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Abstract 

Background:  Metabolic pathways support the enzyme flux that converts input 
chemicals into energy and cellular building blocks. With a constant rate of input, 
steady-state flux is achieved when metabolite concentrations and reaction rates 
remain constant over time. Individual genes undergo mutation, while selection acts 
on higher level functions of the pathway, such as steady-state flux where applicable. 
Modeling the evolution of metabolic pathways through mechanistic sets of ordinary 
differential equations is a piece of the genotype–phenotype map model for interpret-
ing genetic variation and inter-specific differences. Such models can generate distinct 
compensatory changes and adaptive changes from directional selection, indicating 
single nucleotide polymorphisms and fixed differences that could affect phenotype. 
If used for inference, this would ultimately enable detection of selection on metabolic 
pathways as well as inference of ancestral states for metabolic pathway function.

Results:  A software tool for simulating the evolution of metabolic pathways based 
upon underlying biochemistry, phylogenetics, and evolutionary considerations is pre-
sented. The Python program, Phylogenetic Evolution of Metabolic Pathway Simula-
tor (PEMPS), implements a mutation-selection framework to simulate the evolution 
of the pathway over a phylogeny by interfacing with COPASI to calculate the steady-
state flux of the metabolic network, introducing mutations as alterations in parameter 
values according to a model, and calculating a fitness score and corresponding prob-
ability of fixation based on the change in steady-state flux value(s). Results from simula-
tions are consistent with a priori expectations of fixation probabilities and systematic 
change in model parameters.

Conclusions:  The PEMPS program simulates the evolution of a metabolic pathway 
with a mutation-selection modeling framework based on criteria like steady-state flux 
that is designed to work with SBML-formatted kinetic models, and Newick-formatted 
phylogenetic trees. The Python software is run on the Linux command line and is avail-
able at https://​github.​com/​nmccl​oskey/​PEMPS.
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Background
Metabolic pathways support the enzyme flux that generates energy and building blocks 
to sustain life [1]. Pathways evolve with constraints on functions at the pathway level 
driven by mutations occurring at the underlying level of individual enzyme proper-
ties [2]. Selection can also act on different levels of pathway function, including time-
dependent dynamics and steady-state flux [2]. Studying the effect of selective pressure 
on a metabolic network’s steady-state flux, a condition achieved when metabolite con-
centrations and reaction rates are constant in the network [3], can elucidate its co-
evolutionary dynamics [4]. Modeling the evolution of metabolic pathways is a piece of 
the larger genotype–phenotype map [2]. If used for inference (by using methods like 
Approximate Bayesian Computation [5] that use simulation for inference), such models 
have the potential to detect single nucleotide polymorphisms and fixed differences that 
could affect phenotype, ultimately enabling detection of lineage-specific selection on 
metabolic pathways as well as inference of ancestral states at phylogenetic tree nodes for 
metabolic pathway function [2]. In these scenarios, the pathway structure is fixed and 
protein and expression evolution happen within this context. While pathway structures 
can clearly change and a model for that is needed, many core pathways in KEGG [6] 
show relatively conserved pathway structures. The first step in developing such an infer-
ence tool is building a mutational model for pathway simulation.

Because most genes function with epistatic effects on other genes involved in the same 
network or pathway, the phenotypic effect of their mutation could depend on biochemi-
cal context, something lost in polygenic risk scores in statistical genetics that assumes 
that every gene functions independently [2]. The rules for dependent evolution are 
governed by mathematical expressions known to biochemists that obviate the need for 
mechanism-free statistical genetics approaches [2]. Under mutation-selection-drift bal-
ance, rapid evolution of individual enzymes can occur without altering pathway flux, due 
to intermolecular epistasis in which the functional change in one enzyme affects selec-
tive constraints and evolutionary rates of other enzymes in the network [4]. Such evolu-
tion in multiple enzymes could be due to directional selection on intermediates or to 
compensatory changes, but a biochemically informed null model of pathway evolution 
assuming stabilizing selection is required to make this distinction. The PEMPS software 
tool is presented to address the need for a framework that incorporates epistasis in the 
systemic context of metabolic pathway evolution across species, as opposed to studying 
the evolution of individual network components assuming their evolutionary independ-
ence. While metabolic pathway evolution simulations [7–9]—even over a phylogeny 
[10]—have been conducted for various studies, research software for simulation using 
an input metabolic model and phylogeny had previously been unavailable.

Three big-picture hypotheses of pathway regulatory evolution have been proposed. 
First is the topological selection hypothesis, based on phenomenological and mecha-
nistic models which posits that selection on pathway flux control is constant, driven 
by strong selection early in pathways and on committed steps with large kinetic or 
thermodynamic barriers between substrates and products [11]. Second, the muta-
tion-selection-drift balance hypothesis is based on theoretical work demonstrating 
that intermolecular epistasis can preserve pathway flux while its individual enzymes 
evolve rapidly, and posits that changes in enzyme kinetic properties cause a shift of 
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flux control over evolutionary time due to mutation-driven processes [12, 13]. Third, 
the frequent soft sweeps hypothesis proposes that flux control shifts rapidly due to 
balancing selection on seasonal timescales with action occurring on standing varia-
tion without a role for new mutation [14]. The software presented here is designed 
to simulate under the second hypothesis, but could in principle be tuned to simulate 
under the alternative hypotheses as well. A simple shift in the distribution of muta-
tional effects from one dominated by slightly deleterious mutation to one dominated 
by neutral mutation with equal frequencies of deleterious and adaptive changes would 
give rise to dynamics consistent with the first rather than the second hypothesis [12] 
but is not expected biologically [15].

Among the possible descriptions of a metabolic pathway, kinetic modeling offers 
the most detail. In this framework, each enzymatic step in the network can be rep-
resented with an enzyme-kinetic rate law such as the Michaelis–Menten equation 
[3]. This equation is a function of enzyme concentration, substrate concentration, 
catalytic rate constant, and Michaelis binding constants, and describes the enzyme–
substrate complex as an equilibrium process [16]. The change in concentrations of 
metabolites over time is determined by the sum of the rates synthesizing the metabo-
lite minus the sum of the rates consuming it. After accounting for all metabolites in 
the pathway, this results in a system of ordinary differential equations (ODEs) whose 
solution represents the metabolite concentrations required for the network to reach 
steady state. Such deterministic kinetic models based on systems of ODEs have been 
the most frequently used approach to metabolic modeling [3]. Models can behave dif-
ferently depending on their parameters. Some reach steady state, where all fluxes bal-
ance each other such that metabolite concentrations do not change. Alternatively, the 
system can exhibit oscillatory behavior, or the concentrations could all drop to zero. 
The probability of oscillation or other instability has been shown to increase with 
model complexity; for large kinetic models, it is unusual to reach steady state, and 
this may have been selected for [3].

Haldane’s relationship dictates that the dynamic equilibrium parameters in an enzyme 
reaction are not free to vary independently, but that any mutations must comply with 
the biophysical (energetic) constraints of the reaction landscape. This is embedded into 
the profiles of linked reaction parameters in the mutational profile [15]. The previous 
study demonstrated that fitness equilibrium is reached whenever selection is present, 
but that some parameters (binding constants) can continue to show systematic direc-
tional movement without affecting fitness [2]. Mutations to enzymes can differentially 
affect kcat and KM and enabling non-coincident but intertwined mutations subject 
to Haldane’s relationship is meant to capture the underlying biophysics and observed 
mutational properties of enzymes.

Fitness effects of new mutations have been shown to have large fractions of both 
severely (i.e., lethally) and slightly deleterious mutations, with the magnitude and fre-
quency of such effects depending on the mutational landscape of the coding sequence 
[2]. A mutation-selection model (see Methods) treats mutational and fixation probabili-
ties independently [17], and unlike a Wright-Fisher approach can accommodate large 
population sizes without incurring a prohibitive computational cost by assuming that 
one mutation fixes before the next one is introduced and eliminating the need to model 
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the entire population. A tool to simulate the evolution of metabolic pathways and their 
regulation was generated using this framework.

Implementation
PEMPS is a Linux command line-executable Python program that can simulate the evo-
lution of an input metabolic pathway over an input phylogeny and report the changes 
in model parameters along the lineages of the phylogenetic tree over evolutionary time. 
The user provides commands in a text file designating the underlying biology, includ-
ing a metabolic model, the reaction flux(es) on which selection operates and the relative 
weights in the calculation of selective coefficients, a phylogeny as a Newick string for the 
species (a standard format which gives the topology and branch lengths of the species 
phylogenetic tree), the ploidy of the genome, population size(s) of all branches, any non-
genetic parameters to be excluded from mutation, and the number of simulations to run. 
A future release could enable lineage-specific shifts in the optimal flux for a pathway. 
The user is given control over the network dynamics, as they determine which model 
parameters are held constant and on which reaction fluxes selection acts. A different 
decision about the target of selective pressure results in new evolutionary constraints on 
different constellations of model parameters in the network, which is likely to affect the 
changes observed in parameters over phylogenetic time. A flowchart of the overall pro-
gram function is presented in Fig. 1.

The program requires a Newick string from the user-specified file for which the 
branch simulation proceeds recursively. The tree must be rooted [18]. Rooted trees can 
be obtained from the NCBI taxonomy [19], TimeTree [20], rooted using gene tree/spe-
cies tree reconciliation with software like SoftParsMap [21] or NOTUNG [22], or by 
software like DendroPy [18] using techniques like mid-point rooting when species rela-
tionships are unknown [18]. PEMPS requires branch lengths as substitutions per site or 
in millions of years to determine the number of generations to simulate for each branch. 

Fig. 1  PEMPS program flowchart
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The input metabolic model is prepared with the GUI version of COPASI, and the SE 
version, interfaced through Python, can be used to calculate steady-state flux [23, 24]. 
BasiCO is a Python module which enables easy modifications and simulations (includ-
ing steady-state flux) with COPASI [25]. Most but not all models’ parameters can be 
accessed through BasiCO; if this package cannot interface with a given model, PEMPS 
will instead use regex to rewrite the.cps file and run COPASI with subprocess com-
mands. As the fitness calculation in the mutation-selection process depends on steady-
state flux (where selection is based upon this criterion), the program is only compatible 
with models that can reach steady state with their original parameters. Detection of 
binding constants for mutation and Haldane’s constraint depends on informative param-
eter naming, which some models do not provide (the label could be parameter__12 as 
opposed to KmATP). In such cases, the user would have to offer specifications in the 
commands file.

The program conducts a forward-time simulation with discrete generations using a 
mutation-selection model [26]. In each generation, each parameter has a small probabil-
ity (Poisson random variable, lambda = 0.003) of mutating, and if mutation occurs, the 
parameters are updated before the recalculation of steady-state flux. To model the ten-
dency towards slightly deleterious change, mutational effects are drawn from a normal 
distribution centered at − 1% for all parameters except binding constants (1%), because 
poorer binding corresponds to a larger Km value. The assumption that mutations tend 
towards slight functional degradation is consistent with results from mutation accumu-
lation experiments [13] and parameterizations of the distribution of fitness effects in 
protein coding genes [15, 27].

The user can hold any global or kinetic parameters to their starting values by pro-
hibiting their mutation, which could be useful, for example, to incorporate an assump-
tion of constantly replenishing supply of the network’s input(s). Most metabolic models 
explored during development of the program are constructed this way, and without 
any specification, the network inputs remain constant throughout the simulation. To 
implement Haldane’s constraint, the program collects each reaction’s maximum veloc-
ity, equilibrium constant, and binding constants, provided that they are informatively 
named (which tends to be the case) and that there are equal numbers of substrates and 
products, so that pairings can be established. After a mutation to either a forward or 
reverse binding constant, the reverse reaction velocity is calculated, and the counterpart 
parameter is updated accordingly. An analogous procedure would be applied to the cata-
lytic constant and its reverse, although most models are not specified with reverse kcat 
values.

To model selective pressure on the steady-state flux of a subset of the network’s reac-
tions, population fitness is calculated from proportionalized reaction flux (x) with the 
logistic function given in Eq. 1 [2].

A logistic curve is suitable because the upper asymptote represents a diminishing 
marginal return that corresponds to the biomolecular reality that although a cell can-
not survive with zero flux, increasing production beyond a certain threshold results in 

(1)Fitness =
1

1+ e10(0.5−x)
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no further fitness advantage. Some contexts, however, where there is effectively no ceil-
ing to the benefit of increasing cellular product would be best modeled with a linear 
function, as might be the case for the generation of materials required for cell division 
during the exponential growth phase in bacteria. Because multiple reaction fluxes may 
be under selection, and these values may lie on different scales, the fluxes are propor-
tionalized based on initial (pre-mutation) flux values such that the starting fitness score 
for each flux is 1. The user can override this default by passing a command to change the 
multiplier in the following formula: proportionalized_flux = start_flux/(start_flux * mul-
tiplier). Fitness scores are calculated for each of these proportionalized flux values and 
adjusted such that a minimum fitness of 0 corresponds to no enzyme flux, a fitness of 1 
corresponds to the starting flux, and the asymptote represents the production threshold 
beyond which no further fitness advantage is gained. The justification for this is that the 
wild type is fit and evolution under stabilizing selection is modeled. Alternatives that 
involve positive selection are enabled with the multiplier. The population fitness is then 
the weighted geometric mean of these normalized scores. This function can be modified 
in the code by a user. The population fitness values from before and after a mutation are 
used to calculate the probability of fixation with Kimura’s formula (Eq. 2) [28] as pre-
sented by Otto and Whitlock [29].

The selection coefficient s is the ratio of the new population fitness (after mutation) 
to the old fitness − 1. The initial frequency parameter p is usually calculated by 1/(cNe) 
where c is the ploidy and Ne is the effective population size, but to speed up simulation, 
this parameter is set to 0.5 [30]. This gives neutral mutations a 50% chance of fixing, 
accelerating the neutral walk across sequence space. Before the simulation runs through 
the tree, the “root” population undergoes mutation and selection until its fitness and 
most (80%) of its reaction fluxes reach values that remain stable over many generations. 
This state of equilibrium is determined by calculating the slope of the line of best fit and 
coefficient of variation (values indicating “flatness” of the line) of the select parameters 
over 100-fixation windows. When the values of five consecutive windows are within 
certain thresholds of zero for fitness and the majority of fluxes, equilibration continues 
for as many generations as had transpired by that point, and then branching simulation 
commences. Because equilibration occurs before branching, the phylogeny is not rel-
evant in this step, which means that if the starting population size, ploidy, and fluxes 
under selection are the same, one equilibrated population can act as the starting point 
for any other tree the user wants to simulate with the same starting population param-
eters and metabolic model. The user has the option to import an equilibrated set of 
parameters into the root node population and can either equilibrate further or start the 
phylogenetic simulation.

Branch lengths as either millions of years or substitutions per site are required, and 
the number of generations to be simulated for each branch depends on the length and 
user-specified measurement type. To convert branch lengths to number of generations 
to simulate, the program determines at what number of generations during equili-
bration an average number of 7 mutational proposals are introduced to both enzyme 

(2)Pfixation =
1− e−2cNesp

1− e−2cNes
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concentration and enzyme functional parameters across the model reactions. This 
threshold is based on the following assumptions: (1) the two-percent rule which states 
that branching avian and mammalian lineages tend to differ from each other by 1% every 
1 million years [31]; (2) that 50% of neutral changes fix; (3) a bias towards deleterious 
change; (4) that the coding sequence for a typical enzyme contains ~ 250 amino acids 
subject to the mutational effect distribution for enzyme parameters and ~ 250 sites that 
can affect gene expression leading to changes in protein concentration. This latter cat-
egory would include mutations in promoter sites that influence transcription factor 
binding [32], which affect the quantity of transcripts and ultimately proteins produced, 
thus causing changes in the concentration of enzyme ([E]). In models parameterizing 
[E], PEMPS probabilistically proposes mutations to [E] and other enzyme parameters 
in a 1:1 ratio. If the input branch lengths are measured in millions of years, this thresh-
old is simply multiplied by branch length to calculate simulated generations per branch; 
if measured in substitutions per site, a factor of 100 is introduced to convert branch 
lengths to percentages.

Lineages (edges) are formed by connecting branch simulations when tracing a path 
directly from the equilibrated root node through all internal nodes to an external node, 
with bifurcating branches each starting their separate simulations with the same set of 
inherited parameters. Larger branch lengths result in a higher number of generations 
along the lineage, affording more opportunity to fix new mutations, which creates an 
expectation of greater change along longer lineages. Population sizes are also deter-
mined by the user, who can choose to set a uniform value across the entire tree or enter 
the population size individually for each branch. A new equilibrium may not be reached 
after branching to a new population size by the next bifurcation, but this corresponds 
to real evolution. Output generated by the program includes the changes in parameters 
for all mutations, fixed and unfixed, in tabular format, graphs of parameters for lineage 
and branch, and heatmaps of percent differences from starting values for lineages and 
branches (a more detailed description of usage and output can be found in the program 
docstrings https://​github.​com/​nmccl​oskey/​PEMPS). When multiple simulations are run 
(the user’s decision), tables of average percent differences for each parameter for lineages 
and branches are produced with corresponding heatmaps.

Results
Data from three example runs of the program are presented. The first network is a model 
of the pyruvate branches in the bacterium Lactococcus lactis [33]. The following increas-
ingly complex models based on glycolysis [34, 35] were selected because this pathway 
is found with conserved function across the tree of life and has been well studied [4, 
36]. Furthermore, it has been shown that the structure of the enzymes involved changes 
across species, and variation emerges both within and between major lineages [37]. 
Table  1 displays simulation features. The selection column designates the reaction(s) 
on which selective pressure operates. The following two columns specify the number 
of generations spent equilibrating and branching. The phylogenies, all downloaded as 
Newick files from TimeTree with branch lengths measures in millions of years [20], were 
selected based on potential relevance to the metabolic model (e.g., a yeast phylogeny for 
yeast metabolism).

https://github.com/nmccloskey/PEMPS
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Run 1 had equally weighted selection on fluxes of the reactions synthesizing out-
puts of the model network: R2: L-lactate dehydrogenase; R5: acetate kinase; R7: alco-
hol dehydrogenase; R10: acetoin efflux; R11: acetoin dehydrogenase. Figure 2 shows the 

Table 1  Information about each run, which includes equilibration and branching simulations

Runs 2A and 2B share the same equilibration

Run First 
author

Model Selection Equilibration 
generations

Branching 
generations

Phylogeny Population 
size

Ploidy

1 Hoefnagel Pyruvate 
branches

R2, R5, R7, 
R10

403,080 109,939 Gammapro-
teo-bacteria 
orders, 
pruned

107 2

2A Kerkhoven Glycolysis 
plus pen-
tose phos-
phate 
pathway

Ribose 
5phos-
phate 
produc-
tion

165,688 157,905 Trypano-
somes 
pruned

106 2

2B Kerkhoven Glycolysis 
plus pen-
tose phos-
phate 
pathway

Ribose 
5phos-
phate 
produc-
tion

165,688 13,446 Trypa-
nosoma 
species

106 2

3 van Eunen Yeast 
Glycolysis

Pyk, Pdc, 
Adh

247,378 185,988 Trypano-
somes 
pruned

106 1

Fig. 2  Fitnesses during equilibration in Run 1 (Hoefnagel). Weighted (population) fitness is the product of 
the fitnesses, equally weighted, of each flux under selection. (R2: L-lactate dehydrogenase; R5: acetate kinase; 
R7: alcohol dehydrogenase; R10: acetoin efflux)
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population fitnesses during the equilibration process. When equilibrium autodetection 
does not meet its criteria by 1 million generations, the program begins branching simu-
lation. If desired, equilibration can be extended by the user, but this practical threshold 
has during development been sufficient for eliminating intolerable levels of systematic 
directional movement of model parameters in the subsequent phylogenetic simulation. 
Figure  3 shows the probabilities of fixation for all mutations proposed during equili-
bration. As most mutations should result in either slightly or substantially deleterious 
change, modes toward 0 and under 0.5 are expected in a frequency distribution. The 
mode at 0.5 represents mutations to model parameters that have no effect on fluxes 
under selection.

The input to the following two networks is extracellular glucose, held at a constant 
value derived from the initial condition described in the model. Simulation 2 ran with 
selection on ribose-5 phosphate production. It is expected that models can reach steady 
state, but not that they are imported at evolutionary equilibrium. Under the mutational 
and selective scheme, most parameter values will show systematic directional movement 
until a stable balance is achieved, at which point it is most sensible to begin branch-
ing the population through the phylogeny. For Simulations 2A&B, the same equilibrated 
root population was used as the starting point for both branching simulations. Simula-
tion 2A ran on a pruned trypanosome species tree to demonstrate the program’s auto-
matic branch length determination, while 2B ran on the unpruned tree, but for only 1% 
of the automatically determined generations. It was not practical to fully simulate a large 
tree with available computational resources. Figure 4 displays lineage-specific fitness for 
these simulations. Most fluxes, initial concentrations, and non-binding constant param-
eters reached steady values like the population fitness.

Figure  5 presents example model parameters from Simulation 2A. The upper pan-
els display an initial concentration (panel A: dihydroxyacetone phosphate initial 

Fig. 3  Frequency distribution of probabilities of fixation for all mutations (fixed and unfixed) during 
equilibration in Run 1
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concentration) and reaction flux (panel B: ribose-5 phosphate), whose values depend on 
steady state calculation and so fluctuate with almost every mutation. The lower panels 
display parameters which themselves mutate, one (panel C: inhibitory binding constant 
for ATP in aldolase reaction) with systematic upward movement expected of binding 
constants [2], and another with nonsystematic change (multiple lineages end up above 
and below the equilibrated value, panel D: binding constant for ATP in hexokinase 
reaction).

For each parameter of each lineage, the percent difference is calculated between the 
value at the end of equilibration and at the end of branching. These percentages, for all 
heatmaps, are normalized (linearly, with respect to maximum column magnitude) such 
that positive values fall within the range [0, 1] and negative values within [− 1, 0]. Fig-
ures 6 and 7 display the normalized percent changes across lineages for Simulations 2B 
and 3 respectively. When multiple branching simulations are run from the same root 
over the same phylogeny, the program will average percent changes across them. Fig-
ure 8 shows the average percent change across 3 branching simulations for Simulation 1, 
running at 1% of the automatically determined number of generations.

It is clear in the heatmap that some parameters are moving in unison in parallel across 
lineages while other parameters move in opposite directions. Those that move in uni-
son are presumably still out of equilibrium from the starting conditions, reflecting rare 
values among all of the potential values underlying high fitness space. Those that move 
in opposite directions are a more biologically interesting phenomenon and reflect the 

Fig. 4  Population fitness along each lineage in Run 2B. The scientific notation at the top of the y-axis 
indicates that the base scale is 10−5 and an additional offset of 1.0067 is added to each value for better 
visualization. For example, 3.6 would be interpreted as 3.6 × 10−5 + 1.0067 = 1.006736
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Fig. 5  Example parameter evolution along lineages from Simulation 2A. The program numbers each 
lineage with the branch number of its terminal (external) node, indicated in the upper left panels. A 
dihydroxyacetone phosphate initial concentration. B Ribose-5 phosphate flux. C Inhibitory binding constant 
for ATP in aldolase reaction. D Binding constant for ATP in hexokinase reaction

Fig. 6  Normalized percent change from initial to final values for lineages in Simulation 2B. Columns 
represent all model values (fitnesses, fluxes, initial concentrations, parameters) while rows represent external 
nodes in the Trypanosoma species phylogeny (left). Zooming in on the image increases the readability of the 
parameters
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alternatives in genotype space corresponding with phenotype and fitness spaces that 
might be differentially observed as solutions in different genomes from extant species.

Discussion
Studying the evolution of one gene in isolation can elide the interplay of mutation, 
selection, drift, and compensatory changes, as well as the resulting equilibrium. While 
it is commonly assumed that a mutational effect acts independently of genetic back-
ground, these simulations contextualize all genetic variants in a network and inves-
tigate their effect on pathway flux and population fitness [2]. The PEMPS software 
simulates enzyme co-evolutionary dynamics under selection on an input (branching) 

Fig. 7  Normalized percent change from initial to final values for lineages in Run 3. Pruned Trypanosoma 
species phylogeny on the left

Fig. 8  Average normalized percent change for each lineage across 3 branching simulations for Run 1 with 
pruned gammaproteobacterial order phylogeny on the left
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metabolic pathway flux over an input phylogeny. This model could help identify selec-
tion on metabolic pathways as well as infer ancestral characteristics.

The relative importance of coding sequence vs. gene expression alterations has been 
a point of debate in molecular evolution. A Michaelis–Menten kinetics-based mecha-
nistic model, such as those simulated here, if integrated with a protein-level muta-
tional model, could potentially help investigate the phenotypic effects of changes in 
the level of gene expression (i.e., protein concentration) and functional changes to 
protein sequence that affect reaction parameters like the binding and catalytic con-
stants. They are naturally intertwined in this framework. Both adaptive and compen-
satory changes in molecular evolution could be elucidated in studies on mutational 
opportunity [2].

The limitations to this project include the fact that the metabolic network is fixed, and 
not temporally regulated, which fails to map onto the dynamic reality that in many cases 
may much better represent metabolic pathway evolution. Population sizes are assumed 
to be constant along a phylogenetic tree branch. There is no treatment of heterozygo-
sity in diploid genomes, with the absence of a population model. Furthermore, runt-
ime is cumbersome: branching for even small trees can take multiple days on a typical 
PC. Because it is optimal to run multiple simulations, copious time must be allocated 
to generate the data. Finally, while PEMPS can incorporate enzyme kinetic parameters 
and rate laws from empirical models of steady state flux, these models require extensive 
experimentation to generate, so data availability remains far from ideal.

It should be noted that network’s architecture is not naturally permanently fixed, 
which is an implicit assumption of this model. Gene duplication, along with reactions 
involved in other networks, may alter the dynamics in ways not elucidated by mod-
eling a static pathway structure [38, 39]. Furthermore, many pathways are temporally 
regulated, so selection does not act on constant flux [2]. The dynamics resulting from 
modeling such a system could be different than those observed here, which imple-
ment no temporal regulation [2]. Pathway parameters involving concentrations may 
be different in different cell types [40].

While kinetic models achieve the highest level of detail among descriptions of 
metabolic networks [3], they require that a multitude of parameters and values be 
empirically determined. Because this is often very difficult, kinetic modeling gener-
ally suffers from a shortage of information. Simplifying the kinetic equations without 
sacrificing similarity to in vivo calculations can address this issue. One method for a 
simplified kinetic description of metabolic pathways is biochemical systems theory, 
which focuses on a unified power-law-based treatment of nonlinear rate formulas 
[41]. A synergistic system of differential equations can be determined from rate con-
stants, metabolite concentrations, and kinetic orders. Biochemical systems theory, 
however, depends on an accurately defined reference state [3], which may not always 
be possible to ascertain. Another approach to simplifying the mathematical descrip-
tion of metabolic networks is the linear-logarithmic kinetics (lin-log) framework [42], 
in which fluxes are formulated based on their deviation from a defined reference state 
containing the reaction rate, metabolite concentration, and total enzyme activity. This 
approach can result in better performance than power-law approximations because 
the kinetic orders are not held constant but vary with metabolite concentrations [3].



Page 14 of 16McCloskey et al. BMC Bioinformatics          (2024) 25:244 

Sets of first-order, coupled ODEs have traditionally been used to calculate the time 
evolution of chemical reactions with the assumptions that the system is homogene-
ous and that it is suitable to model change in molecular populations as continuous and 
deterministic processes. However, this latter assumption is usually inappropriate for 
chemical systems smaller than a test tube, because molecules change in integer quanti-
ties and are subject to stochastic effects (knowledge of the current molecular profile in a 
system is insufficient to predict certainly the future composition) [43]. While arguments 
from kinetic theory favor the stochastic formulation as more realistic, its reliance on a 
single differential-difference (“master”) equation can result in mathematical intractabil-
ity [44]. Many systems encountered in BioModels during development use sets of ODEs 
perhaps for this reason. Future work can explore stochastic formulations.

Improvements to kinetic modeling could result from increasing resolution of meta-
bolic data, standardizing data and modeling steps, and connecting models with other 
regulatory systems. Despite the capacity to generate metabolic pathways from genomic 
data, construction of a kinetic model from such a pathway remains a manual process 
complexified by the inconsistent availability of necessary experimental data on reaction 
values and parameters [3]. The above approaches to compensating for patchy experimen-
tal data, as well as the general improvements, could lead to interesting future studies, 
including expansions to the current project. The future directions for this study include 
incorporating time-dependent dynamics in enzyme flux, gene duplication events along 
the phylogeny, and a feature to allow the user to enter arbitrary pathways.

Conclusion
Using a mutation-selection modeling framework with fitness derived from ODE-based 
steady-state flux calculations, the PEMPS program runs on Linux to simulate evolution 
of metabolic pathways over a phylogeny. The user provides an SBML-formatted kinetic 
model, a Newick-formatted phylogenetic tree, and a variety of specifications including 
population size(s), ploidy, and the set of reaction fluxes to subject to selective pressure. 
Both compensatory and adaptive fixations can emerge in such models and indicate sin-
gle nucleotide polymorphisms and fixed differences with potential effects on phenotype. 
If used for inference, this model could ultimately enable detection of selection on meta-
bolic pathways as well as inference of ancestral states for metabolic pathway function. 
Raw data along with graphical depictions are generated in the output file, and have been 
consistent with a priori expectations of fixation probabilities and systematic change in 
model parameters.

Availability and requirements
Project name: PEMPS

Project home page: https://​github.​com/​nmccl​oskey/​PEMPS
Operating system(s): Linux
Programming language: Python
Other requirements: Python version 3.8.10
License: Mozilla Public License 2.0
Any restrictions to use by non-academics: None
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PEMPS	� Phylogenetic evolution of metabolic pathway simulator
COPASI	� Complex pathway simulator
Km	� Michaelis binding constant
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