although the first two groups often 
provide more comprehensive information than sequence-based methods, they depend 
on protein structure information, which is not available for all proteins. With the advent 
of high-throughput sequencing technology, acquiring protein sequences has become 
convenient, and sequence-based methods hold considerable promise in the field of PPI 
site prediction.

Machine learning techniques have been deployed in PPI site prediction. For instance, 
Guo et al. [8] formulated a feature space using sliding windows based on the influence of 
neighboring residues, and subsequently trained a support vector machine (SVM) model 
for PPI prediction. Wei et al. [9] devised a combination of SVM and random forest (RF) 
for PPI site classification. Zhang et al. [10] identified that cross-prediction of different 
protein ligands frequently occurs when predicting protein interaction residues. They 
then crafted a model based on Logistic Regression (LR) to mitigate this issue. These 
methods underscore the potential of computational approaches for PPI site prediction, 
but they fall short in deeply mining feature information due to inherent limitations of 
machine learning, thereby leading to limited generalization and sensitivity to imbal-
anced sample data.

Deep learning methods have also found applications in protein-related prediction. 
Their potent expressivity has proven increasingly pivotal in PPI site prediction in parallel 
with the exponential increase of biological data. For example, Zeng et al. [11] introduced 
DeepPPISP, a PPI site prediction model by combining local and global features with deep 
neural networks. Li et al. [12] proposed a DELPHI model integrating convolutional neu-
ral networks with recurrent neural networks [13] for PPI site prediction. Lu et al. [14] 
constructed a PPI site prediction model that uses an attention mechanism to capture 
the significance of residues at varying positions. Kang et al. [15] adopted a framework 
MLP-Mixer [16] to develop a two-stage multi-branching network, achieving superior 
PPI site prediction. All these methods rely on the sequence information of proteins, but 
they can not effectively capture the spatial structure features in proteins. Recently, data 
structures like graphs have been recognized as one of convenient and intuitive ways to 
represent residues in a protein, and their interactions [17]. Mahbub et al. [18] proposed 
an EGRET model, which introduces graph edge features based on graph attention net-
works (GAT) [19], while also incorporating encoding features of the pre-trained model 
ProtBERT through transfer learning [20]. Despite its efficacy, this transfer strategy was 
solely used in the feature extraction section. Transfer learning can improve the accuracy 
and generalization ability of the model by pre-training the model on a large dataset and 
applying it to a small dataset. The wide application of transfer learning in bioinformatics 
(gene expression prediction, cancer diagnosis, etc.) demonstrates its powerful ability in 
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the case of insufficient data. Another issue is that graph neural networks pose limita-
tions as they require prior construction of the protein’s graph structure, with neighbor-
ing relationships based on the distance between residues. An improper threshold value 
for constructing edges would lead to erroneous or missing edges in the graph, thereby 
undermining the effectiveness of graph neural network. Dynamic graph convolution 
[21], a novel graph convolution pattern, can adaptively construct new graph structures 
based on the current feature information of the network, and can potentially address 
issues arising from fixed neighborhoods.

In PPI site prediction, the representation of protein sequences is also a critical fac-
tor, and feature selection directly influences the final outcome. Traditional features like 
the position-specific scoring matrix (PSSM) have proven effective in PPI site predic-
tion. Though PSSM features for some known datasets have been provided by prior work 
(e.g., DeepPPISP [11], HN-PPISP [15]), PSSM computation for new protein sequences 
remains a lengthy process. Recently, Transformer and its variant models [22], trained 
on copious amounts of protein data using unsupervised methods, have been utilized as 
feature extractors of protein sequences. Their exceptional results and efficient extraction 
process underscore their substantial contribution to protein-related prediction. How-
ever, existing methods cannot make full use of pre-trained large model embeddings to 
migrate and characterize proteins, which to some extent reduces the generalization abil-
ity of the model and affects the PPI prediction accuracy.

To effectively address above issues we discuss, we introduce a two-stage transfer learn-
ing framework underpinned by dynamic graph convolutional neural network for PPI 
site prediction. The major contributions of this study include: (1) We encode the tar-
get sequence in the first stage of transfer learning using a protein pre-trained language 
model ESM-2 [23], coupled with four other sequence features as input to the training 
model. ESM-2 holds a wealth of latent information that can mitigate the inherent infor-
mation deficiency in sequence-based methods. (2) We successfully find a protein-pep-
tide binding residue dataset which is helpful for the PPI site prediction. To optimize 
the feature extraction module and enhance the final model’s performance by supply-
ing initial parameters, we pre-train the network using in the protein-peptide dataset 
and transfer the network parameters to the PPI site task for fine-tuning in the second 
stage of transfer learning. (3) When designing the neural network framework, we utilize 
the dynamic graph convolution module as the primary feature extraction technique, to 
address the limitation of traditional graph neural networks that cannot fully exploit the 
interaction information of neighboring nodes in the high-dimensional semantic space 
due to fixed adjacency relations.

Datasets, materials and methods
Datasets

This study leverages three distinct datasets, namely, the protein-peptide binding resi-
due dataset (Dataset_trans) for protein transfer learning, and two PPI site datasets, 
Dset_186_72_PDB164 and Dset_331, for targeted task training and assessment. The cri-
teria for defining a PPI site within these datasets is a surface residue (RSA > 5%) that sees 
a reduction in absolute solvent accessibility of more than 1 Å2 following the formation of 
a protein–protein complex [5].
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(1) Dataset_trans: A peptide, comprising a small aggregation of amino acids, shares 
chemical homogeneity with proteins. Our method necessitates the utilization of the 
protein-peptide binding residue dataset as proposed by SPRINT-Str [24] for our 
model’s pre-training data. Herein, peptides are demarcated as chains with fewer 
than 30 amino acid residues. This dataset encompasses a total of 1,279 protein-
peptide complexes, embodying 307,692 amino acid residues. Among these, 16,749 
residues are categorized as binding residues, with remaining 290,943 residues clas-
sified as non-binding residues. From this dataset, we randomly select 10% of the 
complexes to form the test set, with the remaining complexes comprising the train-
ing set.

(2) Dset_186_72_PDB164: To train and evaluate the model, we employ a dataset built 
by DeepPPISP [11], a standard dataset for PPI site prediction. This dataset amal-
gamates three benchmark datasets: Dset_186, Dset_72 [25], and PDBset_164 [26]. 
All three datasets are derived from the PDB database [27], maintaining a sequence 
homology under 25% and a resolution below 3.0 Å. For training and testing consist-
ency and data augmentation, these three benchmark datasets are combined into a 
unified dataset containing 422 protein sequences. From this consolidated dataset, 
DeepPPISP randomly selects 70 protein sequences as a test set, with the remaining 
sequences allocated to training and validation sets. To ensure parity with various 
methods based on this dataset, we adopt the same partitioning strategy. Moreover, 
considering the homology impact of this dataset, we impose a sequence homology 
ceiling of 20% to curate a new version of Dset_186_72_PDB164 for PPI site predic-
tion testing and comparison.

(3) Dset_331: For broader evaluation of our model’s performance, we also incorporate 
the Dset_331 dataset as proposed by HN-PPISP [15]. Derived from Dset_448 [10], 
this dataset encompasses 331 protein sequences, including 11,255 residues at PPI 
sites and 72,420 residues at non-PPI sites. Of all these proteins, 77 are selected for 
the test set, with the remainder designated for training and validation sets.

Detailed information about the PPI sites in these datasets is provided in Additional 
file 1: Table S1. The protein sequences in the PPI site datasets vary in length, as illus-
trated in Additional file 1: Table S2. To streamline training, we scrutinize the length dis-
tribution of protein sequences and determine that 96.7% of sequences in the datasets 
are shorter than 500 in length. Consequently, we standardize all sequences to a uniform 
length of 500.

Feature extraction

Our model integrates five distinct features derived from protein sequences. These fea-
tures are guided by their relevance and contribution for capturing biochemical prop-
erties of proteins, and their validities are corroborated in the ablation study of the 
subsequent experiment section. A detailed overview and selection process of these fea-
tures are:

(1) One-hot Encoding: This encoding is inherently sparse, memory-inefficient, high-
dimensional, and there is no notion of similarity between sequence or structural 
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elements. It can be denoted by a binary vector form composing of 0 s and 1 s, which 
is utilized to characterize the types of residues in a protein. Given the existence of 
20 types of residues, each residue is individually encoded and subsequently merged 
into a feature vector of dimension L × 20, where L denotes the protein sequence’s 
length.

(2) Co-occurrence Similarity Encoding of Amino Acids: An amino acid co-occurrence 
is the occurrence of two amino acids in a protein segment, which can be used for 
reflecting the co-occurrence similarity of amino acids. This encoding can also be 
expressed by the vector form and acquired through pre-training a Skip-gram model 
grounded in protein sequences [28]. Each amino acid is thereby encoded as a word 
vector with a dimension of 5.

(3) Similarity Encoding of Electrostaticity and Hydrophobicity [29]: The nature of pro-
tein–protein interactions is governed by their electrostatic and hydrophobic char-
acteristics, which are embodied by the dipole and volume of amino acid side chains. 
As detailed in Additional file 1: Table S3, we categorize the 20 naturally occurring 
amino acids into 7 groups based on their side chain dipoles and volumes. For less 
common amino acids such as selenocysteine and pyrrolysine, they are assem-
bled into category 8. Utilizing the one-hot encoding form, a final feature vector of 
dimension L × 8 is generated for similarity encoding of electrostaticity and hydro-
phobicity.

(4) Position Encoding: It assigns each amino acid in the protein sequence with a vector 
representing its position, which has been established as an efficient descriptor in 
numerous protein-related applications [30]. In this way, the spatial information of 
the sequence is preserved, which is particularly important for the sequence struc-
ture and functional analysis. The coding scheme for position encoding is

where pos indicates the position index of the current residue in the protein sequence 
(0 ≤ pos ≤ L− 1), b and d are two constants chosen as 1000 and 20 respectively in our 
model. Each residue is encoded as a 20-dimensional vector, and the exact position 
in the vector is indexed by the variables 2i and 2i + 1 (0 ≤ i < 10). Finally, the posi-
tion encoding of all residues in the sequence is combined into a feature vector with 
dimension L × 20.

(5) ESM-2 Encoding: Lin et  al. [23] introduced a novel protein pre-trained language 
model based on an advanced Transformer architecture and leverages protein 
sequences from the UniRef database [31] for pre-training. The resulting pre-trained 
model maps raw sequences to biological feature representations without labels 
or prior knowledge. This facilitates a more comprehensive feature representation 
of protein sequence. In our model, we utilize an ESM-2 pre-trained model with 
650 M parameters as a sequence encoder. Each amino acid residue is encoded as a 

(1)E(pos, 2i) = sin
pos

b2i/d

(2)PE(pos, 2i + 1) = cos
pos

b2i/d



Page 6 of 20Feng et al. BMC Bioinformatics          (2024) 25:252 

1280-dimensional vector, resulting in a protein sequence of length L with an encod-
ing size of L × 1280.

DGCPPISP prediction model

The main framework of our proposed PPI site prediction model, DGCPPISP, is exhibited 
in Fig. 1. It employs a two-stage transfer learning strategy for learning, with a dynamic 
graph convolution model for training implementation. For the two-stage transfer learn-
ing, they are manifested in the feature extraction module (Fig. 1a) and model training 
module (Fig.  1b). In the feature extraction, a pre-training model ESM-2 is utilized to 
encode protein sequences to furnish rich inherent information. For the model training, 
an additional protein-peptide binding residue dataset is employed to pre-train the model 
and optimize the initial model weights. Subsequently, we incorporate the EdgeConv 
module for dynamic graph convolution as the primary part of the second stage of trans-
fer learning training (Fig. 1c). This dynamic graph operation enables the neural network 
to deeply analyze the interaction relationships between residues and ultimately assist in 
the prediction of PPI sites.

Fig. 1 Schematic diagram of DGCPPISP. a Feature extraction. b Model training. c Network architecture for 
model-PPI. Sequence features in a include four features besides ESM-2 encoding. In b, Peps data represents 
protein sequences from the protein-peptide binding residue dataset, and PPIs data represents protein 
sequences from the PPI site prediction dataset. The model-Pep denotes the model pre-trained with Peps 
data and model-PPI denotes the final model for PPI site prediction after fine-tuning with PPIs data. c is the 
structure of model-PPI and model-Pep. Its input is five kinds of sequence encoding features. Conv_encoder 
uses a one-dimensional convolution to build a feature extraction and dimensionality reduction module. 
EdgeConv is the operation for dynamic graph convolution to update node features. The repeating operation 
means copying the feature vector to be consistent with the number of residues, “select residue” means to find 
the target residue from the input sequence
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Two‑stage transfer learning

We initially employ the first-stage transfer learning strategy in the feature extraction 
process (Fig. 1a) to fortify the initial feature representation derived from the primary 
structure of protein sequence. Specifically, we use the protein pre-trained model 
ESM-2 to encode protein sequences. As ESM-2 leverages a massive dataset to predict 
masked residues, its encoding allows the input sequence features to encapsulate more 
abundant information (such as secondary structure, protein interaction, etc.), thus 
enhancing the feature input of the sequence-based method.

During the model training, with the continuous deepening and expansion of data 
complexity, the learning of optimal parameters for the model becomes increasingly 
challenging. To effectively tackle this problem, we propose a second-stage transfer 
learning strategy (Fig. 1b) to discover suitable initial parameters for the PPI site pre-
diction model, enabling the model to better adapt to the extraction of protein fea-
tures. We first train the neural network on a protein-peptide binding site dataset 
(Peps data) akin to the PPI site prediction task. The model uses five protein sequence 
features as input, and the output is labeled 1 or 0 depending on whether the resi-
dues are identified as binding sites. After a certain number of iterations, we obtain 
the model-Pep. Then, we use the same network architecture and initialize model-PPI 
with the network weights of model-Pep, while lowering the learning rate and other 
parameters, allowing the new model to be retrained and fine-tuned on the PPI site 
task (PPIs data).

Dynamic graph convolutional module

When a traditional graph neural network addresses the problem of PPI site predic-
tion, the graph structure of proteins is pre-constructed. Generally, the residue node 
features are used as the nodes of the graph, and the distance between residues and 
a given threshold are used to determine whether an adjacency relationship exists 
between two residues. The construction method is

where e and v are the edge and node of a graph, i, j are the residue indices, C is the Ca 
atomic coordinates in the residue (used to represent residue coordinates in our model), 
and dmax is the threshold for constructing the edge. Although this representation has 
worked well for the protein prediction, this static adjacency relationship constructed by 
residue atom distances is not well suited for high-dimensional semantic spaces. Moreo-
ver, building a graph in this way often requires the protein structure information, which 
is not always easy to obtain for some proteins. A graph neural network that does not 
require pre-constructed graph structures and can dynamically construct neighborhoods 
based on the current feature representation becomes our motivation.

The dynamism of the dynamic graph convolution is manifested in how it updates 
the features of residue nodes. The network does not aggregate features using a fixed 
adjacency matrix’s node relationship but calculates the "feature distance" (Euclid-
ean distance of the residue feature vector under the current network layer) between 
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residues. It then constructs a local neighborhood centered on each node via the 
k-Nearest Neighbor (KNN) algorithm before each node update. As a result, residues 
located in the same local neighborhood are considered to be similar in the semantic 
space. The update of residue node features primarily relies on the EdgeConv opera-
tion as demonstrated in Fig. 2.

The operation can be defined by the following formula

where ri′ denotes the updated feature of residue ri , ρ represents the aggregation opera-
tion (specifically implemented as a MAX function in our model), hθ

(

ri, rj
)

 denotes the 
function of edge feature eij formed by the central node ri and its neighbor node rj . hθ is 
a non-linear function containing a learnable parameter θ , and ε denotes the set of edges 
formed by the central node and its neighbour nodes. In particular, there are many imple-
mentation forms of the edge function, and the specific choice hθ in our model is

where ri is the central node feature, which reflects the global feature information of the 
residue, and rj − ri is the feature vector difference between the neighbouring nodes and 
the central node, which reflects the local details of the neighbourhood.

Neural network architecture for the second‑stage transfer learning

Based on the EdgeConv operation, we construct a neural network module for PPI site 
prediction. This serves as the training component for the second-stage transfer learning 
(Fig. 1b), and its primary structure is depicted in Fig. 1c. Initially, each of five features is 
input to the Conv_encoder module of the network, comprising a one-dimensional con-
volution with a convolution kernel of length 3. The primary objective is to balance the 
dimensionality of five features. For instance, the initial dimension of ESM-2 encoding 
is L × 1280, which diverges significantly from the dimensionality of other features and 
could result in unbalanced feature impact issues. In our model, the feature output of 
Conv_encoder is set to a standard size of L × 32 and then amalgamated and provided to 
the EdgeConv layer.

(4)ri′ = ρ
j:(i,j)∈ε

hθ
(

ri, rj
)

(5)hθ
(

ri, rj
)

= hθ
(

ri, rj − ri
)

Fig. 2 EdgeConv operation. The neighborhood range k = 5 in the figure, and node ri is updated by 
aggregating the features of neighbourhood node rj through the EdgeConv operation
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The network’s primary feature extraction module is a stack of three EdgeConv layers. 
Each EdgeConv layer generates a new protein dynamic graph structure before operation 
and transmits the updated graph to the next layer for use. Furthermore, inspired by the 
shortcut connection of ResNet [32], we adopt this structure and combine the feature 
vectors obtained by three EdgeConv modules to ensure the final classification has rich 
reference information without losing shallow features. It outputs a 1024-dimensional 
feature vector via convolution and pooling operations, which encompasses the key 
global information of the entire protein sequence. We concatenate the outputs of the 
first three layers of EdgeConv modules to represent residue features. As the network’s 
ultimate goal is to predict the target residues in the protein sequence, the target residue 
feature vector is selected through the residue index saved in advance and merged with a 
1024-dimensional protein global vector to form a batch size × 1216 vector. This vector is 
finally fed into the fully connected layer for classification.

Implementation details

The pseudocode of the proposed DGCPPISP is illustrated in “Algorithm” (Supplemen-
tary Note part of the supplementary material). Our experiment leverages the Pytorch 
deep learning library for implementation. The Conv_encoder module uses a convo-
lutional kernel length of 3, with a padding parameter set to 1. The activation function 
applied by all layers in the network is LeakyReLU, where the negative_slope parameter 
is 0.2, and the normalization layer is governed by Batch Normalization. Dropout is set 
to 0.5 in the fully connected layer. The neighborhood size (k) of each node in the Edge-
Conv operation is a hyperparameter that bears an impact on the model’s performance. 
In our model, k is configured to 10. The multilayer perceptron (MLP) output dimension 
involved in the EdgeConv operation is 64, and the convolution kernel size is set to 1.

The optimization settings for the proposed model are as follows: The optimization 
algorithm is Adam [33], the learning rate (lr) is 0.01 in the initial stage of transfer learn-
ing, the lr for PPI site prediction is 0.001, and the batch size for network training is 32, 
the number of hidden layers is 3. We dynamically tune the learning rate by combining 
the grid search and StepLR methods with a range of [0, lr], a change step of 12, and 
a coefficient of variation (gamma) of 0.1. The training process adopts the F-measure 
[11] as the reference index, and the training is terminated when the F-measure has not 
improved for five consecutive epochs. The loss function used in our model is cross-
entropy loss, and it is implemented as

where n is the number of all training data, y is the true label and ypred is the predicted 
label.

Experimental result and discussion
Evaluation metrics

To evaluate the performance of DGCPPISP, seven common evaluation metrics are used 
in this paper: accuracy, precision, recall, F1-measure, area under the receiver operating 

(6)loss = −
1

n

∑

[

y log
(

ypred
)

+
(

1− y
)

log
(

1− ypred
)]
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characteristic curve (AUROC), area under the precision-recall curve (AUPRC) and Mat-
thews correlation coefficient (MCC) [11]. The formulas of these metrics are

where TP denotes correctly predicted PPI sites, TN  means correctly predicted non-PPI 
sites, FP represents incorrectly predicted non-PPI sites and FN  is incorrectly predicted 
PPI sites. AUROC and AUPRC are metrics for the overall performance of the predic-
tion model. Note that our model is implemented in the unbalanced datasets, we more 
focus on F1-measure, MCC, AUROC and AUPRC indices as the main evaluation besides 
accuracy, precision and recall metrics.

Performance comparison and analysis with different methods

Comparison with competitive methods

In order to assess the efficacy of diverse prediction approaches, we carry out a series of 
experiments on PPI site datasets, Dset_186_72_PDB164 and Dset_331, by contrasting 
DGCPPISP with an array of current state-of-the-art methods. This comparison involves 
a total of 10 methods, six of which are structure-based (StackingPPINet [4], SPPIDER 
[34], DeepPPISP [11], Attention-CNN [14], HN-PPISP [15] and EGRET [18]) utiliz-
ing the structural information of proteins, whereas the remaining are sequence-based 
(PSIVER [24], ISIS [35], RF_PPI [7], SCRIBER [10], DELPHI [12]), relying solely on the 
sequence features of proteins.

Table  1 showcases the results of DGCPPISP in comparison to other methods on 
Dset_186_72_PDB164. It is evident that our model outperforms in five of the six 
evaluated metrics. Even though our method exhibits a minor setback, relatively 2.4% 
lower than HN-PPISP in terms of recall, it still secures the second rank. Acknowl-
edging the imbalanced nature of the PPI site prediction dataset, DGCPPISP dem-
onstrates a conspicuous superiority in other performance metrics. Specifically, 
improvements in F1-measure, AUPRC and MCC are noted at 8.7%, 23.9% and 25.4% 
respectively. Comparisons with DELPHI, the current leading model among sequence-
based methods, further underline DGCPPISP’s dominance in all metrics, particularly 
AUPRC and MCC, exhibiting enhancements of 23.9% and 29.7% respectively. Inter-
estingly, DGCPPISP surpasses structure-based methods even without relying on 

(7)Accuracy =
TP + TN

TP + TN + FP + FN

(8)Precision =
TP

TP + FP

(9)Recall =
TP

TP + FN

(10)F −measure =
2× Precision× Recall

Precision+ Recall

(11)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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protein structure information. When compared to EGRET, a model employing GAT 
to incorporate protein structure, DGCPPISP outstrips it by 5.9%, 10.1% and 13.3% 
in F1-measure, AUPRC and MCC, respectively. These results imply that the supe-
rior performance of DGCPPISP may be attributed not only to the inherent advan-
tages of dynamic graph convolution over GAT, but also to the integration of the 
ESM-2 embedding, assisting DGCPPISP in capturing covert information in protein 
feature representation. To further illustrate this, we select two representative meth-
ods from the sequence-based (SCRIBER and DELPHI) and structure-based (DeepP-
PISP and EGRET) categories and compare their AUROC values with the proposed 
DGCPPISP. As Fig. 3 indicates, DGCPPISP accomplishes superior prediction results 
on the AUROC performance index. In addition, we show the results of DGCPPISP 

Table 1 Comparison of PPI site prediction performance on Dset_186_72_PDB164

“*” denotes methods using structural information. “^” means results on Dset_186_72_PDB164 with sequence homology less 
than 20%

Method ACC Precision Recall F1 AUPRC MCC

SPPIDER * 0.622 0.209 0.459 0.287 0.230 0.089

ISIS 0.694 0.211 0.362 0.267 0.240 0.097

PSIVER 0.653 0.253 0.468 0.328 0.250 0.138

RF_PPI 0.598 0.173 0.512 0.258 0.210 0.118

SCRIBER 0.616 0.274 0.569 0.370 0.307 0.159

DeepPPISP * 0.655 0.303 0.577 0.397 0.320 0.206

Attention-CNN * 0.657 0.313 0.611 0.414 0.359 0.229

DELPHI 0.667 0.320 0.604 0.418 0.360 0.236

HN-PPISP * 0.667 0.324 0.632 0.427 0.360 0.244

StackingPPINet 0.673 0.402 0.605 0.423 0.401 0.275

EGRET * 0.715 0.358 0.561 0.438 0.405 0.270

DGCPPISP ^ 0.684 0.349 0.611 0.459 0.424 0.294

DGCPPISP 0.718 0.372 0.617 0.464 0.446 0.306

Fig. 3 AUROC comparison of some methods on Dset_186_72_ PDB164
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on a version of the Dset_186_72_PDB164 with less than 20% sequence homology in 
Table 1, which persistently exhibit the commendable performance of our method.

A more comprehensive evaluation of DGCPPISP is conducted by comparing it with 
two leading-edge methods, HN-PPISP and DeepPPISP, on Dset_331. As illustrated in 
Fig. 4, DGCPPISP surpasses both comparative methods across all six metrics, achiev-
ing full area coverage on the radar map. Specifically, in comparison to DeepPPISP, our 
model manifests improvements of 9.7% on ACC, 43.1% on Precision, 21.4% on Recall, 
35.4% on F1-measure, 43.6% on AUPRC, and 97.8% on MCC, respectively. When juxta-
posed with HN-PPISP, all six metrics of our model exhibit improvements by 0.5%, 11.5%, 
21.4%, 14.5%, 19.8% and 29.9%, respectively. Moreover, the above two methods resort 
to PSSM for protein feature extraction, which is a time-consuming process. Our model 
circumvents this extraction operation through the transfer learning and solely utilizes 
conveniently extracted sequence encoding features while maintaining the prediction 
precision. This approach highlights the clear advantage of our method when the model’s 
performance and the time cost of feature extraction are taken into account.

Comparison with traditional graph convolutional neural networks

In this subsection, we juxtapose the results of the dynamic graph convolutional neu-
ral network with the traditional graph neural network on PPI site prediction. We opt 
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for two representative models for traditional graph neural networks: the graph convo-
lutional network (GCN) [36] and the graph attention network (GAT) [19]. To estab-
lish a uniform comparison with the dynamic k-neighborhood graph of DGCPPISP, 
the node neighborhood range of both GCN and GAT is set to the same k, with nodes 
in the graph structure symbolizing the protein residues. Concurrently, we adhere to 
the adjacency construction method delineated in EGRET [18], electing the k residues 
with the nearest average atomic distance to the central node residues as their adja-
cent nodes. Concerning features, all five features in our model are selected as node 
features, meaning that all three graph networks have undergone the initial stage of 
information transfer. The performance of the three graph networks on Dset_186_72_ 
PDB164 is depicted in Fig. 5. Evidently, DGCPPISP outperforms the other two meth-
ods in five out of seven metrics, inclusive of four comprehensive performance metrics 
of primary concern. Although the GCN method does have an edge in Recall, its per-
formance in the remaining six metrics is subpar in comparison. With the assistance 
of the multi-head attention mechanism, GAT exhibits superior overall performance 
compared to GCN, and its ACC is slightly higher than that of DGCPPISP. However, 
given the imbalance of the dataset, ACC alone is not the definitive metric for PPI 
site prediction. For the other metrics, GAT’s results trail those of DGCPPISP. This 
experiment underscores the enhanced performance of the DGCPPISP model, based 
on a dynamic graph convolutional network, as opposed to traditional graph network 
methods GCN and GAT, which rely on fixed neighborhoods for PPI site prediction. 
We also graph the ROC and PR curves of the three graph convolutional neural net-
works on Dset_186_72_PDB164, as illustrated in Fig.  6. The discrepancies between 
these two curves also echo the superiority of DGCPPISP over the other two meth-
ods. We conclude it is attributed to dynamic graph convolutional neural networks’ 
ability to effectively adapt to non-stationary data by capturing time dependencies and 
dynamically update graph representations in the feature training process, thereby 
improving the prediction of PPI binding sites.

Fig. 5 performance comparison with various graph neural networks
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Ablation study

Feature evaluation

Our model harnesses a total of five protein sequence-based encodings as features. We 
gauge the impact of each feature on the performance of DGCPPISP through an abla-
tion experiment. Specifically, we eliminate each feature in turn from the set of five fea-
tures and subsequently test the model performance with a combination of the remaining 
four features. We then plot their AUPRC and MCC histograms on the primary data-
set, Dset_186_72_PDB164 (notably, this experiment’s results do not implicate the sec-
ond stage of transfer learning, as no pre-training is performed on the protein-peptide 
binding residue dataset). As Fig. 7 illustrates, the model’s performance on both metrics 
experiences a certain degree of decline after the removal of each feature. This validates 
that none of the features are superfluous, and all contribute substantially to the model’s 
performance. Of particular note is ESM-2, which makes the most significant contribu-
tion to the model due to its abundant protein pre-training information. Without the aid 

(a) ROC curve                           (b) PR curve
Fig. 6 ROC and PR curves of three kinds of graph neural networks

Fig. 7 Effect of different features on model performance on Dset_186 _72_PDB164. Note that the x-axis 
shows the specific features that are removed. For amino acid co-occurrence similarity encoding and 
electrostaticity and hydrophobicity similarity encoding, they are named as co-occurrence and ele&hyd, 
respectively. None indicates that no features are removed
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of ESM-2 features, AUPRC reduces from 0.421 to 0.359, signifying a decline of 14.7%, 
and MCC descends from 0.299 to 0.230, indicating a 23.1% reduction. Remarkably, even 
in the absence of ESM-2, DGCPPISP still outperforms the majority of the other methods 
depicted in the ensuing Table 1.

Effectiveness analysis of transfer learning

To ascertain the performance of DGCPPISP at various stages of transfer learning, we 
perform an experiment on Dset_186_72_PDB164, as displayed in supplementary 
Table 2. It is observed that each stage of transfer learning contributes to varying degrees 
of performance enhancement in the overall model. For instance, the first stage of trans-
fer learning yields the most significant improvements of 10.9%, 7.4%, 17.3%, and 28.3% 
in the final four metrics, respectively. This substantiates a high correlation with the rich 
features encompassed in ESM-2. The second stage of transfer learning contributes fur-
ther improvements of 1.1%, 1.9%, 5.9%, and 2.3% respectively, which indicates that pre-
trained model parameters offer beneficial prediction performance compared to random 
parameter selection in feature extraction and representation. We also depict the ROC 
and PR curves corresponding to the three transfer learning stages to intuitively exhibit 
the impact of transfer learning on DGCPPISP, as illustrated in supplementary Fig. 8. It 
is discernible that the ROC and PR curves drawn using the model with the complete 
two-stage transfer learning are generally positioned above the curves of models with the 
other two stages separately, signifying excellent performance.

The same experiment is subsequently conducted on Dset_331, and the results are 
presented in supplementary Table  3. After employing the first stage of transfer learn-
ing, the F1-measure, AUROC, AUPRC, and MCC of DGCPPISP are elevated by 8.4%, 
6.3%, 19.1%, and 17.8% respectively. Further introduction of the second stage of transfer 

Table 2 Performance comparison of different stages of transfer learning on Dset_186_72_PDB164

Model_RAW denotes that no transfer learning is used; Model_Stage1 denotes the first stage of transfer learning; Model_
Stage2 denotes the full method using two‑stage transfer learning

Method ACC Precision Recall F1 AUROC AUPRC MCC

Model_RAW 0.673 0.321 0.586 0.414 0.689 0.359 0.233

Model_Stage1 0.721 0.372 0.599 0.459 0.740 0.421 0.299

Model_Stage2 0.718 0.372 0.617 0.464 0.754 0.446 0.306

(a) ROC curve                           (b) PR curve
Fig. 8 Comparison of three states of transfer learning
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learning increases the performance of DGCPPISP on the four indicators by 6.0%, 0.8%, 
1.3%, and 11.3% respectively, thereby demonstrating the effectiveness of transfer learn-
ing in our model.

The effect of different k‑neighborhood

In our model, dynamic graph convolution is employed to form a "dynamic graph" by 
constructing the neighborhood of the central node via a k-nearest neighbors algorithm 
based on the "feature distance" prior to the EdgeConv operation. Consequently, the size 
of the k setting determines the field of view of the EdgeConv operation and to a cer-
tain extent influences the model performance. To scrutinize the impact of neighborhood 
range on the model’s performance, we assign six diverse ranges of neighborhoods from 
small to large and document the performance of DGCPPISP on each metric. The mini-
mum value of k is fixed at 1, implying that each central node has only a single neighbor-
hood node. We illustrate the variance of four crucial metrics as a line graph in Additional 
file 1: Fig. S1. It is apparent that all four metrics achieve their optimal results at k = 10, 
and although the AUPRC exhibits a marginal increase at k = 40, overall, the values of the 
metrics trend downward as the neighborhood range contracts and expands. We deduce 
that when the k-neighborhood range is too minimal, the EdgeConv’s field of view is con-
strained, preventing the full exploration of relationships between the central node and 
other nodes (such as those long "feature distance" dependencies implied in the high-
dimensional semantic space), which influences the effective feature extraction of DGCP-
PISP. When the k-neighborhood is excessively large, the neighborhoods of each node 
in the deep network may closely approximate each other, leading to the updated nodes 
exhibiting similarity in features and subsequently affecting the robustness of the model.

Effect of different kernel size for Conv_encoder

Within the DGCPPISP model, we have integrated a Conv_encoder module, constructed 
via one-dimensional convolution, aimed at both elevating and reducing the dimension-
ality of features. To pinpoint an optimal convolution kernel size, we execute a com-
parative experiment encompassing disparate convolution kernel sizes, as presented in 
Additional file 1: Table S4. It is observed from the table that when the convolution kernel 
size of Conv_encoder is 3, it takes the lead in five metrics, thus being incorporated as the 
parameter setting in our model.

Impact of different protein length

A hyperparameter of our model, the dynamic neighborhood range k, is typically deter-
mined by the length of the protein. Hence, in this section, we maintain the k value at 
10 (the superior parameter selected in Sect. 3.3.3) to scrutinize the influence of protein 

Table 3 Performance comparison of different stages of transfer learning on Dset_331

Method ACC Precision Recall F1 AUROC AUPRC MCC

Model_RAW 0.744 0.243 0.480 0.323 0.693 0.251 0.202

Model_Stage1 0.778 0.279 0.471 0.350 0.737 0.299 0.238

Model_Stage2 0.766 0.282 0.545 0.371 0.743 0.303 0.265
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length on DGCPPISP. Utilizing Dset_186_72_PDB164 as a representative example, we 
partition the 70 proteins used for testing into seven non-overlapping intervals based on 
sequence length, ensuring each interval encompasses 10 proteins. The AUPRC of DGCP-
PISP is calculated across the seven intervals and subsequently compared with popular 
methods. These results are illustrated in Fig. 9. For the methods compared, GAT-PPI is 
a derivative of EGRET and essentially an EGRET version devoid of the aggregated edge 
feature. It is discernible that, although for DGCPPISP and other three methods, their 
AUPRC scores consistently decline as protein sequence length increases, the overall per-
formance of DGCPPISP across the seven intervals outstrips other methods.

Visualization analysis

To further appraise the capacity of DGCPPISP in PPI site prediction, we additionally 
furnish a visualization comparison of DGCPPISP and EGRET. Selecting four proteins 
(PDB ID: 1MAF, Chain F; PDB ID: 3D7V, Chain A; PDB ID: 3VDO, Chain B; PDB ID: 
3W2W, Chain B, respectively) from Dset_186_72_PDB164’s test set for our experiment, 
we visualize the true PPI site (True), the PPI site predicted by EGRET (EGRET_pred), 
and the PPI site predicted by DGCPPISP (DGCPPISP_pred), as depicted in Additional 
file 1: Fig. S2. It is evident that the visualization results generated by DGCPPISP mark-
edly surpass EGRET and align more closely with the true cases, particularly in Fig. 10, 
where EGRET identifies all residues of the 3VDO protein as PPI sites, starkly contradict-
ing the true label, whereas DGCPPISP demonstrates superior precision on this protein.

Furthermore, we supply visual prediction results in the form of protein surfaces, 
selecting three proteins from Dset_331 for comparison with the true PPI site, the results 
of DGCPPISP, and EGRET. These results, displayed in Fig. 11 and Additional file 1: Fig. 
S3, further substantiate that our model’s results more closely resemble the true PPI site 
result.

Fig. 9 AUPRC on various lengths of proteins (The x-axis represents different protein subsets according to 
length)
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Conclusion
This paper introduces DGCPPISP, an innovative sequence-based PPI site prediction 
method. It implements a two-stage transfer learning strategy to enhance the overall 
performance of DGCPPISP by equipping the model with prior knowledge from both 
the feature input and initial parameters, respectively. Within the network framework, 
DGCPPISP forms a dynamic graph convolution module to supplant a traditional graph 
convolutional neural network, thereby augmenting the model’s capability to extract node 
features through evolving dynamic neighborhoods. Comprehensive experimental analy-
sis and comparison corroborate the efficacy of the proposed model and its superior per-
formance over other popular methods.

Certainly, there remains room for enhancement. Currently, our model is predomi-
nantly reliant on protein sequence information. Future work will explore the integration 
of sequence and structure information for PPI site prediction. Additionally, our mod-
el’s main contribution comes from transfer learning, where the protein-peptide binding 
site prediction is luckily found to be beneficial for PPI site prediction. Identifying other 
related prediction tasks more suited for PPI site prediction will form another aspect 
of our future work. Lastly, the PPI site prediction model is an unbalanced dataset with 
more negative than positive samples. Expanding the number of positive samples and 
constructing a higher quality dataset will remain a key focus in future endeavors.

Abbreviations
PPI  Protein–protein interaction
RF  Random forest
LR  Logistic Regression

True              EGRET_pred          DGCPPISP_pred
Fig. 10 Visualization comparison of DGCPPISP and EGRET on PDB ID: 3VDO, Chain B. Note that the red area 
indicates the PPI site, and the blue area indicates the non-PPI site

True              EGRET_pred        DGCPPISP_pred
Fig. 11 Surface visualization comparison of DGCPPISP and EGRET on PDB ID: 3L9F, Chain A, where purple 
indicates PPI sites and gray indicates non-PPI sites



Page 19 of 20Feng et al. BMC Bioinformatics          (2024) 25:252  

GAT   Graph attention network
PSSM  Position-specific scoring matrix
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AUROC  Area under the receiver operating characteristic curve
AUPRC  Area under the precision-recall curve
MCC  Matthews correlation coefficient
GCN  Graph convolutional network
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