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Abstract 

Transformer-based large language models (LLMs) are very suited for biological 
sequence data, because of analogies to natural language. Complex relationships can 
be learned, because a concept of "words" can be generated through tokenization. 
Training the models with masked token prediction, they learn both token sequence 
identity and larger sequence context. We developed methodology to interrogate 
model learning, which is both relevant for the interpretability of the model and to eval-
uate its potential for specific tasks. We used DNABERT, a DNA language model 
trained on the human genome with overlapping k-mers as tokens. To gain insight 
into the model′s learning, we interrogated how the model performs predictions, 
extracted token embeddings, and defined a fine-tuning benchmarking task to pre-
dict the next tokens of different sizes without overlaps. This task evaluates foundation 
models without interrogating specific genome biology, it does not depend on tokeni-
zation strategies, vocabulary size, the dictionary, or the number of training parameters. 
Lastly, there is no leakage of information from token identity into the prediction task, 
which makes it particularly useful to evaluate the learning of sequence context. We 
discovered that the model with overlapping k-mers struggles to learn larger sequence 
context. Instead, the learned embeddings largely represent token sequence. Still, 
good performance is achieved for genome-biology-inspired fine-tuning tasks. Mod-
els with overlapping tokens may be used for tasks where a larger sequence context 
is of less relevance, but the token sequence directly represents the desired learning 
features. This emphasizes the need to interrogate knowledge representation in biologi-
cal LLMs.
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Introduction
With the developments of novel deep learning strategies, there has been rapid pro-
gress in how we can understand and generate language. Models for Natural Language 
Processing (NLP) are frequently based on transformer architectures [1] and thus do 
not only show unprecedented performance, but through the transparent nature of 
these architectures, it can be extracted what and why the models learn. Together this 
makes them particularly attractive for non-language tasks that resemble language, 
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such as the code-breaking of sequence data in biology, particularly protein sequence 
and nucleic acids. We know that there is structure in these data, but of much of the 
sequence we understand very little. In DNA we have a code for translation into pro-
teins, sequence-dependent gene regulation and regulation of retrotransposons and 
repetitive sequence. Also, chromatin architecture, DNA replication, and genome 
stability itself, all depend partially on sequence, but how these codes interact and 
function in detail has been out of reach until now. To dissect the relationships and 
rules, machine learning and deep learning have been applied to grasp specific genome 
features with various architectures from simple neural networks and convolutional 
neural networks [2] to combining those with transformers [3]. This model, called 
Enformer, allows a wide learning range of up to 100  kb length and unprecedented 
performance of gene expression prediction. These models have however been engi-
neered for specific tasks and therefore focus on one aspect of the genetic code. In 
NLP, pretrained large language models (LLMs), like GPT-3 [4] and successors have 
changed how such models see language, and they have been built as foundation mod-
els that can be fine-tuned for a variety of downstream tasks. Recently, LLMs have 
been adapted to DNA sequence with the aim of building foundation DNA language 
models that learn information resembling grammar and syntax. Several foundation 
DNA language models have now been made available, specifically Nucleotide Trans-
former [5] and DNABERT [6]. However, DNA sequence differs from natural language, 
most prominently by "words" not being naturally defined in DNA. Still, they can be 
artificially generated through tokenization, i.e. by defining groups of nucleotides as 
separate tokens. Tokens are embedded, which has the consequence that informa-
tion on the original underlying sequence is initially not retained. For generating the 
tokens, the models use different strategies. For Nucleotide Transformer, consecutive 
6mers are used, complemented by monomers around edges and unknown sequence 
[5]. DNABERT on the other hand trains on overlapping k-mers [6]. Both models are 
based on Bidirectional Encoder Representations from Transformers (BERT) [7] archi-
tectures. With the learning process through the transformer architecture, the model 
itself is training larger sequence context by updating its attention. Also the embed-
ding is updated, which represents the tokens‘ contextualised relationships to each 
other. From this it can be extracted and analyzed how the model sees the tokens.

Foundation models can be finetuned for a variety of tasks, including classification, 
regression, and generative problems. This way, functional elements like promoters can 
be detected, as well as splice sites, transcription factor binding sites, enhancer function 
and/or gene expression. Different foundation models may have different suitability for 
diverse tasks, because for some tasks the identity of individual tokens is of high impor-
tance for the training, whereas other tasks rather require learning of larger sequence 
contexts.

On the example of DNABERT, we have built methodology to investigate the learning 
of foundation DNA language models using specialized fine-tuning tasks, extraction of 
predictions, and embeddings. We thus could show that a large language model that is 
trained with overlapping tokens predominantly learns token idenity. While larger con-
text learning is limited, the model is particularly suited for fine-tuning tasks that require 
sequence knowledge.
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Results
To build methodology to extract information content from foundation DNA language 
models, we used DNABERT [6], a transformer model [1] with a Bidirectional Encoder 
Representations from Transformers (BERT) [7] architecture (Fig. 1). The model uses the 
hg19 human reference genome tokenized to 4mers, 5mers, and 6mers. It is trained for 
cross-entropy loss by splitting the genome into training, validation and test windows to 
predict masked tokens of the same number as token length. Through the design of using 
tokens from overlapping k-mers, unmasked sequence partially shares sequence with the 
masked tokens. The central nucleotide of the combined masked tokens is the only nucle-
otide that is completely masked.

Prediction performance for masked k‑mers with overlaps

We investigated on some individual random representative examples how the training 
strategy leads to prediction of probabilities of tokens (Fig. 2A). Although the model ini-
tially does not include knowledge of token identity, it becomes clear that the training 
leads to the model restricting its choice to four k-mers, where the central nucleotide 
of the masked tokens is predicted with variable probabilities. The most, second-most, 
third-most, and fourth-most likely tokens are each respectively assigned similar prob-
abilities throughout the masks, even in samples that show poor performance. All other 
tokens are predicted with close to zero probabilities.

On average, the training task is performed with an accuracy of 0.544, 0.532, and 0.527 
for the central 4mers, 5mers, and 6mers in the test set (Fig. 2B). For all k-mer models 
there is slightly improved performance for the outer masked tokens, so that the aver-
age performance is 0.545, 0.533, and 0.530 for 4mers, 5mers, and 6mers respectively 
(Fig. 2C). These results indicate that the model learns sequence identity of tokens, which 
raises the question of how much sequence context it learns in addition and how much 
this is required for biological fine-tuning tasks. For many biological questions, a larger 
sequence context is of critical importance and this is a main reason why large language 
models can be so powerful on biological data. However, from a biological task it is dif-
ficult to differentiate whether the token sequence itself or larger sequence content is 
the relevant learning feature, because many tasks are dependent on both. For example, 
transcription factor binding frequently requires a motif, but also other transcription fac-
tor binding sites nearby and/or specific physicochemical properties of the surrounding 
DNA [8]. Thus, evaluating foundation models only on biological fine-tuning tasks can-
not sufficiently differentiate between these different learning features.

A general fine‑tuning task for foundation DNA language models

We aimed for a fine-tuning task to use as a general benchmark for learning of sequence 
context in DNA language models. Such a task needs to fulfil three criteria. First, it needs 
to be independent from the biology we are interested in, second it needs to be a task 
that can be used to compare different models and thus does not depend on tokeniza-
tion strategy, the size of the vocabulary or the dictionary, and the number of parameters 
the model was trained on. Third, the task needs to require sequence context for per-
formance without leakage of information from token identity into the prediction task. 



Page 4 of 12Sanabria et al. BMC Bioinformatics          (2024) 25:301 

These criteria are all fulfilled with a fine-tuning task for next-token prediction, without 
overlap of tokens. We set up 5 models that are fine-tuned to predict next-2mers to next-
6mers, irrespective of whether the respective next-k-mer size was part of the tokeniza-
tion strategy in the foundation model. Providing a range of k-mers allows to differentiate 

Fig. 1 The model architecture of DNABERT. The model is a BERT architecture with 12 transformer blocks with 
Multi-Head Attention, a Feed Forward network and normalisation layers. It splits a given sequence into 
tokens, which are overlapping k-mers, 4, 5, or 6 nucleotides in length. The model is embedding the tokens 
and is trained with cross-entropy loss to predict the masked tokens and updates the embedding while 
training. The number of masked tokens is equivalent to token size, which leaves the central nucleotide free 
from overlap. The model outputs probabilities of token identities of the masked tokens
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between increasing complexity. We limited our approach at 6mers, which is the largest 
size for every k-mer being sufficiently represented in the human genome to not limit the 
training. When applying next-k-mer prediction to DNABERT (Fig.  2D), performance 
drops to 0.024, 0.024, and 0.030 for predicting non-overlapping next-4mers with the 
models trained for overlapping 4mers, 5mers, and 6mers respectively, which compares 
to an accuracy of 0.004 for a random next-4mer. Interestingly, performance does not 
seem to improve, if the token size of the foundation model matches the token size of the 
fine-tuning task. It can thus be concluded that the model learns very little context that is 
of help to predict sequence which is not overlapping with the training task.

Promoter identity training learns sufficiently from sequence identity

Since DNABERT still shows good performance with biological training tasks [6], we 
interrogated further the Prom300 fine-tuning task, which is a classification task for 
promoter identity with promoters of 300 base pairs length. The promoter sequence is 
mutated and DNABERT is trained to distinguish real promoters from mutated promot-
ers. It does this with an F1 score of 0.965 [6]. Since mutation may change the sequence 
content of the promoters, we adjusted the task to rather shuffle the promoter sequence 
on the nucleotide level (Fig. 2E). Also with this adjusted task, DNABERT discriminates 
promoters from shuffled promoters with an fl score of 0.91, 0.91, and 0.92 for 4mers, 
5mers, and 6mers respectively. Thus, this fine-tuning task does indeed benefit from the 
sequence learning of the tokens. It can be expected that also other biological fine-tuning 
tasks may similarly benefit from this learning feature of the foundation model.

Sequence context gets embedded in the tokens

Another measure for learning of grammatical context in a large language model is to 
investigate how contextual the contextualised k-mer representations in the embedding 
for the model really are [9]. This can be quantified through the maximum explainable 
variance (MEV), the variance explained on the first principal component when apply-
ing a principal component analysis (PCA) on average trained embedding of the tokens. 
A small variance explained indicates learning of context rather than word representa-
tion. For comparison to the BERT model, we used an algorithm that esimates word asso-
ciations in vector space through static embeddings of context, Word2Vec (W2V) [10]. 
Since W2V is an algorithm that through the static embeddings cannot represent lexical 
ambiguity, it would be expected to learn little individual context and thus learn a larger 

(See figure on next page.)
Fig. 2 Representation and context learning. A Token prediction probabilities on 3 random examples of 7 
consecutive nucleotides in the genome with the 4mer DNABERT model. Ground truth is framed in blue. On 
the left, probabilities are given per position, on the right in comparison with k-mer frequency in the genome 
and color-coded by prediction rank per 4mer. B Average accuracy of token prediction per k-mer relative to 
the central token position. C Accuracy of the foundation models, i.e. average token prediction of the masked 
tokens of the respective k-mer model. D Accuracy of token prediction as a fine-tuning task for the foundation 
models using prediction of 2 to 6 nucleotide long next-k-mers as readout. Comparison to random k-mer 
accuracy and E Performance metrics for the Prom300 finetuning task to identify promoter structures by 
classifying real promoters versus promoters with shuffled nucleotides (left). Metrics are given as F1 score, 
precision, recall, and Mathews Correlation Coefficient (MCC). F Maximum explainable variance through the 
embedding of the BERT model versus Word2Vec (W2V) static embedding of the k-mers
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proportion of word identity leading to a higher variance explained. Surprisingly, how-
ever, the BERT models all lead to a MEV that is higher than the equivalent MEV for W2V 
(Fig.  2F). We thus applied a non-linear dimensionality reduction algorithm Uniform 
Manifold Approximation and Projection (UMAP) [11] to investigate the learned embed-
ding for non-linear relationships (Fig. 3). Analyzing the clustering of the embedding of 
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Fig. 2 (See legend on previous page.)
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the 4mer model (Fig.  3A), it becomes clear that BERT groups the 256 tokens into 16 
clusters, four groups of four. The subclusters have the central dinucleotide in common, 
whereas clusters of similar pyrimidine-to-purine patterns cluster more closely. Inves-
tigating the W2V embedding, the clustering is visible, but not as apparent as with the 
BERT embedding. For the 5mer model, the difference of the clustering between BERT 
embeddings and W2V embeddings becomes more apparent (Fig. 3B). The BERT embed-
ding groups the tokens roughly into 16 groups of 4, dependent on the pyrimidine-purine 
balance of the central trinucleotide. W2V forms some clusters, but does not seem to be 

A

B

C

Fig. 3 Extracting representations from contextualized embeddings. Uniform Manifold Approximation and 
Projections (UMAP) of k-mer embeddings comparing BERT embeddings versus Word2Vec (W2V) embedding 
applied to A 4mers with highlighting the central dimer and its pyrimidine-purine balance, B 5mers with 
the pyrimidine-purine balance of the central trimer, and C 6mers with the pyrimidine-purine balance of the 
central tetramer
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able to distinguish all token groups. For the 4096 6mers (Fig. 3C), the BERT embedding 
also generates 4 groups of 4, whereas W2V forms some small dense clusters, but does 
not differentiate between all token groups. It can thus be concluded that the embedding 
largely represents the sequence identity of the learned tokens. Given that this cluster-
ing becomes only clearly apparent with a nonlinear method, rather than PCA (data not 
shown), the maximum explainable variance is probably still an underestimate, since it 
does not account for variance to be explainable in a non-linear space.

Discussion
What DNA language models learn is of crucial importance to allow interpretation of the 
tasks they perform. We have built methodology to differentiate context learning from 
token representation through its sequence to investigate the learning of DNABERT. 
Using extraction of predicted probabilities, we discovered that the model largely decides 
between four k-mers, only different by the nucleotide in the center of the masked tokens. 
Overall average accuracy of token prediction is above 50%. To compare the models on a 
unifying task, but not biased by a specific biological question and with a focus on con-
text rather than sequence identity, we developed a task of next-k-mer prediction that can 
be used to generally compare foundaion DNA language models, even if they are built 
with different architectures [12]. Next-k-mer prediction is also suitable for optimization 
of models and selecting suitable vocabulary designs.

DNABERT struggled to predict next-k-mers of the same size that it managed to pre-
dict when masked. While performance works well for promoter identification, evalua-
tion for contextualized learning with maximum explainable variance also showed that 
average embedding of the tokens explains more maximum variance than the static W2V 
embedding. UMAP dimensionality reduction of the embedding revealed that indeed in 
the embedding the tokens are represented largely as the spelled-out sequence, rather 
than in context.

 We conclude that models with overlapping token design are not suitable for tasks 
that require larger sequence context, such as protein-DNA binding, which is medi-
ated beyond the DNA binding motif, or tasks for combinatorial genotype-to-pheno-
type predicions. However, learning of sequence is also of importance for many tasks of 
known genome biology, which explains the good performance of the model in several 
biological fine-tuning tasks from the original study [6]. This applies especially when the 
identity or the specific positions of the tokens matter. Typically used fine-tuning tasks 
address transcription factor binding, splice site, promoter, or enhancer prediction, which 
are genome biological mechanisms that rely on short-to-mid-range motifs and distinct 
sequence contents. However, what this study exemplifies is that for using such models 
as widespread in genetics as can currently be anticipated, it is very important that we 
understand what we are training for and what we are learning. Next-k-mer prediction 
is a task that requires learning of context beyond token identity. It can thus serve as a 
measure of potenial for models to be used to discover new genome biology that goes 
beyond mechanisms associated with recurrent motifs and sequence content. Similar to 
NLP we need to build tools and frameworks to test, whether the models are really learn-
ing what we designed them for. In genomics this also becomes increasingly important, 
since there are also risks of increasing and perpetuating biases, such as biases from the 
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use of reference genomes, incomplete or false genomics data. For example, in this study 
we use the hg19 human reference genome, which has yet unknown limits in representing 
human diversity. This can be addressed in the future by directly training DNA language 
models on diverse genomes or fine-tuning the models with individual genome data. 
Unlike a natural language generative AI, where racist and sexist training biases become 
visible in the output, we are aiming for unknown discoveries in genomics. Therefore, 
issues in the training process do not directly become apparent but may have substantial 
consequences for downstream performance, accuracy of research data, and may espe-
cially harbor risks for patients, when used for biomedical research.

Methods
The final source code is available as Sanabria Melissa, Hirsch Jonas, & Poetsch Anna R. 
(2023). Distinguishing word identity and sequence context in DNA language models—
the code to the paper. Zenodo. https:// doi. org/https:// doi. org/ 10. 5281/ zenodo. 84078 
74[13].

A tutorial for performing next-k-mer preditiction is available as Sanabria Melissa, 
Hirsch Jonas, & Poetsch Anna R. (2023). Next-kmer-prediction fine-tuning to com-
pare DNA language models, a tutorial. Zenodo. https:// doi. org/https:// doi. org/ 10. 5281/ 
zenodo. 84078 17[14].

DNA language model architecture

We train with the Homo sapiens (human) genome assembly GRCh37 (hg19), only taking 
into account the sequences that contain A,C,G and T. We use the pre-trained models 
and code of the DNA language model DNABERT [6], provided by the authors (https:// 
github. com/ ierry ji1993/ DNABE RT; June 2023). DNABERT is based on a Bidirectional 
Encoder Representations from Transformers (BERT) [7] model that takes as input 
tokenized sequences of up to 510 tokens long. Tokenization is performed with overlap-
ping k-mers, 4, 5 and 6 nucleotides in size, selected based on the performance metrics 
in the original study. The vocabularies consist of all the permutations of k consecutive 
nucleotides (i.e. 256, 1024 and 4096 respectively) as well as five special tokens: CLS, PAD, 
UNK, SEP and MASK. CLS represents the classification token, PAD is used for padding 
the right side of the sequence in case it is shorter than the maximum input length of the 
model, UNK is for sequences of nucleotides that do not belong to the vocabulary (which 
in practice does not happen, because sequence is limited to A,C,G,T), SEP is used to 
indicate the end of a sequence and MASK represents the masked tokens.

Masked token prediction

To extract what the model has learned, we extract what the model predicts over the 
mask. Each chromosome is split into sub-sequences. The length of each sub-sequence 
varies between 20 and 510 tokens. Specifically, with a 50% probability, the length of a 
sub-sequence is 510. With another 50% probability, its length is a random integer 
between 20 and 510. Then 20% of the sub-sequences are taken as the dataset for this 
task, which is around one million samples.

For each of the samples we randomly choose a token and mask tokens of equivalent 
numbers to the size of the k-mer using the following pattern; 4mer: − 1, 0, 1, 2; 5mer: 

https://doi.org/
https://doi.org/10.5281/zenodo.8407874
https://doi.org/10.5281/zenodo.8407874
https://doi.org/
https://doi.org/10.5281/zenodo.8407817
https://doi.org/10.5281/zenodo.8407817
https://github.com/ierryji1993/DNABERT
https://github.com/ierryji1993/DNABERT
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− 2, − 1, 0, 1, 2; 6mer: − 2, − 1, 0, 1, 2, 3. Position 0 represents the chosen token, "-" rep-
resents the tokens previous to the central token and " + " the following tokens. This way 
the central nucleotide of the mask does not overlap with any token outside the mask.

Next k‑mer prediction

To build a fine-tuning task that allows to compare different foundation models that relies 
on context learning, and is not dependent on the biological question, we established 
next-k-mer prediction. We take the pre-trained language models (4mer, 5mer and 6mer) 
and fine tune every model to predict the next k-mer, where k is 2, 3, 4, 5 and 6.

To create the data for this task, chromosome 21 is split into sequences of 510 nucleo-
tides. We keep the first 56 nucleotides of each sequence. These sequences are randomly 
shuffled. Finally, the dataset is composed of 500,000 sequences, where 80% of them are 
for training and 20% for testing.

The samples are defined as the first 50 nucleotides of each sequence. For the labels, 
we take the k (2, 3, 4, 5 and 6) nucleotides that follow the 50 nucleotides. The next-kmer 
model will have  4Ak different classes, i.e., 16, 64, 256, 1024 and 4096, respectively, which 
are all the permutations of k nucleotides.

The models are trained with cross entropy loss on the prediction of the next-k-mer 
using Adam optimizer with a learning rate of  10A-6, epsilon of  10A-8, and beta of 0.99. 
The model accepts a maximum input length of 50 tokens. The dropout probability of the 
classification layer is 0.5. We use batch size of 64, and train for 150 iterations.

Performance is assessed with accuracy, which represents an easily interpretable met-
ric, as it represents the accuracy, by which the model picks the correct token. It can thus 
also be directly compared to the random pick of a token, i.e. 1/4Ak.

Promoter identification

The Prom300 task was adapted with some minor modifications from Ji et  al. [6]. The 
modification was made in regards to the disruption of sequence. In short, we use the 
human data (hg19) from the Eukaryotic Promoter Database (https:// epd. epfl. ch/ human/ 
human database.php?db = human) to obtain annotation of 30,000 intact promoter 
sequences, which we define as 300  bp long ranges from − 249 to + 50  bp around the 
Transcriptional Start Site (TSS). For the definition of non-promoter samples, we apply a 
shuffling strategy of nucleotides rather than mutation to prevent changes in the nucleo-
tide composition of the sequence. We divide the sequence into 20 parts of equal size 
and then shuffle 15. The sequences are tokenized according to each model, i.e. divided 
in overlapping kmers. For the prediction, we add a classification layer with one neuron. 
The model is trained with cross entropy loss, using an Adam optimizer with a learning 
rate of  10A-6, an epsilon of  10A-8, and beta of 0.99. The model accepts a maximum input 
length of 50. We use batch size of 64, and train for 10 epochs.

Word2Vec

For comparison of token embeddings, we use Word2Vec, a static word embedding 
tool [10] that maps each word to a single vector. In general, this mapping function 
does not account for lexical ambiguity, which means that identical leter sequences 
can have multiple interpretations or different grammatical roles. We implemented 

https://epd.epfl.ch/human/human
https://epd.epfl.ch/human/human
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Word2vec with a continuous bag-of-words (CBOW) approach for learning represen-
tations of words, which uses the surrounding words in the sentence to predict the 
middle word. The context includes a window of 5 words with the current word in the 
center. This architecture is referred to as a bag-of-words model because it does not 
consider the order of words in the context.

 To generate the Word2Vec (W2V) embeddings, first each chromosome is split into 
subsequences. The length of each sub-sequence varies between 20 and 510 tokens. 
Specifically, with a 50% probability, the length of a sub-sequence is 510. With another 
50% probability, its length is a random integer between 20 and 510. Then 300,000 
of the sub-sequences are randomly chosen as the dataset for this task. We tokenize 
each sequence with overlapping tokens, and create three datasets, one for each kmer 
(4mer, 5mer and 6mer). We use the Word2Vec module of Gensim (https:// radim 
rehur ek. com/ gensim/ models/ word2 vec. html), with the following parameters: min_
count = 1, vector_size = 768, window = 5.

Model embedding

Unlike static word embeddings, dynamic word embeddings aim at capturing word 
semantics in different contexts to address issues like the context-dependent nature of 
words. We obtain a summarized version of the contextualized word representations 
that is the token embedding of the BERT model. To obtain the token embeddings of 
the model, we extract from DNABERT [6] the weights of the layer word_embeddings 
for each k-mer model.

Dimensionality reduction and maximum explainable variance

Both W2V and DNA Language Model embeddings are represented as vectors of size 
768. Average distances between tokens are thus interrogated through the dimension-
ality reducion algorithms Principal Component Analysis (PCA) and Uniform Mani-
fold Approximation and Projections (UMAP) in R with the packages ’stats’ (4.2.1) and 
’UMAP’ (0.2.10.0), respectively. As a measure of context learning, Maximum Explain-
able Variance (MEV) [9] was extracted as the variance explained by the first principal 
component.
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