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Abstract 

Background: High-throughput experimental technologies can provide deeper 
insights into pathway perturbations in biomedical studies. Accordingly, their usage 
is central to the identification of molecular targets and the subsequent development 
of suitable treatments for various diseases. Classical interpretations of generated data, 
such as differential gene expression and pathway analyses, disregard interconnections 
between studied genes when looking for gene-disease associations. Given that these 
interconnections are central to cellular processes, there has been a recent interest 
in incorporating them in such studies. The latter allows the detection of gene modules 
that underlie complex phenotypes in gene interaction networks. Existing methods 
either impose radius-based restrictions or freely grow modules at the expense of a sta-
tistical bias towards large modules. We propose a heuristic method, inspired by Ant 
Colony Optimization, to apply gene-level scoring and module identification with dis-
tance-based search constraints and penalties, rather than radius-based constraints.

Results: We test and compare our results to other approaches using three datasets 
of different neurodegenerative diseases, namely Alzheimer’s, Parkinson’s, and Hun-
tington’s, over three independent experiments. We report the outcomes of enrich-
ment analyses and concordance of gene-level scores for each disease. Results indicate 
that the proposed approach generally shows superior stability in comparison to exist-
ing methods. It produces stable and meaningful enrichment results in all three data-
sets which have different case to control proportions and sample sizes.

Conclusion: The presented network-based gene expression analysis approach suc-
cessfully identifies dysregulated gene modules associated with a certain disease. Using 
a heuristic based on Ant Colony Optimization, we perform a distance-based search 
with no radius constraints. Experimental results support the effectiveness and stability 
of our method in prioritizing modules of high relevance. Our tool is publicly available 
at github.com/GhadiElHasbani/ACOxGS.git.
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Background
Differential Gene Expression Analysis (DEA), typically performed using tools such 
as limma, is the most widely used method for detecting significant gene-disease asso-
ciations based on mean expression variations between phenotypes [1]. However, while 
DEA can identify specific disease-associated genes, it does not take into consideration 
the network of interactions that govern the studied set of genes. The latter might lead to 
missing crucial mechanistic insights about multi-gene connections that underlie com-
plex diseases. As a result, DEA can exhibit poor consistency between analyses of similar 
studies [2, 3]. To address this drawback, several methods that take into consideration 
the structure of gene networks were introduced. They measure the effect of nodes over 
their direct and indirect neighbors. Their output typically consists of modules which are 
groups of dysregulated genes that contribute to a disease or phenotype of study.

One group of methods makes use of interaction information to perform pathway anal-
yses, yielding a group of genes underlying a phenotype of interest. These pathway anal-
yses can be functional such as GSEA [4] which aims to identify functionally enriched 
groups of genes in relation to a phenotype; topological such as SPIA [5] and CePa [6, 7] 
which enhance functional scoring analyses with network information; or active module 
tools such as jActiveModules [8], HotNet [9], and COSINE [10], which combine expres-
sion and network information to identify disease-relevant subnetworks within pathways. 
Although pathway-level analyses can identify mechanistically interpretable multi-gene 
interactions [2, 11, 12], insights can be difficult to explore experimentally due to the lack 
of a precise gene target. Moreover, artificial pathway boundaries might limit the set of 
considered interactions. Therefore, there has been an increasing interest in developing 
gene-level analyses that incorporate network information.

Examples of such network-based methods include ENDEAVOUR [13] which relies 
on gene similarity with known disease genes, and GeneWanderer [14] which relies on 
gene distance from disease-relevant genes. Since information on such genes is some-
times not available, other methods were developed to overcome the need for gene-dis-
ease relevance information. For instance, the method in [15] performs a Laplacian kernel 
to transform the original network distances. It then uses this indirect distance measure 
along with differential expression of Laplace neighbors to identify disease genes. Simi-
larly, DiSNEP [16] enhances the network with a diffusion process using similarity infor-
mation. Since both methods effectively alter the distance between nodes in a network, 
interpreting the resulting modules and gene-level scores becomes complicated. Another 
method extends SPIA to produce a gene-level score that reflects changes in the expres-
sion of a given gene and its upstream neighbors [17]. Nevertheless, the suggested analy-
sis is performed on each pathway separately rather than on the global network. Hence, 
later methods were designed to avoid these disadvantages by using direct interactions in 
a global network to produce gene-level scores.

One method, Local Enrichment Analysis (LEAN) [3], identifies dysregulated subnet-
works from genome-wide omics datasets by focusing on local subnetworks of radius 
one which consist of only the direct neighbors of genes. The method is parameter free 
and exhaustive over all genes in the network. Another method, pathfindR [18], extends 
LEAN by letting the user specify the radius of local subnetworks to be enriched using 
three possible algorithms: Greedy Algorithm (GD), Simulated Annealing (SA), and 
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Genetic Algorithm (GA). The authors show that GD performs better than SA and GA. 
SA and GA are heuristic methods that do not make biologically-relevant assumptions 
on the active subnetwork model. Insignificant genes from two modules of significant 
genes may thus be combined to form a larger connected active subnetwork. This results 
in few large and high-scoring active subnetworks with the remaining subnetworks being 
small and less informative. In short, these heuristic methods exhibit a tendency towards 
large subnetworks which is attributed to a statistical bias that is prevalent in many tools 
[19]. A method attempting to solve this issue, jActiveModules, uses user-defined param-
eters to control the number of subnetworks that are maintained throughout simulated 
annealing as well as the behavior of the method when adding nodes with a degree above 
threshold to a subnetwork [8]. Nevertheless, this method does not produce gene-level 
scores. It uses static heuristics as user-specified thresholds, and optimizes subnetworks 
based on a calibrated average measure of differential expression which might not nec-
essarily reflect nonlinear patterns of differential expression. In addition, MultiNEP is a 
recent network-based approach that analyzes muti-omics datasets in order to identify 
disease-related subnetworks [20]. It considers gene-metabolite interactions in order to 
identify disease-related genes. Similarly, GMIGAGO is a gene module identification 
method that is based on gene ontology and Genetic Algorithm [21]. It starts by cluster-
ing gene expression data and then detects gene modules by optimizing functional simi-
larity based on gene ontology.

Another recent approach is GeneSurrounder (GS) [22]. It is an exhaustive method in 
the sense that it considers the decay of differential expression (DE) and the sphere of 
influence of a gene. The sphere of influence measures the correlation between the behav-
ior of a gene of interest and that of its direct surrounding neighbor genes, regardless 
of the phenotype. On the other hand, the decay of DE measures a pattern of decrease 
in magnitude of disease-specific disruption up to a certain distance from the gene. The 
optimal radius R that identifies the effect of the gene on its neighbors is given by the 
combination of the two p values which are based on the Fisher method ( pfisher from pD 
and pS ). pS represents the p value for the sphere of influence which reflects the correla-
tion between a center gene’s expression intensity and its neighbors. On the other hand, 
pD represents the p value for the decay of DE which reflects the discordance between 
DE scores of the genes included in the module and their distances from the center gene. 
GS achieves meaningful DEA and pathway enrichment results, and exhibits scores that 
are more concordant than both limma and LEAN across three studies of the same dis-
ease, namely ovarian cancer. However, the search complexity and implementation of 
GS requires further development and optimization to be favorable for common use as 
well as to yield refined results. In the original implementation, GS checks for the optimal 
radius R of each gene’s module by choosing the radius with the lowest adjusted pfisher . 
Nevertheless, genes could significantly influence just some of the neighboring genes on 
a particular radius, and this information is not always available in the form of weighted 
networks. Therefore, finding the optimal module could be seen as a combinatorial prob-
lem, as done in the heuristic methods of pathfindR. In this direction, we design and 
implement a biologically-informed heuristic method based on the Ant Colony Optimi-
zation (ACO) algorithm. The method takes as input the network and gene-expression 
data. Genes are sequentially considered and parallelized heuristic searches are then 
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performed, on the basis of decay of differential expression, to identify candidate mod-
ules centered around each seed gene. The sphere of influence of each resulting module 
is then assessed to produce a combined p value. The best-scoring module is selected for 
further downstream analyses. Unlike GS, our implementation does not impose radius-
based restrictions on the search space but rather distance penalties to avoid large mod-
ules. Moreover, this method, which, unlike pathfindR’s SA and GA, functions at the 
gene-level, is performed on each gene individually, similarly to GS, where each gene is 
assessed as the center of an optimized module solution. Accordingly, if a gene is part 
of a small insignificant module centered around a different gene, its own module will 
be independently assessed for significance, i.e., it will still be considered as a seed gene. 
That is since a module’s score is directly related to its designated center, i.e., seed, gene, 
similarly to GS.

We test the method on three publicly available benchmark microarray datasets of dif-
ferent diseases, and show that it generally results in more meaningful and stable dis-
ease-relevant enrichment outcomes. Since the optimization described here is performed 
on the basis of pre-calculated differential expression scores, the method can be easily 
adapted to other gene expression data sources, such as RNAseq, by simply replacing the 
DEA tool in the built-in preprocessing with another appropriate choice. A comparison 
of the characteristics of the proposed approach with GS, LEAN, and limma is presented 
in Table  1. The compared aspects cover whether the method is network-based, uses 
radius while searching for modules, includes a gene-level score, and contains random-
ness in its implementation. Similarly to GS, we also check the concordance of gene-level 
p values, given by the output of each method, between pairs of three different subsets of 
an Alzheimer’s disease dataset, GSE5281 , whereby each subset is collected from a dif-
ferent brain region. Nevertheless, we focus our analysis on datasets with a case–control 
design instead of differing types of the same disease.

Methods
In this section, we present the methods used in the proposed approach. First, we start 
with a description of the general framework of Ant Colony Optimization. Next, we 
define the measures of module significance, and we define the quantification of biologi-
cal influence of dysregulated genes. Then, we explain the workflow steps, starting with 
the gene expression and interconnection datasets as input, up till the generation of can-
didate dysregulated modules. A diagram depicting these steps is shown in Fig.  1. The 
structures of the corresponding input and output matrices are visualized in Fig. 2.

Table 1 Tested methods and some basic characteristics

Method Network-based Radius Gene-level score Contains 
randomness

Proposed method Yes Not radius-based Yes Yes

GeneSurrounder Yes Gene-specific R Yes Yes

LEAN Yes R = 1 Yes Yes

limma No N/A Yes No
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Ant colony optimization

Ant Colony Optimization (ACO) is one of numerous meta-heuristic algorithms 
inspired by swarm intelligence, in this case the foraging behavior of ants. It is widely 
used to tackle combinatorial problems [23]. The inspiration stems from the observed 
efficiency in which ants conduct their search for food starting from the nest. Biologi-
cal ants display a type of communication known as stigmergy. The main character-
istics of stigmergy arise from the medium employed in this type of communication: 
pheromones. Pheromone deposits reflect the quality of the achievement and are then 
a means of indirect communication between ants. Moreover, pheromone deposits are 
local and transmit information between ants within a locus. Pheromones not only 
indirectly reflect the end result of an explored path but also its length. Although ran-
dom fluctuations exist early on during the search, ants usually deposit pheromones 

Fig. 1 An overview of the proposed workflow which takes as input a gene expression dataset and an 
adjacency matrix representing gene interconnections. A built-in preprocessing step generates distance and 
rank correlation matrices, in addition to t-statistic scores reflecting the magnitude of differential expressions 
of gene in each module. Then, for each gene, the proposed Ant Colony Optimization approach identifies the 
most significantly dysregulated module, based on pfisher which is derived from pS , the p value for the sphere 
of influence of a center gene on its neighbors in a module, and pD , the p value for the decay of differential 
expression within that module

Fig. 2 The structures of input and output matrices in the proposed approach
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faster after returning to the nest from the shorter path. In this way, ants converge to 
the shortest path. In ACO algorithms (Algorithm 1) [23], a model P = (S,�, f) con-
sists of the search space S whereby a feasible solution s ∈ S satisfies all constraints 
in a set � of constraints over the finite set of discrete variables defining S. A globally 
optimal solution s∗ ∈ S additionally minimizes a given objective function f : S → R

+
0  

(i.e. f(s∗) ≤ f(s)∀s ∈ S ). The set of all possible solution components (i.e. all possible 
variable assignments in S) is denoted by C. Each component of a solution s ∈ S is 
associated with a pheromone value that varies with quality and evaporates at every 
iteration. A component is represented by either vertices from a set of vertices V or 
edges from a set of edges E of a construction graph GC(V ,E).

Algorithm 1 The Ant Colony Optimization Metaheuristic

At the start of an iteration, a set of A ants construct solutions by traversing the graph 
in a manner that satisfies constrains in � followed by an optional local search. In Ant 
Systems, the decisions made by a given ant during its construction walk are governed 
by a stochastic process influenced by the pheromones allocated to possible compo-
nents. ACO systems, however, use a pseudorandom mechanism that encourages elit-
ism by deterministically picking the most probable component if a random number 
ranging from 0 to 1 falls under a user-specified threshold. Otherwise, decisions are 
made similarly to Ant Systems. Pheromones could be deposited in different ways. In 
Ant Systems, an offline pheromone update occurs at the end of each iteration after 
solutions have been constructed. ACO systems additionally employ a local pheromone 
update that decreases pheromone concentration on the last visited edge after each 
construction step performed by the ant with the current best solution. This serves to 
offset the offline pheromone update and encourage diversity. Evaporation is also per-
formed using a user-specified or dynamic parameter to guide ants towards shorter and 
more frequently explored paths. In our formulation, each ant produces a candidate 
solution in each iteration, but these are independent from solutions generated at other 
iterations. In other words, information is not carried over between iterations, and only 
local pheromone updates are performed. Given the nature of the problem whereby the 
objective function is module-centric, an offline pheromone update would encourage 
convergence towards high-quality paths, which could bias the topology of generated 
modules. For the same reason, the final solution, or module, generated at each itera-
tion is the union of the individual ant solutions (i.e. sets of vertices) explored in this 
iteration. Finally, we introduce an alloted capacity to each ant at every iteration. This 
capacity diminishes as the ant makes increasingly unfavorable moves, causing the ant 
to stop moving when its capacity is too low. Therefore, an iteration automatically ter-
minates when all ants have no more capacity for movement.
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Module significance quantification

The Order Statistic Correlation Coefficient (OSCC) [24] is a measure that can be used 
to detect linear and monotone nonlinear associations. It possesses the same basic char-
acteristics as Pearson’s linear, Spearman’s ρ , and Kendall’s τ coefficients. OSCC also 
exhibits robustness to noise and efficient time complexity ( O(n log n) ), when compared 
to Kendall’s τ ( O(n2) ). The calculation of OSCC is given in equation 1 using two paired 
input arrays x and y.

The paired input arrays x and y are first ordered such that the order statistics 
x(1) ≤ x(2) ≤ · · · ≤ x(N ) have respective concomitants being y[1], y[2], · · · , y[N ] . The 
order statistics and concomitants of the input y array are similarly defined. As N → ∞ , 
E{OSCC(x, y)} = 0 under the assumption that x and y are mutually independent and 
both are independently identically distributed.

In this application, similarly to how GS uses Kendall’s τ to score the decay of DE of 
modules [22], OSCC is used to score a module centered at a given gene Gi and denoted 
by the set module as shown in equation 2. The geodesic distance is the number of edges 
in the shortest path to the center gene. OSCC outputs a score ranging from -1 to 1. A 
module having a score of -1 is optimal, since the discordance between absolute mod-
erated t-statistics, representing the magnitude of DE of genes belonging to a given set 
module, and the geodesic distances of those genes from the center gene Gi is maximal 
according to the OSCC.

We denote the change in OSCC with and without the inclusion of a given node Gp to a 
set module by △OSCC(module ∪ {Gp}) which is calculated in equation 3. △OSCC out-
puts a value ranging from -2 to 2, with -2 being the greatest possible change in OSCC in 
the favorable direction, that is from 1 to -1.

Biological influence quantification

In this part, we explain how GS [22] quantifies biological influence at the gene-level 
through the incorporation of system-level network information. Then, we present our 
approach to derive such measures in the next section. A gene score is defined as a com-
bination of two scores representing the decay of DE and the sphere of influence detected 
in neighboring genes that are selected on the basis of a variable radius R. The sphere of 
influence score indicates that a gene influences its neighbors such that their expression 
intensities are correlated. The decay of the DE score indicates how the dysregulation of 
a disease-relevant gene is propagated to its neighbors in a decreasing pattern whereby 
the level of dysregulation is inversely proportional to the distance from the given gene. 
Since the extent to which a gene influences its surrounding neighbors with respect to 

(1)OSCC(x, y) �

∑N
i=1(x(i) − x(N−i+1))y[i]∑N
i=1(x(i) − x(N−i+1))y(i)

(2)OSCC(module) = OSCC({|tj| : Gj ∈ module}, {d(Gi,Gj) : Gj ∈ module})

(3)△OSCC(module ∪ {Gp}) = OSCC(module ∪ {Gp})− OSCC(module)
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both scores is unknown, all possible values for R are considered. The pseudocode for GS 
is given in Algorithm 2.

Algorithm 2 GeneSurrounder

Given a gene Gi , for each possible value for R, all neighboring genes having a minimum 
distance from Gi less than or equal to R are selected for the module centered at Gi . The 
combined score is then calculated for the candidate modules, and the optimal value for 
R is chosen as the one with the highest statistical significance.

Proposed method

The choice to base our implementation on ACO is mainly due to the problem being a 
local search [23]. The main modification applied to ACO was the introduction of a lim-
ited capacity for movement assigned to each ant to automatically terminate iterations. 
This capacity diminishes as the ant moves to nodes further from the center gene and 
nodes that unfavorably impact the module’s score. Another important modification to 
ACO is that although the search is carried out over a specified number of iterations, 
each iteration represents an independent search that yields a candidate result. In other 
words, there is no exchange of information between different iterations. This is because 
the aim is not for ants to converge to similar paths but to spread and explore different 
paths outwards from the designated center node. Moreover, since each gene’s score is 
a combination of both scores for the decay of DE and the sphere of influence, we opti-
mize the scores for the decay of DE rather than optimize both scores. This is because 
the module of neighboring genes that exhibit the highest correlation of gene expression 
intensities with those of the center gene are expected to be relevant if they first show 
that they are influenced by the center gene in a disease-relevant context through the 
decay effect. The score for the sphere of influence is calculated for the module resulting 
from each iteration, and the optimal module is selected as the one having the combined 
score with the highest statistical significance, similarly to GS.
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Given N samples S1, S2, · · · , Sj , Sj+1, · · · , SN having N class labels as well as a graph 
of V ′ nodes and E edges represented as an adjacency matrix M, we define a microar-
ray dataset X of V genes G1,G2, · · · ,Gi,Gi+1, · · · ,GV  and N samples. The input to the 
algorithm are M, X and its class labels, a seed for reproducibility (different than the 
seed gene), as well as several configuration parameters. The pseudocode is given in 
Algorithm 3.

Algorithm 3 Proposed Method
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An built-in preprocessing step, as depicted in Fig. 1, filters dataset X and M to only 
include genes present in both X and M, calculates a Spearman rank correlation matrix 
ρ and ρk from dataset X as well as a user-specified number K of random permutations 
of genes in X, calculates a distance matrix d from matrix M, conducts a DEA over 
dataset X using true class labels as well as a user-specified number of random permu-
tations K of class labels in X, and designates the resulting moderated t-statistic ti and 
tki  as the observed and permuted scores, respectively, for each vertex Gi.

The algorithm is repeated a maximum of min (V ,V ′) times, each time given a speci-
fied gene Gi and number of iterations n, and outputs n modules centered at Gi with 
each module being assigned a combined p value adjusted for n iterations similarly to 
pGSi  except using Benjamini-Hochberg (BH) adjustment for a less stringent correction 
than the Bonferroni adjustment. A gene Gi is skipped if it is detected as being an isolated 
node (i.e. if Gi has no edge connected to another gene Gj where i  = j).

As in the classic ACO algorithm [23], a designated number of ants A are given a 
starting point. In this case, the starting point is the designated center gene Gi . Figure 3 
depicts the start of an iteration in the algorithm for a gene Gi as the starting point in a 
network whereby t indicates the score of each vertex.

In our method, at the start of every iteration, the ants are placed at the starting point. 
In the first iteration, the ants move randomly. Although iterations in this implementa-
tion are independent, the iteration marked as first is still randomized and considered 
as a viable candidate solution. This iteration could also be used as a reference in future 
analyses that might investigate the topology of resulting modules. This is because mod-
ules in the first iteration are mainly shaped by capacity rather than pheromone, both of 
which are discussed below. Nevertheless, since investigating how the topology of result-
ing modules is formed is not the focus of the study, the random iteration is not investi-
gated further and is treated like any other iteration.

At each move, an ant a picks a possible node Gp directly neighboring (i.e., one edge 
away from) its current position Gj and assign a value to the explored edge as a repre-
sentation of pheromone. For example, Fig. 3 depicts a snapshot mid-iteration where ant 

Fig. 3 An example of two ants searching for gene modules in the proposed Ant Colony Optimization 
approach. The networks from left to right depict consecutive iterations with gene Gi as the starting point. 
Below every network, a table shows the position, capacity, and moving ability of ants. At each step, an 
ant moves to an adjacent gene, and updates the pheromone value on the traversed edge based on the 
favorability of the move. Visited nodes, colored in pink, constitute the module centered around Gi . Possible 
adjacent nodes to visit are colored in green nodes, while the rest of the nodes in the network are colored 
in grey. Note that given the proposed algorithm constraints, ants a1 and a2 become unable to move in the 
middle and the right networks, respectively
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a1 , positioned on Gj
′ is no longer able to move and ant a2 positioned on Gj is assess-

ing its possible movements after local pheromone updates are performed for the previ-
ous movement. The pheromone update value reflects the favorability of the move with 
respect to the objective function and is calculated using Eq. 4 and 5.

The nodes currently marked as visited by ant a constitute the set module(a) centered at 
Gi . The values for pheromones present on each edge are recorded in a pheromone matrix 
Pher that resets at every iteration to prevent information exchange between iterations. 
Nevertheless, pheromones transfer information between ants within the same iteration. 
An ant deposits pheromone mid-iteration as it crosses an edge with a local pheromone 
update similarly to the ACO system [23]. Rather than decreasing pheromones locally, 
ants exchange decision-quality information locally. In this way, diversification of tra-
jectories explored by ants between iterations is encouraged with no offline information 
guiding ants across iterations. This is because the goal is to produce many candidate 
modules that are qualitatively different before choosing the best one. Moreover, another 
difference is that all ants are capable of depositing pheromone, not just the best one. This 
modification is put in place to encourage diversification of trajectories taken by the ants 
within a given iteration. In other words, within an iteration, the ants are encouraged to 
take different paths which are combined to result in a module of varying topology. The 
pheromone map is initialized to have all values equal to 1.0 at the start of every iteration. 
Pheromone deposited on the same edge accumulates, and no evaporation is incorpo-
rated since the pheromone map resets every iteration. The energy lost or required by ant 
a to make a specific move from Gj to Gp is represented by EL(module(a) ∪ {Gp}) . This 
value is calculated using a row-wise normalized version dnormalized of the distance matrix 
d. EL returns a value in the interval [0,1], and the favorability of the move is expressed as 
1− EL.

For each iteration except the first, the ants move probabilistically using Eq. 6 to calcu-
late the probability of making a certain move from Gj to Gp . This is done similarly to Ant 
systems rather than an ACO system in order to avoid increasing elitism in the probabil-
ity function [23].

The parameters α and β are user-specified and reflect the weight given to pheromone 
and attractiveness of the move, respectively. In other words, in a given iteration, α 
reflects how similarly the ants will move, and β reflects how much importance an ant will 
give to more favorable moves rather than moves similar to other ants. As α is increased, 
the ants are expected to produce modules that increasingly converge to a single path. 
Increasing β will allow the ants to explore different paths and decrease the constraints 
over the topology of the network. If the pattern of decay can be observed over numerous 

(4)EL(module(a) ∪ {Gp}) =
dnormalized(Gi,Gp)

4
(2+△OSCC(module(a) ∪ {Gp}))

(5)update(Pherjp, a) = Pherjp + (1− EL(module(a) ∪ {Gp}))

(6)Pjp(a) =
(Pherjp)

α(2− EL(module(a) ∪ {Gp}))
β

∑
{Gq :Gq∈possibilities(a)}

(Pherjq)α(2− EL(module(a) ∪ {Gq}))β
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paths going away from the center (seed) gene, the ants are more likely to explore them. 
Moreover, the more ants are available, the more different favorable paths are likely to 
be explored. This could also be achieved by increasing the number of iterations to pro-
duce more candidate modules, but this could be more time-intensive than increasing the 
number of ants. Moreover, increasing the number of ants would impose less restrictions 
over how many different paths can be explored.

The probabilities are calculated for each possible movement. Possible movements 
are defined as nodes that are one edge away from the current position of an ant a and 
are represented by possibilities(a). Nodes that have already been visited by a during the 
current iteration, nodes that would diminish the capacity of a, Capacity(a), below 0 if 
visited, as well as nodes that keep a at the same distance from or bring a closer to Gi 
(i.e. d(Gi,Gp) ≤ d(Gi,Gj) ) are excluded from the set possibilities(a). This helps short-list 
possible movements as well as guide ants to spread outwards from the center.

The main difference between ACO and our implementation is that a capacity measure 
is introduced. Each ant is specified a starting capacity that diminishes on each move the 
ant makes to a node Gp according to Eq. 7.

When an ant’s capacity reaches 0 or it has no more possible movements to consider (i.e. 
possibilities(a) = φ ), the ant stops moving. An iteration ends when all ants are no longer 
able to move. The resulting module centered around Gi for this iteration are all nodes 
visited by at least one ant and is denoted as module. Using Eqs. 8–11, module is scored 
and recorded at each iteration. pfisheri  is extracted similarly to GS. Figure 3 also depicts 
the end of a single iteration n whereby both ants are unable to move, and the module 
produced includes all nodes visited by any of the two ants. Significance is then assessed, 
but not depicted, using ρk and tk.

To further offset the added computational time of the proposed method as compared 
to GS, for each gene Gi , the n iterations are parallelized, as depicted in Fig. 1, using the 
R package parallel’s mclapply [25]. Therefore, parallelization is only supported for Mac 
users. No parallelization is implemented between genes. We also use the order statistic 
correlation coefficient (OSCC) [24] which is more time-efficient ( O(n log n) ) than Ken-
dall’s tau-b ( O(n2) ), that is used in GS, in addition to numerous distance penalties and 
search restrictions, as described above, to constrain the search-space.

(7)update(Capacity(a)) = Capacity(a)− EL(module(a) ∪ {Gp})

(8)Ci(module) =
∑

{Gj :Gj∈module}

|ρij|

(9)pSi (module) =
1

K
|{k ∈ [1,K ] ∩ N ∗ : Ck

i (module) > Ci(module)}|

(10)pDi (module) =
1

K
|{k ∈ [1,K ] ∩ N ∗ : OSCCk

i (module) < OSCCi(module)}|

(11)χ2 = −2(ln pSi (module)+ ln pDi (module))
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Experimentation

Datasets

To test our approach, we rely on the R package GSEABenchmarkeR [26] of Bioconductor 
[27]. This package includes curated expression datasets that are related to various human 
diseases. It was developed to facilitate the assessment and comparison of enrichment 
analysis methods. We consider a total of four datasets that have different case to control 
proportions and sample sizes. The characteristics of these datasets are shown in Table 2 
which covers the corresponding GEO dataset ID, disease, total number of samples, total 
number of control samples, total number of mapped genes in the expression dataset, 
number of common genes between the expression dataset and the KEGG network, the 
diameter of the resulting largest component of the KEGG network, and the total num-
ber of isolated genes which are not part of the connected component. Three of them are 
related to neurodegenerative diseases, namely Parkinson’s ( GSE20291 ) [28], Alzheimer’s 
( GSE5281 ) [29], and Huntington’s ( GSE8762 ) [30] disease. The latter allows testing the 
stability of our approach with respect to different dataset characteristics. All three neu-
rodegeneration datasets are already preprocessed by removing outlier arrays, applying a 
log transform, applying RMA normalization [31] from the affy [32] R package, resolving 
duplicate probe to Entrez ID mappings by keeping the probe with the most significant 
limma [1] moderated t-statistic, and filtering out genes that could not be mapped to any 
KEGG [33] pathway [26, 34, 35]. The fourth dataset is the p53 mutation dataset from the 
NCI-60 cell lines originally available through the GSEA Broad Institute websi te [4, 36]. 
This dataset is used to ensure the method performs comparably better than other tested 
methods on a dataset unrelated to neurodegenerative diseases. The dataset is imported 
through the R package GSAR [37]. The p53 mutation dataset is also already preproc-
essed by quantile normalizing and log-transforming probe intensities, discarding probes 
without Entrez ID mappings, and resolving duplicate probe to Entrez ID mappings by 
keeping the probe with the largest absolute t-statistic between cases and controls [37].

Gene‑gene interaction network

An initial step in our approach consists of generating the gene-gene interaction net-
work that corresponds to the input gene expression dataset. Accordingly, we use the R 

Table 2 Microarray gene expression datasets considered in this study along with their basic 
characteristics

The network used in the table corresponds to the largest connected component extracted from KEGG

GEO dataset 
ID

Disease Total # of 
samples

# of 
control 
samples

Total # of 
mapped 
genes

# of genes 
common 
with KEGG 
network

KEGG 
network 
diameter

# of 
Isolated 
Genes

GSE20291 Parkinson’s 33 19 13039 3718 18 23

GSE5281_VCX Alzheimer’s 31 12 21367 4302 20 5

GSE5281_HIP Alzheimer’s 23 13 21367 4302 20 5

GSE5281_EC Alzheimer’s 21 12 21367 4302 20 5

GSE8762 Huntington’s 22 10 21405 4297 20 5

– p53 mutation 50 17 8655 2913 18 64

http://www.broadinstitute.org/gsea/datasets.jsp
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package KEGGREST [38] of Bioconductor [27] to get the set of unweighted and undi-
rected KEGG [33] pathways. Next, we combine those individual pathways into one net-
work, using a graph union operation, and we extract the largest connected component 
using the Python package NetworkX [39]. Then, this component is filtered to only cover 
that genes assayed in the expression dataset.

Experimental setup

To assess our proposed method, each dataset is used for the proposed heuristic, GS 
[22], and LEAN [3] using the respective KEGG [33] network. limma [1] is also run as 
the baseline tool. The parameter values used for the proposed heuristic are shown in 
Table 3. They consist of the number of ants per iteration, the number of iterations per 
gene, the starting capacity of each ant, the number of cores for parallelization, alpha 
and beta parameters, in addition to the number of random permutations. Several val-
ues for the number of ants are tested (results are not included), and the value of 40 is 
chosen through trial-and-error. It is generally observed that increasing the number of 
ants improved results although no value above 40 is tried. Hence, it could be useful to 
further investigate the impact of this parameter, and others, on the algorithm’s behav-
ior in future studies. The starting capacity is always 1.0, the number of iterations n is 
always 5, the number of cores used for the parallelization of iterations is always 5, and α 
and β were fixed to 0.6 and 1.2, respectively. In line with the formulation of ant colony 
proposed here which encourages diversification of paths taken by ants rather than their 
convergence within a given iteration, we set a higher value for hyperparamter β (1.2) as 
compared to α (0.6) so that, within an iteration, ants are influenced more by the favora-
bility of their own route rather than that of the other ants. After several experimenta-
tions, we found that these parameter values gave the best results. The random seed is 
set to 1, 2, or 3 in each experiment, respectively, for reproducibility. For GS, the random 
seed is set to 121, 122, and 123 in each experiment, respectively. limma and LEAN are 
both employed using default configurations and random seed being set to 1, 2, or 3 in 
each experiment, respectively, for LEAN. The number of random permutations used for 
non-parametric statistical significance assessment within the tools is set to 100. The pro-
posed method is observed to be stable for these datasets across the experiments. The 
methods are also only run for a single experiment on the p53 mutation dataset using the 
same corresponding random seeds as those of Experiment 3. The statistical significance 
cutoff is set to 0.05 for all experiments.

Table 3 Parameter settings used for the proposed heuristic method

Parameter Description Value

n_ants # of ants per iteration per gene 40

n_iter # of iterations per gene 5

starting_capacity Starting capacity allotted per ant, resets every iteration per gene 1.0

n_cores # of cores used for parallelization of iterations per gene (only for Mac users) 5

alpha α parameter of probability function (Eq. 6) 0.6

beta β parameter of probability function (Eq. 6) 1.2

n_resamples # of random permutations used for pSi  and pDi  non-parametric estimations 100
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An enrichment analysis was then conducted by testing whether genes of a given 
KEGG pathway exhibit p values that are lower than the background genes represented 
by all other genes. A total of 353 KEGG pathways were extracted using the R package 
KEGGREST [38]. In order to infer the statistical significance of our results, the Wilcoxon 
rank-sum tests were used along with BH adjustment to correct for multiple testing. 
Accordingly, we are able to examine whether the underlying distributions and findings 
would still hold when the data is rearranged and shuffled. The significance and rank-
ing of disease-relevant pathways are then compared between tested methods for each 
dataset. Disease-relevant pathways were selected according to KEGG pathways listed 
as relevant under the KEGG [33] entry for each disease. This analysis constitutes a sin-
gle experiment. This process was repeated ten times for each neurodegeneration data-
set with different seed values to check the relative stability of the tested methods since 
all except limma include one or more random components. Therefore, a total of ten 
experiments per neurodegeneration dataset were conducted as compared to a single 
experiment for the p53 mutation dataset. Note that for the enrichment analysis, only the 
GSE5281_VCX subset was used to represent Alzheimer’s disease since it is the one with 
the most samples (33) out of the three subsets considered.

Finally, concordance was assessed between pairs of 3 different subsets of the Alzhei-
mer’s dataset ( GSE5281 ) [28]. Each subset consists of samples taken from different brain 
regions relevant to this disease. In this case, the visual cortex subset (GSE5281_VCX), 
the hippocampus subset (GSE5281_HIP), and the entorhinal cortex subset (GSE5281_
EC), as divided in the GSEABenchmarkeR [26] package, were considered. As in GS [22], 
Spearman’s ρ was used to assess concordance of gene-level p values between different 
dataset pairs for each of the tested methods.

Results
For each dataset, we run ten independent experiments for the proposed method, GS, 
and LEAN, in addition to one experiment for limma as a baseline. We report the ranks 
and significance levels of disease-related pathways which are identified based on the 
KEGG database. We focus on the main disease pathways, which are “Parkinson’s dis-
ease”, “Alzheimer’s disease”, and “Huntington’s Disease”, in Tables 4, 5, and 6 respectively. 
These tables show whether each method was able to detect the main corresponding dis-
ease pathway as significant, the mean rank of that pathway across the ten experiments, 
the mean number of significant pathways that are found across the ten experiments, and 
the mean proportion of significant pathways that are related to the disease across the 
experiments. The standard deviation of each entry is reported between parentheses. To 
explicitly examine the results, we also include detailed tables showing the names, ranks, 
and p values of all disease-relevant pathways across three out these ten experiments 
(Tables 9, 10, 11, 12). Each relevant pathway, regardless of its statistical significance, has 
a reported p value for each tested method. All p values are adjusted for multiple testing, 
as described in previous sections. Pathways that do not satisfy the significance threshold 
of 0.05 are indicated as having the rank “NA”. Finally, to measure the performance of the 
compared approaches, we use the Receiver-Operator- Characteristic (ROC) analysis to 
show the true positive rates and the false positive rates over all possible detection p value 
cutoffs. These curves are shown in Fig. 4 and are further discussed in the next sections.
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Parkinson’s disease

For dataset GSE20291 [28], a total of 11 KEGG pathways that are related to Parkinson’s 
disease are included in this analysis. All tested methods except limma consistently find 
the “Parkinson’s disease” KEGG pathway (KEGG ID hsa05012) as statistically significant. 
As was reported in [26], limma fails to output even a single significantly DE gene for 
some datasets. Table 4 shows the summarized results of ten experiments on this dataset. 

Fig. 4 ROC analysis to compare the performance of the proposed approach, GeneSurrounder, and LEAN

Table 4 Summarized results for the Parkinson’s disease (PD) dataset across 10 experiments

A total of 11 KEGG pathways related to PD are included in this analysis

The standard deviation of each entry is reported between parentheses

Method Found PD 
pathway

Mean ranks of 
PD pathway

Mean # of 
significant 
pathways

Mean proportion of 
significant pathways 
related to PD

Proposed Method Yes 3.33 (0.52) 40.33 (3.14) 3.17 (0.41)

GeneSurrounder Yes 6 (2.19) 56.17 (9.06) 3.83 (0.41)

LEAN Yes 5 (2.37) 110 (5.33) 5.17 (0.75)

Table 5 Summarized results for the Alzheimer’s disease (AD) dataset across 10 experiments

A total of 11 KEGG pathways related to AD are included in this analysis

The standard deviation of each entry is reported between parentheses

Method Found AD 
pathway

Mean ranks of 
AD pathway

Mean # of 
significant 
pathways

Mean proportion of 
significant pathways 
related to AD

Proposed Method Yes 7 (0) 83 (7.92) 5.33 (0.82)

GeneSurrounder Yes 6.83 (0.41) 92.83 (11.89) 8.50 (1.22)

LEAN Yes 8.33 (0.82) 83.17 (6.01) 6 (0)

Table 6 Summarized results for the Huntington’s disease (HD) dataset across 10 experiments

A total of 13 KEGG pathways related to HD are included in this analysis

The standard deviation of each entry is reported between parentheses

Method Found HD 
pathway

Mean ranks of 
HD pathway

Mean # of 
significant 
pathways

Mean proportion of 
significant pathways 
related to HD

Proposed Method Yes 5 (0) 121.80 (9.09) 7.8 (0.45)

GeneSurrounder Yes 1.60 (0.89) 61.60 (3.13) 4 (0)

LEAN Yes 1.80 (1.79) 121.40 (6.19) 8 (0)
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It reports the average and standard deviation values of the ranks of the “Parkinson’s 
disease” KEGG pathway, of the number of significant pathways, and of the mean pro-
portion of significant pathways related to the disease. Our method achieves the highest 
mean rank of the “Parkinson’s disease” pathway and the lowest mean number of signifi-
cant pathways across the ten experiments. LEAN achieves the highest mean proportion 
of significant pathways related to the disease but with the highest mean number of sig-
nificant pathways. The Parkinson’s disease graph in Fig.  4 corresponds to areas under 
the curve (AUC) of 0.6592, 0.5707, and 0.6655 for the proposed method, GS, and LEAN, 
respectively. Although our approach scores a slightly lower AUC than LEAN, it tends to 
favorably detect a lower number of significant pathways (on average 40.33 vs 110) and 
scores the highest mean rank of the main disease pathway.

As reported in Tables 9, 10, 11, 12, no method finds hsa04141, hsa00350, hsa04120, 
and hsa04137 as significant in any of the experiments for this dataset. This is also the 
case for hsa04210 except that this pathway attains a p value that is slightly higher than 
the significance threshold for the proposed method in Experiment 1 (Table 9). The pro-
posed method consistently ranks hsa05012, hsa05022, and hsa00190 in the top 10 across 
the experiments. Similarly, GS consistently ranks hsa05012 and hsa00190 in the top 10 
across the experiments. Nevertheless, hsa05022 is assigned by GS a rank that ranges 
from 11th to 28th. Pathway hsa04020 is also significant for GS in 2 out of 3 experiments 
and ranks from 25th to 27th. Similarly to the proposed method, LEAN consistently ranks 
hsa05012 and hsa05022 in the top 10 across the experiments but ranks hsa00190 11th 
to 15th. Pathway hsa04020 is consistently significant for LEAN across runs and ranks 
from 12th to 18th. Moreover, hsa04728 is significant for LEAN in 2 out of 3 experiments 
and ranks 79th to 88th. LEAN is also the only method to find this pathway significant. 
Finally, hsa03050 appears ranked as 19th for GS in Experiment 1 (Table 10), ranked as 
59th for LEAN in Experiment 2 (Table 11), but not significant for any tested method in 
Experiment 3 (Tables 9, 10, 11).

Alzheimer’s disease

For dataset GSE5281_VCX [29], a total of 11 KEGG pathways that are related to Alzhei-
mer’s disease are included in this analysis. All tested methods consistently find the “Alz-
heimer’s disease” KEGG pathway (KEGG ID hsa05010) as statistically significant. With 
a similar structure as Tables 4, 5 shows the summarized results of ten experiments on 
this dataset. Although our method achieves the second highest mean rank of the main 
disease pathway, it scores a rank standard deviation of zero which corresponds to the 
highest stability. It also results in the lowest mean number of significant pathways across 
the ten experiments. We note that GS achieves the highest mean proportion of signifi-
cant pathways that are related to the disease but with the highest mean number of sig-
nificant pathways. The Alzheimer’s disease graph in Fig. 4 corresponds to areas under 
the curve (AUC) of 0.7150, 0.8291, and 0.6309 for the proposed method, GS, and LEAN, 
respectively.

Tables 9, 10, 11, 12 show that GS generally exhibits slightly higher total number of sig-
nificant pathways than the proposed method. Out of the total significant pathways, the 
proportion that are included in the list of related pathways for Alzheimer’s disease are 
6/78, 5/65, and 6/73 for the proposed method, 9/86, 9/92, 9/75 for GS, 6/63, 6/73, and 
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6/71 for LEAN, and 5/26 for limma. GS achieves the highest proportion of significant 
pathways out of the total related pathways, whereas limma achieves the highest propor-
tion of significant pathways out of the total significant pathways for this dataset. The 
proposed method finds hsa05010, hsa05022, hsa00190, hsa03050, and hsa04140 as sig-
nificant consistently across the experiments. The proposed method consistently ranks 
hsa05010, hsa05022, and hsa00190 in the top 10 whereas hsa03050 and hsa04140 have a 
rank of 14th-15th and 53rd-59th respectively. The remaining related pathway found sig-
nificant by this method is hsa04020 but only in 2 out of 3 experiments and ranks as 66th 
in Experiment 1 and 46th in Experiment 3 (Table 9). Nevertheless, it is the only method 
to find hsa04020 as significant for this dataset. GS consistently finds hsa05010, hsa05022, 
hsa00190, hsa03050, hsa04141, hsa04210, hsa04140, hsa04910, and hsa04933 as signifi-
cant across the experiments. Similarly to the proposed method, hsa05010, hsa05022, and 
hsa00190 are the only pathways that consistently rank in the top 10 for GS. hsa03050 
achieves a rank ranging from 18th to 23rd for GS. The ranks for the remaining pathways 
range from 47th to 58th for hsa04141, from 15th to 22nd for hsa04210, from 40th to 58th 
for hsa04140, from 41st to 70th for hsa04910, and from 61st to 72nd for hsa04933. GS is 
the only tested method that finds hsa04210, hsa4910, and hsa04933 as significant. LEAN 
consistently finds hsa05010, hsa05022, hsa00190, hsa03050, hsa04141, and hsa04140 as 
significant across the experiments. Similarly to GS and the proposed method, hsa05010, 
hsa05022, and hsa00190 are pathways that consistently rank in the top 10 for LEAN. 
Nevertheless, LEAN also consistently ranks hsa03050 in the top 10. The ranks for the 
remaining pathways range from 43rd to 57th for hsa04141 and from 26th to 68th for 
hsa04140. limma ranks hsa05010, hsa05022, hsa00190, and hsa03050 in the top 10 and 
hsa04141 as 14th.

Concordance was also reported between different subsets of GSE5281 for each of the 
tested methods (Table 7). The concordance between GSE5281_VCX and GSE5281_HIP 
is highest for LEAN (rho = 0.47). Between GSE5281_VCX and GSE5281_EC, the con-
cordance is highest for GS (rho = 0.45). Finally, between GSE5281_HIP and GSE5281_
EC, the concordance is highest for the proposed method. The proposed method 
outperforms GS, LEAN, and limma for two out of three dataset pairs each. LEAN out-
performs GS with two dataset pairs each while limma outperforms GS and LEAN with 
two dataset pairs each.

Huntington’s disease

For dataset GSE8762 [30], a total of 13 KEGG pathways that are related to Huntington’s 
disease are included in this analysis. All tested methods except limma consistently find 

Table 7 Spearman rank correlations for gene-level p values generated on pairs of subsets of the 
Alzheimer’s dataset [29]

Method VCX - HIP VCX - EC EC - HIP

Proposed method 0.31073225 0.18717926 0.24277068

GeneSurrounder 0.26129886 0.45191229 0.14672705

LEAN 0.47151218 0.11027717 0.16508144

limma 0.3576224 0.16245708 0.21930437
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the “Huntington’s disease” KEGG pathway (KEGG ID hsa05016) as statistically signifi-
cant. Table  6 shows the summarized results of ten experiments on this dataset. Our 
method scores very close to the highest mean proportion of significant pathways related 
to the disease. GS scores the lowest mean number of significant pathways across the ten 
experiments, while our approach and LEAN scores similar values. The Huntington’s dis-
ease graph in Fig. 4 corresponds to areas under the curve (AUC) of 0.6956, 0.5526, and 
0.66061 for the proposed method, GS, and LEAN, respectively.

Tables 9, 10, 11, 12 show that GS generally has the least total number of significant 
pathways across experiments excluding limma. Out of the total significant pathways, 
the proportion that are included in the list of related pathways for Huntington’s disease 
are 8/112, 8/92, and 8/113 for the proposed method, 4/44, 4/49, and 4/43 for GS, and 
8/98, 8/106, and 8/103 for LEAN. The proposed method and LEAN achieve the high-
est proportion of significant pathways out of the total related pathways, whereas all 
tested methods excluding limma achieve a comparable proportion of significant path-
ways out of the total significant pathways for this dataset. The proposed method finds 
hsa05016, hsa05022, hsa00190, hsa03050, hsa04210, hsa04140, hsa04115, and hsa04144 
as significant consistently across the experiments. The proposed method consistently 
ranks hsa05016, hsa05022, and hsa00190 in the top 10 whereas hsa03050 ranks 18th-
20th. For the remaining pathways, the proposed method ranks hsa04210 from 46th to 
111th, hsa04140 from 26th to 54th, hsa04115 from 54th to 61st, and hsa04144 from 
81st to 92nd. The proposed method is the only one to find has04144 as significant. GS 
consistently finds hsa05016, hsa05022, hsa00190, and hsa03050 as significant across the 
experiments. GS also consistently ranks hsa05016, hsa05022, and hsa00190 in the top 
10 whereas hsa03050 has a rank ranging from 10th to 12th. LEAN consistently finds 
hsa05016, hsa05022, hsa00190, hsa03050, hsa04210, hsa04140, hsa04115, and hsa04141 
as significant across the experiments. Similarly to the proposed method and GS, LEAN 
consistently ranks hsa05016 and hsa00190 in the top 10. Nevertheless, its rank for 
hsa05022 ranges from 3rd to 12th. For the remaining pathways, LEAN ranks hsa03050 
from 21st to 26th, hsa04141 from 34th to 50th, hsa04210 from 10th to 17th, hsa04140 
from 12th to 41st, and hsa04115 from 47th to 55th. LEAN is the only method to find 
has04141 as significant. No method finds hsa04020, hsa04724, and hsa03022 as signifi-
cant in any of the experiments. Pathway hsa03020 has no genes that pass the preprocess-
ing for this dataset and therefore yields no results.

p53 mutation

We further assess the tested methods on the p53 dataset to ensure the method performs 
comparably or better than other tested methods on a dataset unrelated to neurodegen-
erative diseases. Table 8 summarizes the enrichment analysis results on the p53 dataset 
in terms of the IDs, names, ranks, and p values of the KEGG pathways that are identified 
as significant by each of the compared methods. These results show that the proposed 
method ranks all 4 relevant pathways, hsa04115, hsa04110, hsa04210, and hsa04218, in 
the top 10. GS only ranks hsa04115 and hsa04110 in the top 10 but ranks hsa04210 as 
86th and hsa04218 as 26th. LEAN ranks hsa04115, similarly to GS and the proposed 
method, as well as hsa04210 in the top 10. LEAN also ranks hsa04110 as 23rd and 
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hsa04218 as 15th. Finally, limma is the only method not to find all 4 relevant pathways 
significant, only ranking hsa04115 as 5th and hsa04210 as 28th.

Discussion
The usage of high-throughput experimental technologies is central to the identifica-
tion of molecular targets and the development of suitable treatments for various dis-
eases. Classical interpretations of generated data, such as differential gene expression 
and pathway analyses, disregard interconnections when looking for gene-disease asso-
ciations. Given that interconnections between studied genes are central to cellular pro-
cesses, there has been a recent interest in incorporating them in such studies to allow 
the detection of gene modules that underlie complex phenotypes in gene interaction 
networks. Existing methods either impose radius-based restrictions or grow modules 
freely at the expense of a statistical bias towards large modules. We propose a heuristic 
method, inspired by Ant Colony Optimization, to apply gene-level scoring and module 
identification with distance-based search constraints and penalties rather than radius-
based restrictions. We test and compare our results to other approaches using three dif-
ferent neurodegenerative diseases, namely Alzheimer’s, Parkinson’s, and Huntington’s, 
over three independent experiments. It can be seen that the method maintains relative 
stability compared to the other methods, especially for highly-ranked pathways (top 
10), across the conducted experiments. This is evidenced by the fact that the proposed 
method is the only method to consistently showcase the same relevant pathways in the 
top 10 across the experiments. Moreover, if a relevant pathway consistently ranks in the 
top 10 across the experiments for any of the other methods, in most cases, it will appear 
in the top 10 for the proposed method. Nevertheless, the converse is not true. The only 
exception to this is pathway hsa03050 which appears in the top 10 consistently for LEAN 
using GSE5281_VCX (Table  11) but not the proposed method (Table  9). In addition, 
aside from limma, the proposed method exhibits the least or ties for the least total num-
ber of significant pathways in 2 out of 3 of the tested datasets. These results indicate that 
the method performs well in prioritizing genes with high relevance through their signifi-
cance ranking as compared to other tested methods in these experiments.

Table 8 Enrichment results for the p53 mutation dataset in a single experiment

Note: seed = 3 for the proposed method and LEAN, seed = 123 for GS

Proposed 
method

GeneSurrounder LEAN limma

Total # of significant pathways 60 110 83 46

KEGG Pathway ID KEGG Pathway 
Name

Ranking (p value)

hsa04115 p53 signaling 
pathway

2 (1.86e−09) 4 (9.32e−09) 3 (9.31e−14) 5 (3.49e−10)

hsa04110 Cell cycle 1 (5.47e−19) 1 (1.39e−20) 23 (1.99e−05) NA (0.61)

hsa04210 Apoptosis 5 (1.73e−05) 86 (0.01) 9 (3.09e−10) 28 (6.54e−06)

hsa04218 Cellular senes-
cence

7 (3.30e−05) 26 (1.06e−04) 15 (5.86e−08) NA (0.61)
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Table 9 Enrichment results for the proposed method for dataset GSE20291, GSE5281_VCX, and 
GSE8762 in 3 experiments

Parkinson’s disease (GSE20291)

Experiment 1 
(seed= 1)

Experiment 2 
(seed= 2)

Experiment 3 (seed= 
3)

Total # of significant pathways

22 25 22

KEGG Pathway ID KEGG Pathway 
Name

Ranking (p value)

hsa05012 Parkinson’s Disease 3 (6.49e−10) 4 (1.27e−08) 3 (1.36e−10)

hsa05022 Pathways of neuro-
degeneration- multi-
ple diseases

8 (5.34e−08) 6 (6.70e−07) 10 (4.03e−06)

hsa00190 Oxidative phospho-
rylation

2 (1.71e−11) 1 (2.29e−11) 1 (3.46e−14)

hsa03050 Proteasome NA (0.78) NA (0.99) NA (0.97)

hsa04020 Calcium signaling 
pathway

NA (0.26) NA (0.22) NA (0.09)

hsa04141 Protein processing 
in endoplasmic 
reticulum

NA (0.99) NA (0.99) NA (0.99)

hsa04210 Apoptosis NA (0.05) NA (0.52) NA (0.15)

hsa00350 Tyrosine metabolism NA (0.99) NA (0.99) NA (0.99)

hsa04120 Ubiquitin mediated 
proteolysis

NA (0.35) NA (0.76) NA (0.58)

hsa04137 Mitophagy - animal NA (0.98) NA (0.99) NA (0.99)

hsa04728 Dopaminergic 
Synapse

NA (0.80) NA (0.53) NA (0.99)

Alzheimer’s disease (GSE5281_VCX)

Experiment 1 
(seed= 1)

Experiment 2 
(seed= 2)

Experiment 3 (seed= 
3)

Total # of significant pathways

78 65 73

KEGG pathway ID KEGG Pathway 
Name

Ranking (p value)

hsa05010 Alzheimer’s disease 7 (1.86e−41) 7 (1.61e−41) 7 (4.74e−42)

hsa05022 Pathways of neuro-
degeneration- multi-
ple diseases

5 (1.08e−55) 5 (1.06e−54) 4 (6.80e−57)

hsa00190 Oxidative phospho-
rylation

4 (4.68e−56) 4 (2.64e−55) 6 (2.35e−51)

hsa03050 Proteasome 14 (9.21e−13) 14 (3.64e−14) 15 (1.18e−13)

hsa04020 Calcium signaling 
pathway

66 (0.02) NA (0.11) 46 (3.75e−03)

hsa04141 Protein processing 
in endoplasmic 
reticulum

NA (0.96) NA (1.00) NA (0.96)

hsa04210 Apoptosis NA (0.18) NA (0.92) NA (0.25)

hsa04140 Autophagy - animal 59 (0.01) 55 (0.03) 53 (9.37e−03)

hsa04310 Wnt signaling 
pathway

NA (0.27) NA (0.87) NA (0.68)

hsa04910 Insulin signaling 
pathway

NA (0.63) NA (1.00) NA (0.67)
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The proposed method also shows high stability in which disease-relevant pathways it 
indicates as significant. The only inconsistency by the proposed method in this regard 
was for hsa04020 in Experiment 2 using GSE5281_VCX (Table 9). Nevertheless, the pro-
posed method was the only one to find this pathway as significant for this dataset. The 
method’s stability is also supported by the concordance analysis results which show that 
the proposed method is the only one to outperform all other tested methods in 2 pairs 
of GSE5281 subsets. All other tested methods outperform another method or more, but 
not all, for 2 or fewer pairs.

Table 9 (continued)

Alzheimer’s disease (GSE5281_VCX)

Experiment 1 
(seed= 1)

Experiment 2 
(seed= 2)

Experiment 3 (seed= 
3)

Total # of significant pathways

78 65 73

KEGG pathway ID KEGG Pathway 
Name

Ranking (p value)

hsa04933 AGE-RAGE signaling 
pathway in diabetic 
complications

NA (0.25) NA (0.16) NA (0.16)

Huntington’s disease (GSE8762)

Experiment 1 
(seed= 1)

Experiment 2 
(seed= 2)

Experiment 3 (seed= 
3)

Total # of significant pathways

112 92 113

KEGG pathway ID KEGG pathway 
name

Ranking (p value)

hsa05016 Huntington’s disease 5 (1.25e−31) 5 (4.88e−29) 5 (7.00e−30)

hsa05022 Pathways of neuro-
degeneration- multi-
ple diseases

7 (5.57e−24) 6 (8.94e−24) 7 (1.05e−23)

hsa00190 Oxidative phospho-
rylation

1 (1.91e−37) 1 (7.64e−34) 1 (5.81e−36)

hsa03050 Proteasome 18 (1.40e−06) 20 (1.60e−05) 20 (8.12e−06)

hsa04020 Calcium signaling 
pathway

NA (0.73) NA (0.51) NA (0.76)

hsa04141 Protein processing 
in endoplasmic 
reticulum

NA (0.71) NA (0.31) NA (0.43)

hsa04210 Apoptosis 111 (0.05) 46 (3.43e−03) 52 (2.56e−03)

hsa04140 Autophagy - animal 54 (2.14e−03) 26 (2.29e−04) 31 (2.80e−04)

hsa04115 p53 signaling 
pathway

57 (2.83e−03) 54 (9.84e−03) 61 (6.37e−03)

hsa04144 Endocytosis 84 (0.02) 81 (0.03) 92 (0.02)

hsa04724 Glutamatergic 
Synapse

NA (0.83) NA (0.77) NA (0.49)

hsa03022 Basal transcription 
factors

NA (1.00) NA (0.38) NA (0.65)

hsa03020 RNA polymerase NA NA NA
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Table 10 Enrichment results for GeneSurrounder for dataset GSE20291, GSE5281_VCX, and 
GSE8762 in 3 experiments

Parkinson’s disease (GSE20291)

Experiment 
1 (seed= 
121)

Experiment 
2 (seed= 
122)

Experiment 
3 (seed= 
123)

Total # of significant pathways

32 51 39

KEGG Pathway ID KEGG Pathway Name Ranking (p value)

hsa05012 Parkinson’s Disease 4 (1.09e−11) 6 (2.26e−07) 9 (3.45e−07)

hsa05022 Pathways of neurodegeneration- multiple 
diseases

11 (4.19e−07) 28 (3.39e−03) 14 (3.02e−04)

hsa00190 Oxidative phosphorylation 3 (4.40e−12) 4 (8.43e−10) 2 (1.34e−14)

hsa03050 Proteasome 19 (6.43e−03) NA (0.47) NA (0.91)

hsa04020 Calcium signaling pathway NA (0.15) 27 (2.21e−03) 25 (8.33e−03)

hsa04141 Protein processing in endoplasmic reticu-
lum

NA (1.00) NA (0.99) NA (1.00)

hsa04210 Apoptosis NA (1.00) NA (0.99) NA (1.00)

hsa00350 Tyrosine metabolism NA (1.00) NA (0.99) NA (1.00)

hsa04120 Ubiquitin mediated proteolysis NA (1.00) NA (0.99) NA (1.00)

hsa04137 Mitophagy - animal NA (1.00) NA (0.99) NA (1.00)

hsa04728 Dopaminergic Synapse NA (1.00) NA (0.99) NA (1.00)

Alzheimer’s Disease (GSE5281_VCX)

Experiment 
1 (seed= 
121)

Experiment 
2 (seed= 
122)

Experiment 
3 (seed= 
123)

Total # of significant pathways

86 92 75

KEGG Pathway ID KEGG Pathway Name Ranking (p value)

hsa05010 Alzheimer’s Disease 7 (3.33e−50) 5 (3.73e−59) 7 (8.28e−58)

hsa05022 Pathways of neurodegeneration- multiple 
diseases

6 (2.54e−56) 3 (2.43e−68) 4 (1.13e−63)

hsa00190 Oxidative phosphorylation 4 (1.13e−60) 7 (2.16e−55) 5 (4.02e−60)

hsa03050 Proteasome 18 (1.05e−11) 23 (8.19e−11) 21 (4.30e−12)

hsa04020 Calcium signaling pathway NA (0.54) NA (0.42) NA (0.58)

hsa04141 Protein processing in endoplasmic reticu-
lum

47 (1.59e−03) 51 (3.31e−04) 58 (7.39e−03)

hsa04210 Apoptosis 22 (7.43e−11) 17 (5.60e−14) 15 (1.37e−17)

hsa04140 Autophagy - animal 58 (4.28e−03) 42 (8.55e−05) 40 (5.75e−04)

hsa04310 Wnt signaling pathway NA (0.93) NA (0.31) NA (0.32)

hsa04910 Insulin signaling pathway 50 (1.61e−03) 41 (4.23e−05) 70 (0.03)

hsa04933 AGE-RAGE signaling pathway in diabetic 
complications

72 (0.02) 69 (8.02e-03) 61 (0.01)
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Conclusion
We propose an approach for gene-level subnetwork identification that produces note-
worthy enrichment results for three gene expression datasets relating to neurodegen-
erative diseases and having different sample sizes and case to control proportions. The 
presented method shows superior stability in comparison to other approaches, namely 
GeneSurrounder [22], LEAN [3], and limma [1]. It also detects significantly dysregu-
lated and disease-relevant gene modules when tested on the p53 mutation dataset. 
Our approach allows the detection of crucial mechanistic multi-gene connections that 
underlie complex diseases.

In terms of future work, we identify three main levels of improvements. First, we plan 
to consider other types and resources for gene expression as well as network interaction 
datasets. Such data could also target different types of diseases. In addition, we aim to 
work on further reducing the computational time required to perform the overall analy-
sis. This currently is O(g2 + n ∗ A ∗ g) where g, n, and a are the number of genes, itera-
tions, and ants, respectively. A better runtime could be achieved through the exploration 
of other types of optimization techniques such as GA and SA, as done in pathfindR [18]. 
Finally, it is important to note that although most tested methods rank the main KEGG 
pathway corresponding to a neurodegenerative disease in the top ten significant path-
ways, most enrichment analyses also highly rank pathways related to other neurodegen-
erative diseases. This indicates the need for future research to improve the sensitivity of 
these approaches to properly distinguish between related diseases while maximizing the 
rank of pathways related to the studied disease.

Table 10 (continued)

Huntington’s Disease (GSE8762)

Experiment 
1 (seed= 
121)

Experiment 
2 (seed= 
122)

Experiment 
3 (seed= 
123)

Total # of significant pathways

44 49 43

KEGG pathway ID KEGG pathway name Ranking (p value)

hsa05016 Huntington’s Disease 1 (1.27e−65) 3 (1.93e−68) 2 (2.10e−66)

hsa05022 Pathways of neurodegeneration- multiple 
diseases

6 (5.01e−37) 6 (9.96e−42) 6 (8.44e−38)

hsa00190 Oxidative phosphorylation 5 (3.89e−51) 5 (8.14e−52) 5 (1.43e−50)

hsa03050 Proteasome 10 (1.92e−27) 10 (2.18e−27) 12 (1.38e−23)

hsa04020 Calcium signaling pathway NA (0.99) NA (0.99) NA (0.99)

hsa04141 Protein processing in endoplasmic reticu-
lum

NA (0.99) NA (0.99) NA (0.99)

hsa04210 Apoptosis NA (0.33) NA (0.68) NA (0.72)

hsa04140 Autophagy - animal NA (0.99) NA (0.99) NA (0.99)

hsa04115 p53 signaling pathway NA (0.99) NA (0.99) NA (0.99)

hsa04144 Endocytosis NA (0.99) NA (0.98) NA (0.99)

hsa04724 Glutamatergic Synapse NA (0.99) NA (0.99) NA (0.99)

hsa03022 Basal transcription factors NA (0.99) NA (0.99) NA (0.99)

hsa03020 RNA polymerase NA NA NA
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Table 11 Enrichment results for LEAN for dataset GSE20291, GSE5281_VCX, and GSE8762 in 3 
experiments

Parkinson’s disease (GSE20291)

Experiment 1 (seed= 
1)

Experiment 2 (seed= 
2)

Experiment 3 
(seed= 3)

Total # of significant pathways

88 98 102

KEGG pathway ID KEGG pathway name Ranking (p value)

hsa05012 Parkinson’s Disease 4 (4.79e−14) 2 (1.19e−15) 4 (2.36e−15)

hsa05022 Pathways of neurode-
generation- multiple 
diseases

8 (5.47e−12) 8 (5.45e−13) 8 (6.41e−13)

hsa00190 Oxidative phospho-
rylation

11 (2.17e−11) 15 (3.88e−10) 11 (5.46e−12)

hsa03050 Proteasome NA (0.06) 59 (7.39e−04) NA (0.19)

hsa04020 Calcium signaling 
pathway

12 (1.72e−10) 16 (7.60e−10) 18 (6.07e−10)

hsa04141 Protein processing in 
endoplasmic reticulum

NA (0.53) NA (0.92) NA (0.53)

hsa04210 Apoptosis NA (1.00) NA (1.00) NA (1.00)

hsa00350 Tyrosine metabolism NA (1.00) NA (1.00) NA (1.00)

hsa04120 Ubiquitin mediated 
proteolysis

NA (0.69) NA (0.44) NA (0.70)

hsa04137 Mitophagy - animal NA (0.26) NA (0.21) NA (0.15)

hsa04728 Dopaminergic Synapse NA (0.08) 88 (0.03) 79 (6.45e−03)

Alzheimer’s disease (GSE5281_VCX)

Experiment 1 (seed= 
1)

Experiment 2 (seed= 
2)

Experiment 3 
(seed= 3)

Total # of significant pathways

63 73 71

KEGG pathway ID KEGG pathway name Ranking (p value)

hsa05010 Alzheimer’s Disease 10 (1.78e−15) 8 (8.78e−22) 8 (1.57e−22)

hsa05022 Pathways of neurode-
generation- multiple 
diseases

7 (8.25e−19) 5 (2.87e−32) 5 (3.24e−33)

hsa00190 Oxidative phospho-
rylation

8 (2.23e−17) 6 (6.17e−32) 6 (2.76e−32)

hsa03050 Proteasome 5 (4.77e−23) 10 (1.78e−12) 9 (1.05e−15)

hsa04020 Calcium signaling 
pathway

NA (1.00) NA (1.00) NA (1.00)

hsa04141 Protein processing in 
endoplasmic reticulum

57 (0.04) 44 (3.42e−03) 43 (1.34e−03)

hsa04210 Apoptosis NA (1.00) NA (1.00) NA (1.00)

hsa04140 Autophagy - animal 26 (4.51e−05) 62 (0.03) 68 (0.04)

hsa04310 Wnt signaling pathway NA (1.00) NA (1.00) NA (1.00)

hsa04910 Insulin signaling 
pathway

NA (1.00) NA (1.00) NA (1.00)

hsa04933 AGE-RAGE signaling 
pathway in diabetic 
complications

NA (1.00) NA (1.00) NA (1.00)
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Table 11 (continued)

Huntington’s disease (GSE8762)

Experiment 1 (seed 
= 1)

Experiment 2 (seed 
= 2)

Experiment 3 (seed 
= 3)

Total # of significant pathways

44 49 43

KEGG Pathway ID KEGG Pathway 
Name

Ranking (p value)

hsa05016 Huntington’s Disease 1 (1.99e−16) 1 (3.22e−26) 5 (3.22e−28)

hsa05022 Pathways of neuro-
degeneration- multi-
ple diseases

3 (1.87e−14) 5 (1.03e−16) 12 (6.39e−19)

hsa00190 Oxidative phospho-
rylation

4 (1.83e−13) 3 (2.74e−20) 1 (7.24e−44)

hsa03050 Proteasome 26 (6.56e−05) 25 (1.02e−06) 21 (2.27e−11)

hsa04020 Calcium signaling 
pathway

NA (1.00) NA (1.00) NA (1.00)

hsa04141 Protein processing 
in endoplasmic 
reticulum

34 (2.47e−04) 50 (6.82e−04) 35 (3.84e−07)

hsa04210 Apoptosis 13 (4.43e−08) 10 (1.06e−11) 17 (5.69e−13)

hsa04140 Autophagy - animal 12 (4.30e−08) 17 (2.21e−08) 41 (7.89e−06)

hsa04115 p53 signaling 
pathway

55 (2.84e−03) 47 (5.21e−04) 47 (6.32e−05)

hsa04144 Endocytosis NA (1.00) NA (1.00) NA (1.00)

hsa04724 Glutamatergic 
Synapse

NA (1.00) NA (1.00) NA (1.00)

hsa03022 Basal transcription 
factors

NA (1.00) NA (1.00) NA (1.00)

hsa03020 RNA polymerase NA NA NA
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Table 12 Enrichment results for limma for dataset GSE20291, GSE5281_VCX, and GSE8762

Parkinson’s disease (GSE20291)

Total # of 
significant 
pathways

0

KEGG pathway ID KEGG pathway name Ranking (p value)

hsa05012 Parkinson’s Disease NA (1.00)

hsa05022 Pathways of neurodegeneration- multiple diseases NA (1.00)

hsa00190 Oxidative phosphorylation NA (1.00)

hsa03050 Proteasome NA (1.00)

hsa04020 Calcium signaling pathway NA (1.00)

hsa04141 Protein processing in endoplasmic reticulum NA (1.00)

hsa04210 Apoptosis NA (1.00)

hsa00350 Tyrosine metabolism NA (1.00)

hsa04120 Ubiquitin mediated proteolysis NA (1.00)

hsa04137 Mitophagy - animal NA (1.00)

hsa04728 Dopaminergic Synapse NA (1.00)

Alzheimer’s disease (GSE5281_VCX)

Total # of 
significant 
pathways

26

KEGG pathway ID KEGG pathway name Ranking (p value)

hsa05010 Alzheimer’s Disease 7 (5.57e−15)

hsa05022 Pathways of neurodegeneration- multiple diseases 6 (1.12e−15)

hsa00190 Oxidative phosphorylation 8 (2.81e−12)

hsa03050 Proteasome 5 (5.59e−16)

hsa04020 Calcium signaling pathway NA (0.99)

hsa04141 Protein processing in endoplasmic reticulum 14 (5.77e–04)

hsa04210 Apoptosis NA (0.99)

hsa04140 Autophagy-animal NA (0.16)

hsa04310 Wnt signaling pathway NA (0.99)

hsa04910 Insulin signaling pathway NA (0.99)

hsa04933 AGE-RAGE signaling pathway in diabetic complications NA (0.99)

Huntington’s disease (GSE8762)

Total # of 
significant 
pathways

0

KEGG pathway ID KEGG pathway name Ranking (p value)

hsa05016 Huntington’s Disease NA (1.00)

hsa05022 Pathways of neurodegeneration- multiple diseases NA (1.00)

hsa00190 Oxidative phosphorylation NA (1.00)

hsa03050 Proteasome NA (1.00)

hsa04020 Calcium signaling pathway NA (1.00)

hsa04141 Protein processing in endoplasmic reticulum NA (1.00)

hsa04210 Apoptosis NA (1.00)

hsa04140 Autophagy - animal NA (1.00)
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