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Abstract 

The growing number of portable consumer‑grade electroencephalography (EEG) 
wearables offers potential to track brain activity and neurological disease in real‑world 
environments. However, accompanying open software tools to standardize custom 
recordings and help guide independent operation by users is lacking. To address 
this gap, we developed HEROIC, an open‑source software that allows participants 
to remotely collect advanced EEG data without the aid of an expert technician. The aim 
of HEROIC is to provide an open software platform that can be coupled with consumer 
grade wearables to record EEG data during customized neurocognitive tasks out‑
side of traditional research environments. This article contains a description of HEROIC’s 
implementation, how it can be used by researchers and a proof‑of‑concept demon‑
stration highlighting the potential for HEROIC to be used as a scalable and low‑cost 
EEG data collection tool. Specifically, we used HEROIC to guide healthy participants 
through standardized neurocognitive tasks and captured complex brain data includ‑
ing event‑related potentials (ERPs) and powerband changes in participants’ homes. 
Our results demonstrate HEROIC’s capability to generate data precisely synchronized 
to presented stimuli, using a low‑cost, remote protocol without reliance on an expert 
operator to administer sessions. Together, our software and its capabilities provide 
the first democratized and scalable platform for large‑scale remote and longitudinal 
analysis of brain health and disease.
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Introduction
The recent emergence of consumer-grade wearable electroencephalographic (EEG) 
systems has opened potential new avenues for research and investigation into the 
understanding of the human brain through postnatal development [1] and neurologi-
cal disease [2, 3]. Unlike traditional EEG devices that are largely confined to hospitals 
and research settings, brain wearables are portable, battery-operated, and require just a 
few minutes for setup without the need for a modality-specific technician [4]. Because 
of these practical advantages, coupled with significantly lower cost (~ $200–900 USD/
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device [5]), there is hope that these devices may facilitate detection and monitoring of 
neurological pathologies outside of traditional centralized research and healthcare set-
tings [6, 7]. Despite their accessibility and ease of use, the integration of such wearable 
devices into large-scale longitudinal research outside of clinical settings remains largely 
unexplored due to the absence of a suitable framework for standardized data collection 
and analysis.

Previous work using the four-electrode “Muse 2” EEG headbands has shown that 
these consumer-grade devices can capture key EEG analysis metrics, such as event-
related potential (ERP) and resting state power spectral data that are comparable to clin-
ical-grade EEG systems [8, 9]. Moreover, using three-minute recordings from the same 
devices, others have shown the ability to predict stroke severity by comparing the power 
spectral properties of ischemic stroke patients and healthy controls [10]. Other hard-
ware like the Emotiv EPOC + Saline Flex have also been validated for the purposes of 
ERP collection using an approach involving simultaneous recordings with a research-
grade system [11]. While these important pioneering studies demonstrated the potential 
utility of consumer devices for cognitive monitoring and biomedical applications, they 
were largely confined to the research setting and were not designed to leverage their 
unique portability and operator-free benefits.

Other recent studies have used remote data collection protocols to demonstrate the 
practicability of gathering frequent at-home data from participants. For example, one 
group deployed the Muse 2 device to collect daily remote data over 14  days to study 
mindfulness and found correlations with self-report mind wandering metrics [12]. More 
recently, Sidelinger et al. validated remote and longitudinal spectral resting state EEG 
data from the Muse 2 by collecting data with a proprietary software. When they com-
pared the wearable data to in-lab medical grade EEG recordings, they found significant 
correlation between self-reported trait anxiety and day-to-day variability of an indi-
vidual’s alpha frequency [13]. The most popular application of at-home EEG are those 
designed to mimic sleep studies with polysomnography. For example, one group used 
connected an ear-EEG sensor to a portable amplifier, but required a technician to visit 
the users home [14]. Similarly, another study developed an at-home sleep-staging and 
apnea-detecting device, but also equipped the device in the presence of a technician 
[15]. These innovative works overcame the barriers associated with remote EEG col-
lection, but there remains a clear need for an open-source system to allow participants 
to equip the devices independently and use them to carry out advanced neurocognitive 
assessments.

There have been various attempts to develop platforms for remote data collection, each 
with a different design focus. An early system known as “NeuroMonitor” allowed a small 
circuit board and wired electrodes to transmit data with Bluetooth [16]. Li et al. devel-
oped a similar portable EEG system that suppressed external noise sources and collected 
robust signal but still involved a circuit board being strapped to the user’s arm, prohib-
iting independent use by a patient population [17]. An open-source project known as 
“cEEGrid” developed a small wearable device that leveraged OpenBCI EEG signal acqui-
sition platform, which is not adaptable to other commercially available hardware [18]. 
Milne-Ives et al. reviewed the subset of the available monitoring technologies for people 
with epilepsy, and found that few systems were both adequately reported and sufficiently 
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capable [19]. One popular mobile application known as “Mind Monitor” has been used 
in many publications but this software is limited to the Muse devices and does not allow 
stimuli to be synchronized [20, 21]. Other commercial software like Interaxon’s “Muse 
Direct” suffers from a lack of synchronized event markers and others like “Emotiv Pro” 
have expensive subscription models [22, 23].

Notwithstanding these important milestones, there is still a clear need for an open-
source companion platform to allow for implementation of cognitive tasks for the 
measurement of event-related potentials (ERPs) in the remote setting.6 Because ERPs 
have been shown to be informative for a variety of pathologies, the ability to monitor 
them remotely has important implications for the scalability of neurocognitive dis-
ease research. The current lack of a suitable platform for these purposes prohibits the 
deployment of EEG wearables toward novel avenues for the real-time and longitudinal 
study of disease detection and evolution. To address this critical gap, we have devel-
oped “HEROIC” (Home EEG Recording frOm Interfacing Computer), an open-source 
research platform capable of leveraging consumer-grade EEG wearables to longitudinally 
deploy a battery of cognitive process tasks to measure brain activity (including ERPs [9, 
24–26]) in both research and remote settings. As a proof-of-concept, we deployed our 
system to record four at-home sessions from 14 healthy participants resulting in a data-
set containing approximately 60 independent EEG recording sessions. We use these data 
to highlight that HEROIC is easy-to-use and reliable for collecting high quality data and 
support its ability to be deployed remotely and longitudinally to measure brain activity 
including complex markers like ERPs. We make our unique software and sample dataset 
publicly available to provide a democratized platform for the research community to use 
for the investigation of brain health and disease.

In addition to a brief introduction of the HEROIC platform, we describe its imple-
mentation and how it can be operated to collect EEG data. We also describe a proof-of-
concept pilot study as an example of how a researcher could design a protocol that uses 
HEROIC. Finally, we will present the results and analysis of this feasibility study demon-
strating that HEROIC is capable of remotely and independently measuring precise quan-
titative brain activity.

Implementation
We designed HEROIC with sufficient modularity such that the main components of 
test administration are customizable without affecting the core functionality of collect-
ing data. For example, when designing an experiment, HEROIC sessions can include 
multiple modalities such as text, images, videos, and sound to help guide users through 
specific tasks. Similarly, data recording is agnostic to the modality (wearable device, key-
board input, voice capture etc.) (Fig. 1A). Overall, the execution of the data collection 
can be conceptualized as having three core stages: pre-session setup, a recording session, 
and a post-session completion step as discussed below (Fig. 1B).

Device initialization and setup

The core objective of the pre-session initialization setup step is to enable a partici-
pant to independently connect an EEG wearable to a receiver laptop and carry out a 
pre-recording quality control step (Fig. 2A). While multiple popular wearable EEG 
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devices are hard coded options in the current version, researchers are also free to 
add additional devices as needed (Fig S1A). The detection of the selected device will 
trigger a sequence of events, starting with the opening of a computational thread 
for collecting that data. Next, the participant is guided through visual and writ-
ten instructions on how to equip the selected device. And finally, they are taken to 
a page where they are given real-time feedback on the connection status and sig-
nal quality from each of the electrodes on the device (Fig. 2B). When the user has 
achieved good signal on all electrodes, they can click the button to begin the session.

Session recording

This customizable portion of the HEROIC program is dedicated to guiding the user 
through different instructions to help standardize data collection. When the session 
begins, there is a hard-coded selection of a configuration file which contains a set of 
instructions allowing Python to generate the stimuli required for the session on the 
fly using media files or computationally defined stimuli (Fig S1B-C). For example, we 
provide a sample configuration of a session consisting of free recordings followed by 
oddball tasks interlaced with rest to allow the users to recover (Fig. 2C). While the 
session is running, data is timestamped in real-time, and every time a new stimulus 
is presented on the display, a designated numerical signature (e.g. oddball stimulus  
2) is added to the marker column to allow for retrospective analysis of that event.

Fig. 1 Schematic Overview of HEROIC Implementation. A Experiment design can draw from multiple 
different modalities of stimuli and data capture. B i) The choice of device is hard‑coded but modifiable 
with subsequent modules reacting accordingly. ii) In a data collection session, the stimuli on the screen are 
determined by a configuration file in a local database of different tasks (e.g. eyes‑open rest). The stimuli are 
marked with a signature number which are timestamped and overlaid onto the EEG data being read from 
the thread. iii) When the user has completed the session, it returns to the graphical user interface (GUI) where 
the user is prompted to close the program, thereby triggering the saving of the data files
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Post‑session completion

When the recording session is complete, the user is informed that the session has ended 
and they are then returned to the graphical user interface GUI, where they are prompted 
to close the program. The closing of the program prompts the compilation of the times-
tamped data with the stimuli markers into a comma separated value (CSV) file, which is 
then zipped with metadata files describing the configuration of the session, device used, 
etc. The closing of the program also terminates the thread and disconnects the device. The 
zipped files are finally saved to the hard drive in an output folder.

Experiment design

Together, the modularity and capabilities of HEROIC allow for the development of novel 
study protocols. We provide a sample protocol where participants are brought to the 
research setting (e.g. hospital, research institute) for a one-time instruction on how to use 
HEROIC, and then they independently collect subsequent recordings at home. The com-
puters and wearables are then returned to the researchers for analysis (Fig. 2D).

Fig. 2 HEROIC: A lightweight software for remote collection of EEG data. A Diagram showing a participant 
wearing the Muse 2 EEG wearable while seated across a portable pre‑programmed laptop with HEROIC. 
B Screenshot of HEROIC’s graphical user interface for its interactive initial signal quality check process. 
Colored circles represent the status of each electrode (Green: Accepted, low signal variability. Yellow: 
Close to Accepted. Red: Not Accepted, high signal variability). C Top: Sequence of cognitive process tasks 
employed in our default session design. Bottom Left: Diagram of visual oddball paradigm where oddball and 
standard stimuli are presented. Bottom Right: Diagram sample of a typical P300 waveform evoked by the 
oddball stimuli. D Standard workflow for remote data collection using the presented system. First, a laptop 
with software (a (i)) that can connect to and receive data from an EEG wearable (a (ii)) is provided to users. 
Participant attends an initial in‑lab demonstration of the software to simultaneously perform EEG recordings 
with cognitive tests (b) of interest. Longitudinal data collection is done at home (c) with sessions as frequent 
as for example, weekly, bidaily, or even daily. Once collection is complete, or during regular hospital visits, 
devices are returned to the lab for data retrieval and analysis (d)
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Results
HEROIC allows for reliable EEG data collection in remote settings

To assess the reliability of this software at collecting time-stamped EEG data in par-
ticipants’ homes, we installed our software on ten modest (~ $300 USD) refurbished 
laptops and paired them with the Muse 2 EEG headset (~ $250 USD) (Fig. 2A). We 
deployed these HEROIC EEG stations to a cohort of 14 healthy participants from 
three Canadian cities (Toronto, Montreal, and London). Participants performed a 
brief 20-min demonstration on-site in a controlled research environment with lab 
personnel to learn how to connect and collect EEG data using the Muse 2 device 
paired with a HEROIC-installed laptop. Distinct from the other aforementioned 
studies, HEROIC was designed to also allow the capture of time-locked EEG data 
synchronized to the presentation of visual stimuli presented to users (i.e., an “odd-
ball” task), to allow the collection of ERPs (Fig. 2C). To test the ability to remotely 
record EEG data, participants were then asked to take the hardware home and carry 
out a series of four additional EEG recording sessions within a nine-day period inde-
pendent of any study operator (Fig. 2D).

To assess the overall fidelity of HEROIC to reliably capture baseline EEG data, the 
platform guided participants through one-minute sessions of resting state in both 
open and closed eyes conditions. Acquisitions were referenced to the Fpz electrode 
position (10–20 International System) and was bandpass filtered between 1-55  Hz 
before analysis. Power band analysis confirmed that there was higher relative alpha 
power during periods of closed eyes (Fig. 3A; t-test p < 0.0001) as is well-documented 
in the literature [27]. Moreover, participants expressed expected symmetrical differ-
ences between open and closed eyes conditions on corresponding electrode posi-
tions on the left and right hemispheres (Fig. 3B). Together, these results suggest that 
HEROIC can remotely guide participants through multiple specific tasks and record 
annotated EEG data collected from an accessible consumer-grade device.

The precise time-stamping nature of our open software platform offers the excit-
ing opportunity to carry out advanced cognitive processes measurement. One of 
the most well studied ERPs for measuring cognitive processes is the “P300” (posi-
tive deflection occurring approximately around 300  ms) which can be generated 
using the oddball task. We therefore also asked participants to perform a guided 
ERP visual-oddball task similar to that in [9] where which participants were shown 
a series of frequent “standard” stimuli (90% chance of green circle) and infrequent 
“oddball” stimuli (10% chance of blue circle). By time-stamping the recorded EEG 
data in HEROIC, we were able to observe distinct P300 waveforms in the TP9 and 
TP10 electrodes when the infrequent oddball stimuli were presented (permutation 
cluster t-tests TP9 N200: p = 0.001, TP9 P300: p = 0.001, TP10 N200: p = 0.173, 
P300: p = 0.001; Fig. 3C). Additionally, using a minimum-distance-to-means classi-
fier, [28] we could successfully distinguish between individual oddball and standard 
stimuli epoch (accuracy: 0.8060; AUC: 0.8937; Chi square test: p < 0.0001) (Fig. 3D). 
Together, these results support that HEROIC can carry out fully automated time-
stamped ERP experiments using low-cost EEG headsets even when carried out by 
participants independently at home.
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Discussion
Brain wearables have the potential to capture large volumes of EEG data outside of tra-
ditional research and healthcare environments. However, the lack of experienced opera-
tors, lower electrode densities, and precise time-stamping of data may limit current 
capabilities and promise. Due to these diverse factors, many early studies have focused 
on in-lab sessions and require averaging of data over large cohorts to get consistent 
results.21–23 While these works mark important initial milestones, the lack of a freely 
available platform for data recording still presents an important barrier that has likely 
limited deployment and progress to many exciting biomedical applications and remote 
care. Specifically, the literature lacks an open-source platform for the collection of com-
plex EEG signatures, such as ERPs, in a way that is cost-effective and scalable over long 
timescales.

Here, we developed an open-source EEG platform that connects popular EEG devices 
to collect time-stamped data recordings and benchmarked the reliability across several 
relevant scenarios in healthy participants. Importantly, the presented platform can be 
run on modest refurbished laptops and can be easily customized and expanded to differ-
ent EEG wearables and to administer additional automated cognitive tests. As a proof-
of-concept, we deployed our platform to 14 healthy participants, which showed that we 

Fig. 3 Remote detection of cognitive processes with portable EEG devices. A Alpha blocking: Paired violin 
plots showing a significant decrease in alpha activity between eyes‑closed and eyes‑open (p < 0.0001). Each 
point represents a two‑second time event recorded from TP9 channel. B Spectral changes across scalp: 
Summarized significant changes in power spectral frequency bands changes from eyes‑closed to eyes‑open 
resting state conditions by brain regions in control participants, p‑values shown in Supplemental Table 1. 
(δ delta, θ theta, α alpha, β beta, γ gamma). C P300 waveforms: Averaged ERP plots for each electrode 
derived from the combined data/ERPs of 14 healthy controls. Amplitude on y‑axis in volts. Time on x‑axis 
in seconds. Clustered t‑tests detected significant (red, p < 0.01) differences between the oddball (blue) 
and standard (green) curves. Significant clusters resembling a P300 for TP9, and both a N200 and P300 for 
TP10 were detected. D Minimum‑Distance‑To‑Means (MDM) Classifier: Single‑epoch classifier performance 
(accuracy = 80.60%) confirms oddball and standard stimuli are reliably different



Page 8 of 10Sugden et al. BMC Bioinformatics          (2024) 25:243 

were able to recapitulate expected differences in resting states as well as reliably generate 
complex brain measurements like the P300 waveform. Given the relatively high adher-
ence to the frequent recording protocol within our cohort, we believe this platform and 
protocol are easy to use and can be adapted to larger cohorts to study health and disease.

Comparison with state‑of‑the‑art

To properly contextualize the advancement made by HEROIC, we will compare our soft-
ware to other common remote data collection applications. For example, the develop-
ers of the Muse 2 headband have released a freely available platform known as “Muse 
Direct” that allows for data collection using a laptop. This system has the added benefit 
that it can stream simultaneously from multiple people but it lacks the crucial ability to 
synchronize the data collection to the presentation of stimuli thereby prohibiting ERP 
analysis [22]. Another common data collection software is Emotiv Pro, which connects 
to Emotiv devices like the EPOC X. While this platform allows interactive quality checks 
and timestamped event markers similar to HEROIC, it requires expensive ongoing 
licensing fees (over $1000 per annum), which limits its scalability, especially in academic 
settings [23]. Together, these popular examples highlight the need for the combination 
of an open-source data collection platform with precise timestamped stimuli markers.

Limitations and future directions

While HEROIC’s implementation is robust and ready for researchers to adopt for col-
lecting their own data, it does have limitations which present opportunities for further 
development. For example, it is currently compatible with three popular EEG hardware 
systems (Muse 2, Muse S, and EPOC X) but new hardware systems are being released 
on an ongoing basis. We have intentionally made the core functionality agnostic of the 
hardware to allow future integration of these new hardware systems as they are released. 
Another limitation of our study is that our user feedback was collected in an open-ended 
manner with many iterative real-time refinements, prohibiting a meaningful structured 
analysis. Follow-up studies should include structured surveys with larger sample sizes 
to statistically power conclusions regarding the user experience and ease-of-use. We 
additionally note that our pilot study was only conducted on adults (> 18 years of age) 
and a separate pilot study would be needed to validate the use of HEROIC for monitor-
ing younger populations. Finally, a major direction for future work is to establish that 
our system is usable in a sensitive patient population, and that the data is biomedically 
informative. Specifically, we envision that HEROIC would be used for a first-of-its-kind 
“massively serial” longitudinal study of brain health and disease, where patients with a 
neurological condition (e.g. a brain tumour) perform several (10 +) EEG recordings at 
home. Such a study, over a long enough period could provide the proof-of-concept for 
long-term tracking of brain states and if and how EEG patterns evolve with changes in 
neurological health.

Conclusion
There are several logistical and technological barriers associated with the remote collec-
tion of EEG data using consumer-grade wearables. HEROIC addresses these limitations 
by providing a democratized, scalable, and customizable solution capable of collecting 
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ERP measurements in remote settings without an expert operator. This platform has the 
potential to significantly advance our understanding of brain health and disease by ena-
bling researchers to perform long-term longitudinal EEG studies at a low cost.
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