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Abstract 

Normalization is a crucial step in the analysis of single-cell RNA-sequencing (scRNA-
seq) counts data. Its principal objectives are reduction of systematic biases primar-
ily introduced through technical sources and transformation of counts to make 
them more amenable for the application of established statistical frameworks. In 
the standard workflows, normalization is followed by feature selection to identify 
highly variable genes (HVGs) that capture most of the biologically meaningful vari-
ation across the cells. Here, we make the case for a revised workflow by proposing 
a simple feature selection method and showing that we can perform feature selection 
before normalization by relying on observed counts. We highlight that the feature 
selection step can be used to not only select HVGs but to also identify stable genes. We 
further propose a novel variance stabilization transformation inclusive residuals-based 
normalization method that in fact relies on the stable genes to inform the reduction 
of systematic biases. We demonstrate significant improvements in downstream cluster-
ing analyses through the application of our proposed methods on biological truth-
known as well as simulated counts datasets. We have implemented this novel work-
flow for analyzing high-throughput scRNA-seq data in an R package called Piccolo.

Introduction
Bulk RNA sequencing (RNA-seq) studies have led to a significant improvement in our 
understanding of gene expression profiles associated with healthy as well as diseased 
states of various tissue types. However, these studies only provide an averaged view at 
the tissue level in which subtle but crucial distinctions of the constituent cell-types and 
states are obscured. Rapid advances in single-cell RNA-seq (scRNA-seq) protocols and 
platforms over the past decade have now facilitated investigation of transcriptional pro-
files at the level of individual cells, thereby enabling identification of distinct cell-types 
and cell states [1–5], as well as stages of development and differentiation [6, 7].

In contrast to measurements on bulk tissues, single-cell measurements have signifi-
cantly greater uncertainty due to the low amounts of starting material as well as low 
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capture efficiencies of the protocols (typically, high-throughput protocols only capture 
between 5 and 20% of the molecules present in each cell [8]). As a result, even deeply 
sequenced datasets may have up to 50% zeros [9]. The high sparsity poses a significant 
challenge during the computational analysis. Early attempts to build statistical models 
to explain the relationship between the observed counts and the true underlying gene 
expression levels relied on zero-inflation models to explain the excess zeros. However, 
data generated using newer scRNA-seq protocols that rely on unique molecular identifi-
ers (UMIs) have been shown to be sufficiently described using simpler statistical models 
that do not include zero inflation [10, 11]. In this paper, any reference to scRNA-seq data 
will specifically pertain to UMI counts data.

A critical step in the computational analyses of both bulk RNA-seq and scRNA-seq 
datasets is that of normalization. One of its key objectives is to reduce the biases intro-
duced by technical sources or even biological sources such as cell cycle state, so that 
we can confidently identify true biological differences [9, 12–14]. Owing to the small 
amount of mRNAs captured per cell, the effect of these biases is more pronounced in 
the case of scRNA-seq data, further underscoring the need to reduce the impact of these 
biases on downstream analyses. Typically, normalization is performed by re-scaling the 
observed counts using cell-specific size factors to reduce the differences in sampling 
depths (total counts) between the cells. The scaled counts are then transformed with the 
help of a monotonic non-linear function (usually the logarithm function) to stabilize the 
variances of genes across different mean expression levels.

In the standard scRNA-seq workflow (implemented for instance in Seurat [15–18] 
and Scanpy [19]) normalization is followed by a feature selection step that focuses on 
identifying genes that capture most of the biological variation across the cells while 
eliminating genes that do not exhibit meaningful biological variation. This sequence of 
steps—normalization followed by feature selection—in the standard workflow appears 
quite reasonable, especially given the fact that differentially expressed genes can be iden-
tified reliably only after reducing the sampling depth differences between the cells. How-
ever, objective (i). identification of genes that are differentially expressed between groups 
of cells, is not the same as objective (ii). identification of highly variable genes (HVGs). 
While the identification of differentially expressed genes between distinct groups of cells 
requires that the sampling depth differences be reduced through normalization, we show 
that it isn’t necessary to perform normalization in order to identify HVGs.

In this article, we propose a simple feature selection method that relies on a regres-
sion-based approach to estimate dispersion coefficients for the genes based on their 
observed counts. Using this method, we show that feature selection can be performed 
before normalization. Importantly, during the feature selection step we not only identify 
variable genes, but also shortlist stable genes. The variation in the counts of these stable 
genes is expected to primarily reflect the biases introduced by the technical sources, and 
can therefore be used to estimate cell-specific size factors in order to perform normali-
zation. During normalization we also need to ensure variance stabilization, especially 
when relying on principal components analysis (PCA) for dimensionality reduction. 
Keeping this in mind, we propose a residuals-based normalization method that not only 
reduces the impact of sampling depth differences between the cells but simultaneously 
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ensures variance stabilization by explicitly relying on a monotonic non-linear transfor-
mation (default choice is the log transformation).

We demonstrate significant improvements in downstream clustering analyses ena-
bled by the application of our feature selection and normalization methods on biological 
truth-known as well as simulated counts datasets. Based on these results, we make the 
case for a revised scRNA-seq analysis workflow in which we first perform feature selec-
tion and subsequently perform normalization using our residuals-based approach. We 
have implemented this novel scRNA-seq workflow in an R package called Piccolo.

Results
Genes with small counts exhibit quasi‑Poisson variance

Genes with low mean expression levels show Poisson‑like variance of their counts

As pointed out by Sarkar and Stephens [11], a good starting point for understanding 
the nature of the scRNA-seq counts data is to recall that the observed counts reflect 
contributions from both the underlying expression levels of the genes as well as the 
measurement errors. This necessitates that the contributions from the two be carefully 
distinguished in order to better understand and explain the true biological variation. 
Based on their analysis, they found that a simple Poisson distribution sufficed to explain 
measurement error, while a simple Gamma distribution often sufficed to explain the 
variation in expression levels across cells. The observation model built using these two 
distributions yields the Gamma-Poisson (or negative binomial (NB)) distribution which 
is well-known as a plausible model to explain over-dispersed counts. Under this model, 
the mean-variance relationship is given by,

where αNB is the NB over-dispersion coefficient ( αNB = 0 yields the familiar Poisson 
mean-variance relationship: σ 2 = µ).

A more familiar expression for the NB mean-variance relationship is,

where θ is referred to as the inverse over-dispersion coefficient.
Another mean-variance relationship closely related to the Poisson and the NB is the 

quasi-Poisson (QP) wherein,

where αQP is the QP dispersion coefficient ( αQP = 1 yields the familiar Poisson mean-
variance relationship; αQP > 1 would be associated with counts over-dispersed with 
respect to the Poisson, while αQP < 1 would indicate counts under-dispersed with 
respect to the Poisson).

We began our investigation into the nature of UMI counts by considering the mean-
variance relationship of counts for genes in a technical negative control data set [10]

(1)σ 2
NB = µ+ αNBµ

2

(2)σ 2
NB = µ+ µ2

θ

(3)σ 2
QP = αQPµ
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(hereafter referred to as Svensson 1). This data set consisted of droplets containing 
homogenous solutions of endogenous RNA as well as spike-in transcripts. The variabil-
ity of counts in this data arises solely due to technical sources and is not attributable to 
any underlying biological source. The left panel in Fig.  1A shows the variance ( σ 2 ) vs 
mean ( µ ) log-log plot for Svensson 1. Each dot in the plot corresponds to a gene. The 
colors of the dots reflect the local point density, with darker shades (deep blues) indicat-
ing low density and brighter shades (bright yellow) indicating high density. The black 
line depicts the variance expected under the Poisson model ( σ 2 = µ).

We begin by noting that the UMI counts are heteroskedastic in nature since the 
variances of the genes depend on the mean (larger variances corresponding to larger 
means). If we then move on to focus on genes with low mean expression levels (espe-
cially µ < 0.1 ), we can see that the mean-variance relationship appears to be well-
approximated by the Poisson model since their observed variances lie close to the black 
line. It’s only for genes with higher mean expression levels (especially µ > 1 ) that the 
variance of the observed counts exceed the variance expected under the Poisson model. 
For comparison with counts data with inherent biological variation, we looked at the 
NIH/3T3 fibroblast cell line data set [10] (hereafter referred to as NIH/3T3) and the 
10X Genomics Peripheral Blood Mononuclear Cells (PBMC) 33k data set [20] (hereafter 
referred to as PBMC 33k). Even for these two datasets, most of the genes with low mean 

Fig. 1 Genes with low mean expression exhibit quasi-Poisson variance. In all the plots, each dot represents 
a gene and the color of the dots reflect the local point density, with brighter shades (yellow) indicating high 
density and darker shades (deep blue) indicating low density. A Variance ( σ 2 ) vs mean ( µ ) log-log scatter 
plots for the Svensson 1 technical control (left panel), NIH/3T3 fibroblast cell line (center panel), and PBMC 
33k (right panel) datasets. The solid black line corresponds to the Poisson model ( σ 2 = µ ). For genes with 
low mean expression levels, the variance can be adequately described by the Poisson model. B Quasi-Poisson 
dispersion coefficients ( αQP ) vs mean ( µ ) log-log scatter plots for the Svensson 1 (left panel), NIH/3T3 (center 
panel), and PBMC 33k (right panel) datasets. αQP for each gene were estimated from the observed counts 
using a regression-based approach
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expression levels exhibit Poisson-like mean-variance relationship (middle and right pan-
els in Fig. 1A).

The Poisson-like nature of the mean-variance relationship at low expression levels can 
be made clearer with the help of a simple example. Consider a gene with µ = 0.01 . Let us 
assume that the counts of this gene are actually NB distributed and that αNB = 1

θ
= 1 is 

the true estimate of the over-dispersion coefficient. The variance of the counts will then 
be σ 2

NB = 0.01+ 1 ∗ (0.01)2 = 0.0101 . In comparison, the expected variance under the 
Poisson model will be σ 2

Pois = 0.01 . The percent difference between the two variances is 
a mere 1% . Thus, even if we approximated the variance for the counts of this gene with 
that predicted by the simple Poisson model, the estimated variance would differ by only 
1% from the true NB variance. The percentage difference between the Poisson and the 
NB variances would of course increase for larger values of αNB , however, estimates of 
αNB for real biological datasets typically range between 0.01 and 1 [21, 22].

We can formalize the discussion above with the help of Eqs.  1 and  3. We note that 
when αNBµ << 1,

where we defined αQP in terms of αNB and µ as αQP = 1+ αNBµ (see Appendix for a dis-
cussion on viewing QP variance as a special case of NB variance).

Thus, we conclude that counts of genes with low mean expression levels and moder-
ate over-dispersion (such that αNBµ << 1 ) exhibit variances that do not deviate signifi-
cantly from the variances predicted under the Poisson model.

QP dispersion coefficients can be obtained using a regression‑based approach

For the NB distribution, the usual approach is to use maximum-likelihood estimation 
(MLE) to obtain estimates for the over-dispersion parameter ( αNB ). This approach apart 
from being computationally intensive has the weakness that if in fact the distribution is 
not NB, the maximum-likelihood estimator is inconsistent. Cameron and Trivedi pro-
posed a regression-based test that offers a more robust alternative by requiring only the 
estimates of the mean and variance for each gene [23, 24]. The test is set up to estimate 
over-dispersion beyond the null model (Poisson distribution) by specifying the alternate 
model in the form of a scalar multiple of a function of the mean,

where the scalar multiple ( α ) is estimated using least squares regression (see Appendix).
The QP mean-variance relation (see Eq. 3) corresponds precisely to such an alterna-

tive hypothesis in which the variance is simply a scalar multiple ( αQP ) of the mean. This 
enables us to use this simple yet robust regression-based approach to estimate the QP 
dispersion coefficients ( αQP ) for each gene by simply relying on the estimates of their 
mean and variance.

(4)σ 2
NB = (1+ αNBµ)µ = σ 2

QP = αQPµ ≈ σ 2
Pois

(5)Var[x] = αE[x]
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QP variance for counts of genes with low mean expression is simply due to the observed counts 

being small and is not biological in origin

We obtained estimates for αQP for all genes using the regression-based approach. Based 
on these estimates, we filtered out genes that were under-dispersed compared to the 
Poisson model ( αQP < 1 ). For the remaining genes, we plotted αQP vs µ log-log plots 
(Fig. 1B). For Svensson 1 (left panel in Fig. 1B), it is evident that for genes with low 
mean expression levels their αQP values lie close to 1 ( 100 ). In particular, we note that the 
mean of the αQP for genes with µ < 0.1 is 1.0474. This shows that for these genes with 
low mean expression their αQP values are close to 1 which is consistent with the observa-
tion that the counts of these genes exhibit Poisson-like variance. Since Svensson 1 is a 
technical control data set, this observation further supports the simple Poisson distribu-
tion as an appropriate model for explaining measurement error, particularly for genes 
with low mean expression levels. Furthermore, genes with µ < 0.1 do not appear to 
exhibit any dependence on µ . We evaluate this quantitatively by using the non-paramet-
ric Kendall’s rank and Spearman’s rank correlation tests to determine whether there is a 
statistical dependence between αQP and µ values for genes with µ < 0.1 (see Methods). 
Both tests evaluate how well the relationship between two variables can be described 
using a monotonic function. For both tests, the correlation coefficients - τ and ρ respec-
tively—indicate a statistical dependence if the values are close to +1 or −1 , while values 
of τ or ρ closer to 0 indicate the absence of such a statistical dependence. The result-
ant correlation coefficient values of τ = 0.04611706 ( p = 0.001244 ) and ρ = 0.0880 
( p = 3.475E − 05 ), support the assertion that there is no statistical dependence between 
αQP and µ values for genes with low mean expression levels.

For NIH/3T3 (middle panel in Fig. 1B) and PBMC 33k (right panel in Fig. 1B), despite 
greater variability in αQP due to the inherent biological variability in the data, simi-
lar observations were made—namely that the αQP values are close to 1 for genes with 
µ < 0.1 and that there was a lack of dependence between αQP and µ for those genes. For 
NIH/3T3, the mean of the αQP for genes with µ < 0.1 is 1.1388, and both Kendall’s cor-
relation coefficient τ = 0.0644 ( p = 1.28E − 05 ) and Spearman’s correlation coefficient 
ρ = 0.1014 ( p = 4.084e − 06 ) indicate that there is no statistical dependence between 
αQP and µ for genes with µ < 0.1 . For PBMC 33k, the mean of the αQP for genes with 
µ < 0.1 is 1.3710, and the Kendall’s correlation coefficient τ = 0.1349 ( p < 2.2E − 16 ) 
and Spearman’s correlation coefficient ρ = 0.2035 ( p < 2.2E − 16 ) once again suggest-
ing that there is no significant statistical dependence between the αQP values and µ for 
genes with low mean expression levels.

To summarize, we observed that the counts for genes with low mean expression 
levels exhibit QP variance (see Appendix for a discussion on how the lack of depend-
ence between αQP and µ for genes with low mean expression levels manifests as a non-
decreasing relationship between their θ and µ ). It is important to highlight here that we 
observed this relationship not just in the biological datasets (NIH/3T3 and PBMC 33k) 
but also in the technical control data set (Svensson 1), suggesting that this relation-
ship is not biological in origin and can be understood more simply in terms of the fact 
that for genes with small counts the variance of those counts can barely exceed the vari-
ance expected under the Poisson distribution.
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Feature selection can be performed before normalization

Standard scRNA‑seq workflow is based on an assumption that reflects a confusion 

between the distinct objectives of identification of variable genes and differentially expressed 

genes

In the standard scRNA-seq workflow, identification of HVGs—genes that exhibit greater 
variability in counts compared to other features in the data set—is performed only after 
normalization. This particular sequence in the workflow is based on the assumption 
that unless the systematic biases are reduced or eliminated, we cannot reliably identify 
features that best capture the biological variability inherent in the data. A more care-
ful examination reveals that this assumption reflects a confusion between two funda-
mentally distinct objectives. The first objective— identification of HVGs - as mentioned 
above, is about identifying genes that exhibit higher variability of counts compared to 
other features in the data set; we expect that these genes capture most of the biological 
variability in the data set. The second objective—identification of differentially expressed 
(DE) genes—is about identifying genes that exhibit differences in their expression levels 
between distinct sets of cells. For identifying DE genes, it is indeed imperative that the 
systematic biases are reduced or eliminated in order to identify genes that truly reflect 
actual biological differences between the distinct groups of cells being compared. How-
ever, it is possible to identify HVGs without first accounting for the systematic biases 
through normalization since these biases owing to their systematic nature are expected 
to manifest as additional but consistent sources of variation for the counts of genes 
across cells. This is in fact the assumption underlying the normalization approaches that 
rely on estimation of cell-specific size factors to re-scale and adjust the observed counts.

We can state the expectation discussed above in terms of the QP dispersion coeffi-
cients. Suppose we have gene A and gene B with comparable mean expression levels 
( µA ≈ µB ) such that,

where α̃A
QP and α̃B

QP are the QP dispersion coefficients of gene A and gene B in the hypo-
thetical case where there is no systematic bias. Our expectation is that even in the pres-
ence of systematic biases, the relative magnitudes of the dispersion coefficients for the 
bias-affected counts will be such that,

where αA
QP and αB

QP are the respective QP dispersion coefficients obtained from the 
observed counts of genes A and B. Thus, the expectation is that genes that exhibit high 
variability in their counts due to underlying biological differences will exhibit high vari-
ability even in the presence of systematic biases. We can test whether this is a reason-
able expectation by introducing systematic biases into a given data set and then verifying 
whether the genes we identify as variable for the modified data set are consistent with 
the ones identified for the original data set. Before proceeding to perform such a test, 
however, we first need to lay down a method to identify HVGs.

α̃A
QP > α̃B

QP

αA
QP > αB

QP
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Feature selection method based on QP dispersion coefficients identifies HVGs and stable genes

As discussed earlier, distinguishing between measurement and biological processes by 
separately modeling their contributions to observed counts enables a better understand-
ing and interpretation of the observed counts [11]. It also provides a simple and straight-
forward basis for identifying and filtering out features that are relatively uninformative 
prior to any downstream analysis: if the measurement model sufficiently describes the 
observed counts for a given gene, then no meaningful biological inference can be drawn 
based on the counts of that gene. This is so since all the variation in the counts for that 
gene can be attributed to the measurement process itself, with negligible or no contri-
bution from any biological process. We call such genes whose counts are adequately 
described by the measurement model as biologically uninformative. Since a simple Pois-
son distribution suffices to explain measurement error, using the estimates for αQP we 
can easily identify genes that are likely to be biologically uninformative—genes with 
αQP ≤ 1 do not exhibit over-dispersion with respect to the Poisson measurement model 
and can be filtered out. 

While we can simply rely on the αQP to identify biologically uninformative genes, iden-
tification of HVGs based on just the magnitudes of αQP would result in a bias towards 
genes with higher mean expression levels (see Fig.  1B). In order to address this and 
ensure that there is no preferential selection of genes with higher mean expression lev-
els, we propose the following approach to shortlist HVGs:

• Group the genes into bins (default is 1000 bins) based on their mean expression lev-
els; each bin contains approximately the same number of genes with comparable 
mean expression levels

• Sort the genes within each bin into quantiles based on their αQP
• Obtain the αQP corresponding to the reference quantile within each bin (default ref-

erence is the 10th quantile)—we refer to this as αQP(Reference|Bin)
• Calculate αQP − αQP(Reference|Bin) for each gene - larger values indicate greater over-

dispersion

We illustrate the binning process involved in our feature selection method for Sven-
sson 1 (Fig. 2A). For ease of illustration we show 10 bins (see Appendix and Additional 
file  1: Fig. S13 for a discussion on how the number of bins impact the identification 
of HVGs), where each bin corresponds to a segment or region between the vertical 
dashed lines. Since Svensson 1 is a technical control data set, we don’t expect to 
see much variability in the expression levels of the genes, and indeed in Fig. 2C we can 
see that there are just two genes (spike-in transcripts ERCC-00074 and ERCC-00130) 
that exceed the threshold of 20 for αQP − αQP(Reference|Bin) (red horizontal dashed line). 
For PBMC 33k, in contrast, we observe 15 genes that exceed the threshold of 20 for 
αQP − αQP(Reference|Bin) (Fig. 2D). The threshold of 20 was picked simply to illustrate how 
the HVGs may be shortlisted. In practice, we can rank the genes based on the magni-
tudes of αQP − αQP(Reference|Bin) and shortlist the top 3000 genes. An important point to 
highlight here is that the shortlisted HVGs do not exclude genes with low mean expres-
sion—note the inset panel in the top left corner of Fig. 2D, where we show the histogram 
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based on the mean expression levels for the HVGs (darker shade) together with the his-
togram for all genes with αQP > 1 (lighter shade).

Aside from identifying variable genes, we can also shortlist genes that do not exhibit 
much variability in their counts. We refer to these genes as stable genes. Identification 
of such genes is very useful since we expect that the variability in the counts of these 
genes is primarily attributable to the measurement process and is not confounded by 
biological differences between the cells. Thus, we can rely on these genes to obtain 
more reliable estimates for the cell-specific size factors in order to reduce the impact 
of the differences in sampling depths. Based on our feature selection method, genes 

Fig. 2 Feature selection can be performed before normalization based on dispersion coefficients estimated 
using the observed counts. A Quasi-Poisson dispersion coefficient ( αQP ) vs mean ( µ ) log-log scatter plots 
for genes that exhibited over-dispersion with respect to the Poisson ( σ 2 > µ ) for the Svensson 1 technical 
control data set. Each dot represents a gene. The dashed gray vertical lines illustrate how the genes are 
binned based on their mean expression levels (in this figure, there are 10 bins). Genes within adjacent pairs 
of dashed vertical lines belong to the same bin. For each bin, the default choice of αQP(Reference|Bin) is the αQP 
corresponding to 10th quantile within the bin. B Violin-box plots showing the percentage match between 
the top 3000 highly variable genes (HVGs) identified by our feature selection method for the original 
(unsubsampled) and corresponding 100 subsampled datasets. The original 5 datasets (PBMC 33k, NIH/3T3 
cell line, Mouse cortex, Mouse lung, and PBMC r1) were obtained using different single-cell platforms—10X 
Chromium v1, 10X Chromium v3, DroNC-seq, Drop-seq, and inDrops respectively. The box/violin plots are 
colored according to the platforms. For all 5 datasets, more than 80% of the top 3000 HVGs shortlisted for 
the subsampled datasets matched the top 3000 HVGs of the original datasets. C αQP − αQP(Reference|Bin) 
vs mean ( µ ) linear-log scatter plot for genes that exhibited over-dispersion with respect to the Poisson 
( σ 2 > µ ) for the Svensson 1 data set. The dashed red horizontal line illustrates the threshold to shortlist HVGs. 
Genes with αQP − αQP(Reference|Bin) > 20 in this case are shortlisted as HVGs. On the other hand, genes with 
αQP − αQP(Reference|Bin) < 0 are shortlisted as stable genes. D αQP − αQP(Reference|Bin) vs mean ( µ ) linear-log 
scatter plot for genes that exhibited over-dispersion with respect to the Poisson ( σ 2 > µ ) for the PBMC 
33k data set. Labeled genes with αQP − αQP(Reference|Bin) > 20 are shortlisted as HVGs. On the other hand, 
genes with αQP − αQP(Reference|Bin) < 0 are shortlisted as stable genes (some labeled in figure). Inset in top 
left corner—light colored histogram corresponding to all genes with αQP > 1 , and dark colored histogram 
corresponding to the top 3000 HVGs. Note that the HVGs are shortlisted across the different expression levels 
with no preferential selection based on the mean expression level of the genes
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with αQP − αQP(Reference|Bin) < 0 are shortlisted as stable genes. For PBMC 33k, two of 
these genes (PFDN2 and RPL32) are labeled in Fig. 2D below the horizontal black line at 
αQP − αQP(Reference|Bin) = 0.

HVGs can be consistently identified despite the introduction of systematic biases

Having introduced the feature selection method, we can now test the expectation that 
the HVGs can be identified despite the presence of systematic biases. To perform the 
test, we picked 5 UMI counts datasets obtained from different platforms: PBMC 33k 
(10X Genomics Chromium v1), NIH/3T3 (10X Genomics Chromium v3), Mouse 
Cortex r1 (DroNC-seq) [8], Mouse Lung (Drop-seq) [25], and PBMC r1 (inDrops) 
[8]; r1 denotes replicate 1. For each of these datasets, we randomly picked 30% of the 
cells and subsampled the counts in those cells to a fraction of the original total count. 
The fractions were allowed to take one of the following values - 0.3, 0.4, 0.5, 0.6, 0.7 - and 
were picked randomly for each cell. We did this 100 times for each of the 5 datasets. 
Using our feature selection method, we shortlisted the top 3000 HVGs in each of the 
subsampled datasets and compared with the top 3000 HVGs in the respective original 
(unsubsampled) datasets to see how many of the top 3000 HVGs matched between the 
two. We observed that on average more than 80% of the top 3000 HVGs shortlisted for 
the subsampled datasets matched the top 3000 HVGs obtained from the original data-
sets across the different platforms and tissue types (Fig. 2B). Thus, despite the introduc-
tion of random systematic biases there is good agreement between the HVGs obtained 
for the original datasets and the HVGs obtained for corresponding datasets with the 
introduced biases. This supports our assertion that feature selection can be performed 
prior to normalization.

Normalization can be performed using a residuals‑based approach that includes variance 

stabilization

Cell‑specific size factors should be estimated using stable genes

The basic objective of normalization is to reduce systematic biases introduced due to 
technical or potentially uninteresting biological sources (such as cell size, cell cycle state) 
before further downstream analyses such as clustering and differential expression. The 
most common approach to reduce such systematic biases is to scale the counts within 
each cell by cell-specific size factors [13, 26]. The simplest estimates are given by,

where Xgc is the observed count of gene g in cell c, and C is the total number of cells. The 
numerator in Eq. (6) is the total UMI count in cell c ( Nc ), while the denominator is the 
mean of the total counts of the cells.

There is an intimate link between the estimates of size factors given by Eq. (6) and the 
estimates for expected means ( ̂µgc ) under the assumption that the counts are Poisson 
distributed. The size factors as given by Eq. (6) should be viewed as estimates under the 
approximation that the counts are Poisson distributed (see Appendix). Keeping this in 
mind, we argue that it is most appropriate to calculate the size factors by relying on the 

(6)SFc =
∑

g Xgc

(
∑

c

∑

g Xgc)/C
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stable genes identified using our feature selection method. The counts of these genes do 
not exhibit significant over-dispersion compared to the Poisson, and as discussed ear-
lier, we expect that the primary source of the variability of their counts is the measure-
ment process which is what we are trying to account for with the help of the size factors. 
Therefore, we propose the following refinement to the estimation of the size factors,

where Stable g refers to the set of stable genes.

Limitations of widely used normalization methods

In the standard scRNA-seq workflow, normalization and feature selection are typically 
followed by dimensionality reduction using principal components analysis (PCA). An 
important step prior to PCA is to ensure variance stabilization by transforming the size 
factor adjusted counts using the acosh, log, sqrt functions etc. This ensures that genes 
with higher expression levels (and as a consequence larger variance) do not contribute 
disproportionately to the overall variance as evaluated through PCA. The log-based vari-
ance stabilization transformation (hereafter referred to as logSF) is the most popular 
method according to which the transformed counts are given by,

where the pseudocount of 1 ensures that the log transformation works with zero counts, 
and in fact returns zeros for these counts even after transformation. However, the 
logSF normalization is not very effective since the total counts of the cells ( Nc ) shows 
up as a primary source of variation in PCA even after normalization (see Additional 
file 1: Fig. S15). This can be traced to the fact that under this transformation, the zeros 
remain zeros while only the non-zero counts are scaled according to the size factors. 
Systematic differences in the number of zero counts between the cells can therefore be 
identified as a major source of variation even after transformation [27, 28].

Residuals-based approaches proposed by Hafemeister et  al. [20], Townes et  al. [27], 
and more recently by Lause et al. [21] provide alternatives that lead to much more effec-
tive normalization (see Additional file 1: Fig. S16). The Pearson residuals under the NB 
model are approximately given by,

where Xgc is the observed count of gene g in cell c, µ̂gc is the estimated mean of gene g in 
cell c, and α̂g is the estimated over-dispersion parameter for gene g.

The increased effectiveness of normalization with the Pearson residuals can be attrib-
uted to µ̂gc taking into account the systematic differences in the total counts between 
the cells. Unlike the case with logSF normalization where zero counts are transformed 

(7)SFc =
∑

g∈Stable g Xgc
(

∑

c

∑

g∈Stable g Xgc

)

/C

X ′
gc = log

(

Xgc

SFc
+ 1

)

(8)rgc =
Xgc − µ̂gc

√

µ̂gc + α̂g µ̂2
gc
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back to zeros, the zero counts are instead transformed to negative residual values whose 
magnitudes vary depending on the total counts of the respective cells.

The rationale underlying the residuals-based approach is that the null model should 
correspond to the measurement process so that the residuals provide estimates for 
deviations away from the expectations under the measurement model. However, the 
sparsity and the skewed nature of the counts distributions pose significant challenges to 
achieving effective variance stabilization with the help of residuals-based methods. The 
lack of variance stabilization becomes especially noticeable for genes that are robustly 
expressed in only a subset of cells while showing negligible expression in the rest of the 
cells (such genes would be considered as markers of the specific cell sub-populations 
in which they are expressed) [22] (see Appendix for more discussion on this). Further-
more, for genes with very low mean expression levels (and as a consequence extremely 
small estimated standard deviations) even cells with just 1 or 2 UMI counts sometimes 
end up with unusually large residual values that are then addressed through heuristic 
approaches [20, 21, 29].

Novel residuals‑based normalization that includes variance stabilization

Keeping in mind the limitations of the widely used normalization methods discussed 
above, we propose a conceptually simple residuals-based normalization method that 
reduces the influence of systematic biases by relying on size factors estimated using sta-
ble genes while simultaneously ensuring variance stabilization by explicitly relying on a 
variance stabilization transformation.

In order to motivate our approach, we begin by pointing out that z-scores are simply 
Pearson residuals corresponding to the normal distribution. Assuming counts, Ygc , that 
are normally distributed,

the MLEs for µg and σ 2
g  are given by, µ̂g = (

∑

c Ygc)/C and σ̂ 2
g = (

∑

c(Ygc − µ̂g )
2)/C , 

respectively. The corresponding Pearson residuals-based on these estimates are given by,

which as already noted above correspond to z-scores (for simplicity, we assumed that 
there are no differences in total counts between the cells).

In order to compute z-scores for our data, we first need to apply a variance stabili-
zation transformation to the raw counts ( Xgc ) to bring their distribution closer to the 
normal distribution. The variance stabilization transformation can be performed using 
monotonic non-linear functions, g(X), such that the transformed counts are given by,

To compute the residuals, we need estimates for the means and variances of Y based 
on estimates for means and variances of X. We can arrive at approximations for both 
using a Taylor series expansion around X = µ (see Appendix). In particular for 
g(X) = log(X + 1) , the first order approximations of the mean and variance are given by 

Ygc ∼ N (µg , σ
2
g )

(9)rgc =
Ygc − µ̂g

σ̂g
= zgc

Y = g(X)
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(the first-order approximation to the variance of a transformed random variable is also 
known as the Delta method attributed to R. A. Dorfman [30]),

At this point we need estimates for the means ( µ̂gc ) and the variances ( ̂σ 2
gc ) that account 

for the systematic biases. Note, that the usual estimate for the mean expression level of 
gene g based on the observed counts ( µg =

∑

c Xgc

C  ) includes biological as well as techni-
cal effects. However, we are interested in inferring the mean expression level and vari-
ance that is primarily reflective of the underlying biology. This can be accomplished by 
relying on the size factors (Eq. (7)) to adjust the observed counts of the respective cells 
and then obtaining the estimates for mean and variance based on the scaled counts. 
Thus,

Using the estimates for mean and variance for gene g, we get the following estimates for 
mean and variance of gene g in each cell c,

With these estimated means ( ̂µgc ) and variances ( ̂σ 2
gc ) that account for the systematic 

biases, from Eqs. (10) and (11) we get,

and

Based on these first-order approximations for means and variances under the log(X + 1) 
transformation, we now define our z-scores based normalization,

This log-stabilized z-score transformation is the default normalization method in our 
R package called Piccolo (see Appendix for a discussion on other variance stabiliza-
tion approaches implemented in Piccolo). Hereafter, we refer to it as the Piccolo 
normalization.

(10)E[log(X + 1)] ≈ log(µ+ 1)

(11)Var[log(X + 1)] ≈ 1

(µ+ 1)2
σ 2

µ̃g =
1

C

∑

c
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SFc

σ̃ 2
g = 1

C − 1

∑

c

(
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SFc
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2

(12)µ̂gc =SFcµ̃g

(13)σ̂ 2
gc =SF2

c σ̃
2
g

(14)E[log(Xgc + 1)] ≈ log(µ̂gc + 1)

(15)Var[log(Xgc + 1)] ≈ 1

(µ̂gc + 1)2
σ̂ 2
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(16)Z′
gc =

log(Xgc + 1)− log(µ̂gc + 1)

σ̂gc/(µ̂gc + 1)
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First‑order approximations for estimates of mean and variance under variance stabilization 

transformation are valid for majority of the genes

The first-order approximations for the mean and variance of the counts under the vari-
ance stabilization transformation in our residuals-based normalization are based on the 
assumption that the transformed values (raw counts transformed by the variance sta-
bilizing transformation) vary linearly over the range of raw counts close to the mean 
expression level. We tested the validity of this assumption for each gene by fitting a 
straight line (using linear regression) through the log-transformed values corresponding 
to those raw counts that fall within one standard deviation away from the mean expres-
sion value. We relied on the resultant adjusted R2 (coefficient of determination) values 
to evaluate the validity of the assumption since values of adjusted R2 close to 1 indicate 
that the transformed values can be approximated to lie along a straight line over the cor-
responding range of raw counts. 

We found that for all UMI counts datasets included in our study, more than 85% of the 
genes had adjusted R2 values greater than 0.8 (see Additional file 1: Table 1 and Fig. S18). 
Thus, for UMI counts data obtained using high-throughput protocols the first-order 
approximation utilized in our normalization method is valid, particularly for genes with 
small counts.

Piccolo normalization reduces the impact of sampling depth differences between cells 

while simultaneously ensuring variance stabilization

As stated earlier, the objective of normalization is to reduce or eliminate the system-
atic biases in counts between cells that are not reflective of actual biological differences. 
Since technical control data do not have any biological source of variation, differences 
in sampling depths are expected to be the major source of variation between the cells 
(droplets). In terms of PCA, this would translate to sampling depth showing up as a 
major contributor in one of the first few principal components (PCs).

In Fig. 3A, we show the scatter plots of cells based on their coordinates along PC1 and 
PC2. The colors of the dots reflect the size factors of the respective cells, with brighter 
shades (yellow) indicating larger size factors. Recall that larger size factors correspond to 
cells with larger sampling depths across the stable genes (see Eq. (7)). In order to evalu-
ate whether size factors correlate with the first few PCs, we calculated the canonical cor-
relation coefficient ( ρ ) [31] between the size factors and the top 5 PCs; ρ close to 1 would 
indicate strong correlation between the size factors and one of the top 5 PCs. For Sven-
sson 1 raw counts (left panel Fig. 3A), we can clearly observe a color gradient along 
PC1, with cells with larger size factors lying predominantly on the left and cells with 
smaller size factors predominantly on the right. Thus for raw counts, sampling depth 
differences indeed show up as a major source of variation between the cells. The value of 
the canonical correlation coefficient - ρ = 0.97 - supports this further.

Next, we applied the Piccolo normalization to Svensson 1 (right panel in Fig. 3A) 
and confirmed that the sampling depth differences are no longer identified as a major 
source of variation by PCA. In fact, not only do we not observe a color gradient along 
PC1 or PC2, but even the canonical correlation coefficient between the size factors and 
the top 5 PCs is significantly reduced to ρ = 0.3 which suggests a weak correlation. Sim-
ilar observations were made for another technical control data set [32] (see Fig. S17). 
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These results demonstrate that the Piccolo normalization is able to reduce the impact 
of systematic differences in sampling depths.

To examine the effectiveness of variance stabilization, we looked at the variances of 
the residuals after applying normalization to the raw counts. We compared Piccolo 
with two other residuals-based normalization methods - analytic Pearson [21](Ana-
lytic Pearson), and the regularized NB regression approach in scTransform [20, 
29] (SCTransform v2). For reference, we also looked at the simple logSF based nor-
malization approach implemented in Scran [12] (Scran logSF). Note, Scran relies on 

Fig. 3 Piccolo normalization reduces sampling depth differences between cells and also ensures effective 
variance stabilization. A 2-dimensional (2D) scatter plots based on the first 2 PCs of the Svensson 1 technical 
control data set. Each dot is a cell and is colored according to the size factors; brighter shades (yellow) 
correspond to larger size factors and darker shades (deep blue) correspond to smaller size factors. The left 
panel shows the 2D PC scatter plot for the raw counts, while the right panel shows the 2D PC scatter plot 
for the z-scores (residuals) obtained from Piccolo normalization. The coefficient ( ρ ) in the top-right corner of 
the panels shows the canonical correlation coefficient between the size factors and the top 5 PCs. Smaller 
values of ρ indicate that the impact of the sampling depth differences has been reduced more effectively by 
the normalization. Piccolo normalization reduces the impact of sampling depth on the overall variation as 
evaluated through PCA. B Variance vs mean ( µ ) linear-log scatter plots for the top 3000 HVGs of the PBMC 
33k data set after applying respective normalizations - Piccolo (top-left panel), Analytic Pearson residuals 
(top-right), Scran logSF (bottom-left), and SCTransform v2 (bottom-right). The y-axis scale was limited to a 
maximum value of 5 to aid visual comparison; genes with variance greater than 5 were clipped to have the 
maximum value of 5. The residuals obtained using Piccolo exhibit variances that do not vary much beyond 1 
unlike the the residuals obtained with Analytic Pearson and SCTransform v2
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pooling of cells to arrive at estimates for the cell-specific size factors that are then used 
for the logSF normalization.

For the PBMC 33k data set, we first used our feature selection method to shortlist the 
top 3000 HVGs, and then applied the Piccolo normalization to compute the residu-
als corresponding to the raw counts of these HVGs. The Analytic Pearson residu-
als were also computed for these top 3000 HVGs identified with our feature selection 
method. This enables a direct comparison between the two methods since the residu-
als were calculated using the same set of features. In contrast, for SCTransform v2 
and Scran logSF, the top 3000 HVGs were shortlisted using their own respective 
approaches. For each of the normalization methods, we then calculated the variances of 
the residuals. These variances are shown in the variance-mean linear-log plots in Fig. 3B. 
It is apparent that the residuals obtained from Piccolo (Fig. 3B, top-left panel) exhibit 
much lesser scatter compared to the other two residuals-based approaches (Fig.  3B, 
top-right panel and bottom-right panel). In Fig. 3B bottom-left panel, we also show the 
variance of the log-transformed normalized values obtained with Scran logSF for 
reference. We note that the log-transformed values also exhibit much lesser deviation 
from 1 compared to the raw counts based residuals methods. Note, given the heteroske-
dastic nature of our counts data the increase in the variances of the transformed val-
ues (obtained from log-transformation based normalization or our variance stabilized 
residuals based normalization) as the mean expression levels increase is not eliminated. 
However, compared to the raw counts this dependence is reduced for the transformed 
values which plays an important role when we employ PCA downstream.

Piccolo feature selection and normalization lead to concrete improvements in downstream 

cell clustering

Residuals‑based normalization which includes a variance stabilization transformation 

preserves cell‑cell similarities between cells that share cell‑type identities

Normalization is typically followed by dimensionality reduction and unsupervised clus-
tering to identify groups of cells with similar expression profiles. Depending on the 
biological system, the groups of cells may correspond to distinct cell-types, or states. 
The identification of such groups is a pivotal step since it informs crucial downstream 
analyses such as differential expression and marker genes identification. The most popu-
lar scRNA-seq workflows (for example, Seurat [15–18] and Scanpy [19]) employ PCA 
to perform dimensionality reduction. Based on the PCs, k-nearest neighbour (k-NN) 
graphs are generated (with cells as nodes) in which communities of cells that are most 
similar to each other are detected using graph-partitioning algorithms such as Leiden 
[33] and Louvain [34].

To investigate how well our normalization method preserves cell-cell similarities 
between cells that share cell-type identities, we began by examining a truth-known data 
set (data set in which the cell-type identities of the cells are already known) prepared 
by Duo et  al. [35] using cells purified with cell-type specific isolation kits by Zheng 
et al. [36]. Briefly, they prepared the data set by shortlisting purified cells belonging to 8 
PBMC cell-types - B-cells, CD14 monocytes, CD56 NK cells, CD4 T-helper cells, mem-
ory T-cells, naive T-cells, naive cytotoxic T-cells, and regulatory T-cells - such that there 
were roughly equal numbers of cells corresponding to each cell-type in the final data set 
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(between 400-600 cells per cell-type). We refer to this data set as Zheng Mix 8eq. 
Since Zheng Mix 8eq consists of a mix of well-separated cell-types (for instance, 
B-cells vs T-cells) and similar cell-types (different types of T-cells), it provides a simple 
yet reasonably challenging scenario for evaluating how well cells belonging to the dif-
ferent cell-types can be distinguished after normalizing the counts with the respective 
normalization methods.

We used Piccolo to shortlist the top 3000 HVGs and applied our normalization 
to obtain the residuals for those HVGs. For Analytic Pearson, the residuals were 
computed for the top 3000 HVGs shortlisted using our feature selection method, while 
for Scran logSF and SCTransform v2 the transformed counts and residuals were 
respectively computed for the top 3000 HVGs shortlisted using their own methods. Sub-
sequently, we performed PCA and shortlisted the first 50 PCs. We then used a simple 
k-NN based classification approach based on the PCs to predict cell-type labels for each 
cell by relying on the known cell-type labels (see Methods). Finally, we evaluated the 
extent of the agreement between the predicted labels and the known labels by calculat-
ing the following clustering metrics: the Macro F1 score, the adjusted Rand index (ARI), 
and the adjusted mutual information (AMI).

In Fig. 4A, we show the Uniform Manifold Approximation and Projection (UMAP) [37] 
plots for Zheng Mix 8eq with Piccolo normalization (top-left panel), Analytic 
Pearson (top-right panel), Scran logSF (bottom-left panel), and SCTransform 
v2 (bottom-right panel). In the plots, each dot represents a cell and is colored according 
to the known cell-type labels (legend provided at the bottom of the 4 panels). Qualita-
tively, it is apparent from the UMAP plots that the B-cells, CD56 NK cells, and CD14 
monocytes can easily be distinguished compared to the rest. As expected, it’s more dif-
ficult to distinguish between the different kinds of T-cells, with memory and naive cyto-
toxic T-cells being the only ones that are comparatively easier to distinguish, particularly 
with the residuals-based approaches. The values of ARI, AMI, and Macro F1 quantifying 
the extent of the agreement between the predicted and the known cell labels are listed in 
the bottom-right corner of the panels for the respective normalization methods. While 
there isn’t a significant difference in the metrics between the 4 normalization methods, 
we do observe the highest values with Piccolo. 

However, these observations are not sufficient to argue for or against any of the meth-
ods. For a more robust comparison between the normalization methods, we created 100 
subsets of Zheng Mix 8eq by randomly picking 50% of the cells in the original data set 
100 times. For each of the 100 subsets, we used the same approach as discussed above 
for the 4 normalization methods and computed the respective ARI, AMI, and Macro 
F1 scores for the predicted cell labels based on the kNN-based classification approach. 
In Fig. 4B, we show the violin-box plots for the ARI, AMI, and Macro F1 scores for the 
100 subsets. The colors correspond to the respective normalization methods used (red 
corresponds to Piccolo). We can clearly see that for all 3 clustering metrics, the high-
est values were consistently obtained with Piccolo normalization, reflecting that the 
best agreement between predicted and known labels is achieved using our feature selec-
tion and normalization method. For each clustering metric, we used paired Wilcoxon 
tests to quantify whether the differences between the values of the metric obtained with 
Piccolo normalization and other normalization methods were statistically significant 
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(see Methods). For all 3 metrics, the values obtained with Piccolo normalization were 
found to be consistently higher than those obtained with other methods (all paired Wil-
coxon test p-values were found to be highly significant - p < 1E − 11 , see Additional 
file 1: Table 2).

For our analyses on Zheng Mix 8eq so far, while Piccolo and Analytic 
Pearson normalization were applied on the same set of HVGs, the sets of HVGs for 
Scran logSF and SCTransform v2 were different. Thus, some of the differences 
in the results are attributable to the differences in the sets of HVGs. To compare just 
the normalization methods, we used the top 3000 HVGs shortlisted by Scran logSF 
and SCTransform v2 respectively, and computed the residuals using Piccolo 

Fig. 4 Piccolo normalization preserves cell-cell similarities between cells sharing cell-type identities. A 
2D UMAP plots after applying respective normalizations for the top 3000 HVGs of the Zheng Mix 8eq data 
set (consists of 3994 cells with roughly equal numbers of cells belonging to 8 distinct PBMC cell-types). 
Dots represent cells and are colored using the known cell-type labels (legend at the bottom of the panel). 
Clustering metrics - ARI, AMI, Macro F1 - based on comparisons between predicted cell labels (obtained using 
a kNN-based classification approach) and known cell labels are listed in the bottom-right corner in each 
panel. B Violin-box plots of the clustering metrics obtained for 100 subsets of the Zheng Mix 8eq data set. The 
colors correspond to the respective normalization methods used. For all the 100 subsets, the highest values 
of the metrics was observed with Piccolo (red) (seeAdditional file 1: Table 2). C Violin-box plots comparing the 
clustering metrics obtained for 100 subsets of the Zheng Mix 8eq data set with Piccolo normalization used 
with HVGs shortlisted obtained from other methods; Piccolo (Scran LogSF) and Piccolo (SCTransform v2) refer 
to the methods where the top 3000 HVGs were obtained using Scran logSF and SCTransform v2 respectively, 
and then the normalization was performed on those HVGs using Piccolo. Piccolo yielded higher values of 
the clustering metrics despite relying on HVGs shortlisted by other methods (see Additional file 1: Table 3). D 
Comparisons of overlap between the k-NN inferred separately on two halves of data split by genes. Relative 
k-NN overlap was calculated by dividing the mean overlap per data set by its average across all normalization 
methods. Colored dots indicate averages across the 100 splits (small grey dots) per normalization method 
- their colors are consistent with the colors in panel B. This panel is similar to Fig. 2a in [22] and highlights that 
Piccolo (red) surpasses the other methods in fulfilling the necessary condition of k-NN consistency
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normalization for these respective HVGs. Piccolo (Scran logSF) denotes the 
method wherein the HVGs were obtained from Scran logSF and then the Piccolo 
normalization was performed for those HVGs. Similarly, Piccolo (SCTransform 
v2) denotes the method wherein the HVGs were obtained from SCTransform v2 
and then the Piccolo normalization was performed for those HVGs. By applying these 
methods, we arrived at clustering metrics for the 100 subsets which are shown using the 
violin-box plots in Fig. 4C. The colors correspond to the feature selection and normali-
zation methods used. We used paired Wilcoxon tests to compare the values of the met-
rics obtained with the normalization method that was used to shortlist the HVGs, with 
values of the metrics obtained with Piccolo normalization using those HVGs. For ARI 
and Macro F1, the values obtained with Piccolo normalization (Piccolo (Scran 
logSF) and Piccolo (SCTransform v2)) were consistently higher than the val-
ues obtained with the respective normalization methods with which the HVGs were 
shortlisted (paired Wilcoxon test p < 1E − 09 ). For AMI, while the values with Pic-
colo (Scran logSF) were consistently higher than with Scran logSF (paired 
Wilcoxon test p < 1E − 17 ), the values obtained with Piccolo (SCTransform 

v2) were not as significantly high compared to the ones obtained with SCTransform 
v2 (paired Wilcoxon test p < 0.06 ) (see Additional file 1: Table 3). Overall, it is clear that 
even with other HVGs, Piccolo normalization is better at preserving cell-cell similari-
ties between cells of the same cell-type compared to the other normalization methods. 
Moreover, from Fig. 4C what is most striking is that the values of the clustering met-
rics obtained using our feature selection and normalization are the highest overall (red 
violin-box plot corresponds to Piccolo). This clearly suggests that not only is the per-
formance of Piccolo normalization consistently better than the other normalization 
approaches (assessed with the aid of the clustering metrics), but even our feature selec-
tion method is effective at shortlisting HVGs that better inform the differences between 
cells with distinct cell-type identities.

Piccolo maintains consistency of k‑nearest neighbors ‑ a necessity for ensuring robustness 

of downstream analyses involving nearest neighbor graphs

In a recent article comparing different transformations for scRNA-seq data, Ahlmann-
Eltze and Huber highlighted the k-nearest neighbor (k-NN) graph as a fundamental 
data structure which is used to infer cell-types, states, trajectories etc [22]; to remind, 
the k-NN graph in scRNA-seq analyses is obtained by relying on a lower-dimensional 
representation of the cells using PCA, and subsequently shortlisting the k-NNs of each 
cell based on Euclidean distances in the PC space (typically k is 10). They pointed out 
that the consistency of the k-NNs is a necessary (albeit not sufficient) condition for the 
robustness of downstream analyses that rely on k-NN graphs. They evaluated k-NN 
consistency by evenly splitting each data set into two halves based on the genes, such 
that the two resultant subsets contained mutually exclusive sets of genes (they referred 
to them as gene subset 1 and gene subset 2, see Fig. 2a in [22]). They then applied the 
respective transformation approaches to the gene subset 1 and gene subset 2 datasets 
separately and obtained k-NNs for each cell corresponding to each of the subsets. Using 
these 2 sets of k-NN cells for each cell, they performed a pairwise comparison to deter-
mine the extent of overlap between them and thereby assess consistency.
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We performed a similar analysis for the Zheng Mix 8eq (10X), Mouse Cortex 
r1 (DroNC-seq), and PBMC r1 (inDrops) datasets (see Methods). While Ahlmann-
Eltze and Huber only considered 10X derived UMI counts datasets, we included data-
sets obtained from other droplet-based high-throughput technologies to showcase the 
performance of Piccolo in preserving k-NN consistency. We performed the gene-based 
splits for each data set 100 times. k-NN overlaps were obtained per cell and then aver-
aged across all the cells to arrive at one mean estimate per iteration. Relative k-NN over-
lap values were calculated by dividing these mean NN overlap values by their average 
across all iterations for all 4 normalization methods. Figure 4D shows the resultant val-
ues of the relative k-NN overlaps for each normalization method for the 100 splits (small 
grey dots). The large colored dots indicate the averages across the 100 splits per normali-
zation method; colors of the dots were kept consistent with the colors used in panel B 
for each of the methods. Unlike Fig. 2a in [22] where the authors aggregated the relative 
k-NN overlap values across the datasets, we show the relative k-NN overlaps for each 
data set separately to highlight that Piccolo (red) easily surpasses the other methods in 
fulfilling the necessary condition of k-NN consistency despite basic differences in these 
droplet-based high-throughput technologies (all paired Wilcoxon test p-values between 
Piccolo and other methods were less than 2.2E − 10 ). Based on these results, we con-
clude that our proposed normalization method ensures the consistency of k-NNs and 
will therefore enable more robust inferences to be drawn from downstream analyses that 
rely on k-NN graphs.

Piccolo enables identification of groups containing few cells as well as groups with cells 

that express fewer differentially expressed genes

To further investigate the performance of Piccolo, we utilized 3 simulation tools—
SPARSim [38], Splat [39], and SCRIP [40]— to simulate counts based on estimation of 
parameters derived from real UMI counts datasets. We selected these 3 tools since they 
enable de novo simulations of single cell counts wherein we can specify both the number 
of groups of cells, as well as the extent of differential expression between the groups. In 
a recent benchmarking study of scRNA-seq simulation methods [41], SPARSim was in 
fact found to rank among the best in terms of overall performance (see Fig. 2 in [41]). 
In order to generate simulated counts for user-specified number of groups, all 3 meth-
ods require a homogeneous cell population as input to estimate the parameters for sim-
ulation. Keeping this in mind, we prepared a data set consisting exclusively of B cells 
obtained from the Zheng Mix 8eq data set. In addition, we used the NIH/3T3 and 
HEK293T datasets since the cells in these two datasets are derived from cell lines and 
therefore constitute homogeneous cell populations.

We explored the following two simple simulation scenarios to benchmark and com-
pare the normalization methods:

• Scenario 1: 6 groups of cells with different number of cells per group, while keep-
ing the extent of differential expression between the groups roughly the same. The 
objective behind this simulation was to examine whether the groups with the fewest 
cells can be reliably identified after applying the different normalization methods.
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• Scenario 2: 6 groups of cells with the same number of cells per group, but 
with different numbers of differentially expressed genes in each group. The objec-
tive behind this simulation was to examine how well we can distinguish between 
cells belonging to distinct groups, especially the ones that have fewer differentially 
expressed genes.

For each scenario and for each of the 3 reference datasets, we simulated 50 datasets 
using the 3 simulation tools respectively (see Methods for details). This gave us 450 sim-
ulated counts datasets for each scenario discussed above (900 in total). For each data set, 
we applied the 4 normalization methods and applied PCA to the residuals/transformed 
counts to shortlist the first 50 PCs. This was followed by the application of our k-NN 
based classification approach to predict the labels for each cell based on the known cell-
group labels. We then quantified the agreement between the predicted labels and the 
known labels by estimating ARI, AMI, and Macro F1 values. In panel A in Fig.  5, we 
show the violin-box plots for the 3 clustering metrics for the simulated datasets gener-
ated for Scenario 1 (see Additional file 1: Fig. S22 for the corresponding panels for 
Scenario 2). The colors correspond to the normalization methods used. The pan-
els in Fig. 5A are arranged such that the rows correspond to the reference datasets and 
the columns correspond to the simulation tool that was used to simulate the 50 data-
sets. We used paired Wilcoxon tests to compare the values of the metrics obtained with 
other normalization methods with those obtained after applying Piccolo. The results 
are summarized in Additional file 1: Tables 4, 5, 6, 7, 8 and 9. Overall, we observed that 
regardless of the data set or the simulation tool used to generate the simulated counts, 
the clustering metrics yielded after applying Piccolo (red) were consistently among 
the highest. Only for the simulated counts datasets generated by SPARSim for Sce-
nario 2 based on the NIH/3T3 and HEK293T datasets were the clustering metrics 
obtained with Scran LogSF marginally but consistently higher (see Additional file 1: 
Fig. S22 and Table 5). In stark contrast, for the simulated counts datasets generated by 
Splat for both Scenario 1 and Scenario 2 based on the NIH/3T3 and HEK293T 
datasets the clustering metrics obtained with Scran LogSF were consistently the low-
est, while with Piccolo we continued to observe the highest values.

In order to evaluate how well the methods enabled the identification of rarer cell pop-
ulations (Group 6 in Scenario 1), as well as groups of cells with fewer differentially 
expressed genes (Group 6 in Scenario 2), we aggregated the group-wise F1 scores 
across all the simulated datasets for each scenario. Panels B and C show the heatmaps 
of the mean F1 scores per group for Scenario 1 and Scenario 2 respectively. The 
tiles of the heatmap have been colored based on the values of the F1 scores, with brighter 
shades (yellow) indicating larger values (greater agreement between the predicted and 
the known group labels), and darker shades (dark blue) indicating smaller values (less 
agreement between the predicted and the known group labels). For both scenarios, the 
highest mean F1 scores for all the groups were obtained after using Piccolo. Note in 
particular, the differences between the mean F1 scores for Group 6 for Scenario 1. 
The fact that these improvements are so noticeable after aggregating across 450 data-
sets underscores the concrete improvements in cell-cell grouping enabled by our feature 
selection and normalization method.
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The consistency with which we observed higher values of the clustering metrics with 
Piccolo becomes all the more striking when we take into account the differences in 
the nature of the counts data generated by the different simulation frameworks. It is 
well understood that all simulation frameworks have limitations, and cannot faithfully 
capture all the attributes of real datasets [41]. Overall, SPARSim generated counts that 
appeared to closely follow the expected mean-variance relationship (see σ 2 vs. µ log-log 
and αQP vs. µ log-log plots in Additional file 1: Figs. S4, S5 and S6). SCRIP generated 

Fig. 5 Piccolo enables identification of groups containing fewer cells as well as groups of cells with fewer 
differentially expressed genes. A Violin-box plots of the clustering metrics—ARI, AMI, Macro F1—obtained for 
simulated counts data generated for Scenario 1 based on parameters derived from 3 different real datasets 
(each row corresponds to one data set) and 3 different simulation tools (each column corresponds to one 
simulation tool). The colors correspond to the respective normalization methods used. For most simulated 
counts datasets, the highest values of the metrics were observed with Piccolo (red). B Heatmap showing 
the mean F1 scores per group aggregated over all the simulated counts data for Scenario 1 for each of the 
normalization methods. The tiles of the heatmap are colored according to the mean F1 scores with larger 
scores corresponding to brighter shades (yellow), and lower scores corresponding to darker shades (deep 
blue). Piccolo has the highest mean F1 scores for all 6 groups, with the improvement especially notable for 
Group 6 (group with fewest cells). C Same as panel B but for Scenario 2 (see Additional file 1: Fig. S22). Piccolo 
has the highest mean F1 scores for all 6 groups. Note, colors are scaled differently in panels B and C to bring 
out the differences between the mean F1 scores in the respective simulation scenarios
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simulated counts data exhibited the most unusual mean-variance behavior, especially for 
genes with larger µ (see Additional file 1: Figs. S10, S11 and S12). This was surprising 
considering that it was proposed as an improvement over the popular Splat framework. 
Given that our normalization method relies on first-order approximations for the mean 
and variance of the log-transformed counts, we expected that such differences in the 
nature of the counts would lead to significant variations in the performance of Piccolo 
and potentially lead to poor results. However, as demonstrated with the aid of these sets 
of simulations the method is robust to such differences as long as they don’t deviate too 
significantly from the expected behavior for counts usually obtained from high-through-
put protocols.

In summary, with the help of Piccolo we observed concrete improvements in the 
clustering outputs, both in terms of identification of rarer cell groups as well as groups 
of cells that expressed fewer DE genes. The simulation scenarios were deliberately kept 
simple in order to facilitate a more straightforward comparison and interpretation. 
When we factor in the differences in the nature of counts generated by the different 
simulation tools as well as the fact that the counts were generated based on parameters 
derived from 3 independent datasets, the robustness of the improvements enabled by 
Piccolo become all the more compelling.

Discussion
We began our investigation into the nature of UMI counts by examining the mean-var-
iance relationships of the observed counts for the genes and showed that for genes with 
small counts the variance of the counts can be approximated quite well by the quasi-
Poisson variance. We pointed out that this quasi-Poisson nature of the variance simply 
reflects the fact that the counts for the respective genes are small in most cells. We fol-
lowed this by examining and questioning the assumption underlying typical scRNA-seq 
workflows. In a typical scRNA-seq workflow, feature selection is preceded by normali-
zation. Implicit in this sequence of steps is the assumption that features which exhibit 
high biological variability can be identified only after taking into account the systematic 
technical biases. We pointed out that this assumption reflects a confusion between the 
distinct objectives of identification of the differentially expressed genes, and the HVGs. 
While it is imperative that the counts be normalized to account for the systematic biases 
prior to a differential expression analysis, we showed that in fact it is possible to iden-
tify HVGs based on just the observed counts. We proposed a simple approach for fea-
ture selection that relies on quasi-Poisson dispersion coefficients estimated from the 
observed counts using a regression-based method. A key advantage with assessing the 
overall variability of counts for each gene prior to normalization is the ability to identify 
genes whose counts do not vary significantly across the cells. We refer to these genes as 
stable genes. We posited that the variability of counts for such stable genes is primarily 
reflective of the systematic biases (such as sampling depth differences) and can more 
reliably inform the estimation of size factors for each cell. Based on these observations, 
we propose a revision of the scRNA-seq workflow in which feature selection precedes, 
and in fact informs normalization (see Fig. 6).

Before proceeding to discuss the salient aspects of our revised workflow and the nor-
malization method proposed in this paper, it will be helpful to summarize and highlight 
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some key aspects of the existing methods. In a recent article comparing different trans-
formations for scRNA-seq data, Ahlmann-Eltze and Huber showed that the simple 
logSF normalization outperformed the residuals-based normalization methods par-
ticularly in ensuring consistency of the k-nearest neighbors [22]; consistency was eval-
uated by evenly splitting the data into two halves such that the two subsets contained 
mutually exclusive sets of genes, and inquiring whether the cells shared the same sets 
of neighbouring cells between the split subsets (nearest neighbour cells were identi-
fied based on Euclidean distances between the cells in the PC space). This consistency 
is primarily attributable to the variance stabilization ensured by the log-transformation. 
However, as pointed out earlier, a significant disadvantage of the logSF normalization 
is that it is not very effective at reducing the sampling depth differences between the 
cells (Additional file 1: Fig. S15). In contrast, the residuals-based methods reduce sam-
pling-depth differences between the cells much more effectively (Additional file 1: Fig. 
S16). However, a drawback of the residuals-based approaches is that they are unable to 
effectively reduce and stabilize the variances, particularly for marker genes (see Appen-
dix and [22]).

Keeping in mind the respective advantages and disadvantages of the logSF nor-
malization and the residuals-based methods described above, we proposed a residuals-
based (z-scores) based normalization method which includes a variance stabilization 

Feature Selection
(HVGs)

Counts

Dimensionality
Reduction (PCA)

Normalization

Cell-specific size
factors

Variance-stabilized
residuals based
normalization

Counts

Dimensionality
Reduction (PCA)

Feature Selection

Conventional scRNA-seq Workflow Revised scRNA-seq Workflow in Piccolo

HVGs

Stable Genes

Fig. 6 The revised scRNA-seq workflow implemented in Piccolo. We contrast the conventional scRNA-seq 
workflow (left) with the revised scRNA-seq workflow (right) proposed by us and implemented in Piccolo. 
The starting point for all analyses are the counts matrices. In the conventional workflow, the counts are first 
normalized and variance stabilized followed by feature selection to identify HVGs. Dimensionality reduction 
is then performed on the normalized counts. In contrast, in the revised workflow proposed by us, we first 
perform feature selection to identify both the HVGs as well as stable genes. We rely on the stable genes to 
estimate cell-specific size factors for performing normalization. During normalization, we also ensure variance 
stabilization which in turn leads to significant improvement while performing dimensionality reduction with 
PCA
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transformation (the default transformation function used in Piccolo is the log, see 
Appendix for descriptions of other options). 

Given the observation that the majority of counts obtained from high-throughput 
technologies are small, we relied on first-order approximations for the means and vari-
ances of the transformed counts to estimate the residuals (see Additional file 1: Fig. S18). 
In addition, the residuals relied on means and variances that were adjusted using the 
size factors estimated with the help of stable genes. Thus, our conceptually straightfor-
ward approach simultaneously ensures variance stabilization and reduces the impact of 
the sampling depth differences thereby leading to concrete improvements in the down-
stream clustering performance.

We first applied our normalization method on technical control datasets (Fig. 3A and 
Additional file 1: Fig. S17) and demonstrated that it does reduce the impact of sampling 
depth differences between the cells. Using the PBMC 33k data set (and other datasets, 
see Additional file 1: Fig. S19), we showed that our normalization method also ensures 
effective variance stabilization. We then applied Piccolo to a truth-known data set, 
and showed that it improves downstream clustering analysis and is able to preserve 
cell-cell similarities between cells that share cell-type identities better than other popu-
lar normalization methods. We also examined how well the consistency of k-NNs was 
ensured by Piccolo, and demonstrated that it surpasses the other methods in satisfy-
ing this basic requirement to ensure the robustness of downstream analyses that rely 
on k-NN graphs. With the help of simulations, we were also able to show that Pic-
colo consistently enabled the identification of groups that contain small number of 
cells, whereas other normalization methods failed to consistently and reliably ensure 
the same. In addition, we also showed that with Piccolo we can better distinguish 
between groups that express fewer differentially expressed genes. These results are espe-
cially relevant biologically when viewed from the perspective of the identification of rare 
cell-types, or distinguishing between cell states.

While our method offers significant improvements over the existing workflows, we 
now discuss some of its limitations. Beginning with feature selection, a fundamental 
assumption underlying our bin-based approach is that across all expression levels there 
are always some genes which are not biologically variable. This assumption is not moti-
vated by biological observations and has been made to facilitate ease of computation. 
It is possible that we overlook some HVGs because of this assumption. In our current 
implementation, we mitigate this by keeping the level for the reference dispersion coef-
ficient in each bin relatively low (10th quantile is the default). However, there is definite 
scope for further improvement of the feature selection process to ensure that the HVGs 
are more effectively identified. Another point of consideration tied to feature selection 
is the use of stable genes for estimating cell-specific size factors. Due to the sparsity of 
the data, it is possible that the counts across the stable genes for some cells are all zero 
resulting in the size factor estimates to be zero for those cells. In Piccolo, we address 
this by iteratively adding sets of genes from the bottom of the list of HVGs till none of 
the cells have a size factor estimate of zero. Despite this limitation, we still expect that 
these size factors will not be confounded by actual biological variation as much as when 
we estimate them using all the genes (since that includes the HVGs). With regard to our 
normalization method, we relied on the first-order approximations for both the mean 
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and the variance under the variance stabilization transformation. These approximations 
will work well as long as the non-linear transformation function is approximately linear 
in the range of the observed counts (see Additional file 1: Fig. S18). For small counts, 
this is indeed true, however for larger counts these approximations may lead to incor-
rect estimates. Given the nature of the droplet-based UMI counts data at present, our 
results suggest that the first-order approximations work quite well. We point out here 
that for datasets that exhibit larger counts and less sparsity, the conventional approach 
of the log-based normalization can be expected to work reliably and is available as one 
of the options in the Piccolo R package. We also want to note that in this study we did 
not discuss and elaborate on differential expression (DE) analysis which forms a vital 
component of all scRNA-seq studies. This was done to focus attention on the concep-
tual clarifications and simplifications for the core steps of feature selection and nor-
malization that shape all downstream analyses, including identification of DE genes. We 
remind here that if we are unable to consistently and reliably identify groups of cells that 
actually correspond to distinct cell-types or states, then the downstream DE analyses are 
unlikely to be as informative and helpful. In the worst cases, they may even be mislead-
ing. Briefly, we would like to mention here that after applying our normalization method 
to the observed counts, the distribution of the residuals are brought closer to the normal 
distribution, thus making it possible to employ the two-sample Student’s t-test with the 
null hypothesis that the means of the two samples are the same. Typically, in scRNA-seq 
analyses the Wilcoxon rank-sum test, which is a non-parametric alternative to the two-
sample t-test, is the preferred choice.

Another point of consideration for single-cell workflows is the time taken to perform 
the normalization, as well as the memory (RAM) that is used. For the latter, since our 
residuals-based normalization transforms a sparse matrix to a dense matrix, the amount 
of memory that is used for the post-normalization matrix will increase significantly. 
However, since we can shortlist the HVGs before normalization, the transformed counts 
matrix will only be generated for the HVGs thus requiring lesser memory than what 
would be needed if normalization was performed for all genes. With regards to the com-
putation time, since the transformation is based on a simple analytical relation, it only 
took between 15 seconds (for Svensson 1) to up to 2.5 minutes (for PBMC 33k) to 
transform the observed counts to the residuals for each of the datasets used in this paper 
(see Methods for system configuration).

In conclusion, the novel scRNA-seq workflow based on the conceptual simplifications 
presented in this article enable consistent and significant improvements in the down-
stream analyses. We expect that with the aid of the implementation of this workflow in 
Piccolo more cogent and impactful inferences will be drawn from future single-cell 
gene expression studies.

Methods
Data preparation and preprocessing

The datasets used in the this study are listed in the table in the Datasets section, along 
with the links to the sources.
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Cell and gene filtering

Primarily, the only cell filtering applied for all datasets was to ensure that all the cells had 
non-zero total counts. However for the evaluation of the effectiveness of our normaliza-
tion method using PCA, we filtered cells from the Svensson 1 data set that had total 
counts 3.5 median absolute deviation away from the median total count. This was done 
to reduce the impact of outliers on PCA.

For all the datasets, we excluded genes that had fewer than 0.5% cells with non-zero 
counts. This is the default gene filtering employed in Piccolo.

Selection of HVGs

For all the analyses, unless specified otherwise, we shortlisted the top 3000 HVGs. For 
Piccolo and Analytic Pearson residuals-based normalization, the identification 
of HVGs was done using our dispersion coefficient-based feature selection method. For 
Scran logSF and SCTransform v2, the top 3000 HVGs were shortlisted using 
their respective approaches that rely on post-normalization transformed counts/residu-
als to identify the genes with largest variances of the transformed counts/residuals.

Dimensionality reduction using PCA

After selecting the top 3000 HVGs and performing normalization on the counts of the 
HVGs, we used PCA for dimensionality reduction and shortlisted the top 50 PCs. Prior 
to using PCA, for the residuals-based methods (including Piccolo) we centered the 
residuals at 0, but did not scaled to unit variance. For the logSF normalization, we did 
not center or scale the transformed counts.

Kendall’s and Spearman’s rank correlation tests

Kendall’s and Spearman’s rank correlation tests were used to evaluate whether there is 
a statistical dependence between the quasi-Poisson dispersion coefficient ( αQP ) and the 
mean expression levels ( µ ) for genes with µ < 0.1 . Both tests evaluate how well the rela-
tionship between two variables can be described using a monotonic function. For both 
tests, the correlation coefficients - τ and ρ respectively - indicate a statistical dependence 
if the values are close to +1 or −1 , while values of τ or ρ closer to 0 indicate the absence 
of such a statistical dependence. For these tests, genes with non-zero counts in fewer 
than 2.5% of cells in the respective datasets were not included.

Benchmarking cell‑type clustering and separation using k‑NN based classification

Our k-NN based approach to predict cell labels using known cell labels is based on a 
very simple premise. After we normalize the observed counts and perform PCA, the 
expectation is that in the PC space the cells that share cell-type (or group) identities are 
close to each other. Thus, if we examine the nearest neighbours of a given cell belonging 
to a given cell-type (or group), we expect to find that the nearest neighbours are pre-
dominantly cells belonging to the same cell-type (or group). Based on this simple expec-
tation, we predict cell labels for each cell by considering its k (default k = 15 ) nearest 
neighbours and using the known cell-type (or group) labels to identify the cell-type (or 
group) that is most over-represented in the nearest neighbour set - the most over-rep-
resented cell-type is the predicted cell-type label for the given cell. Over-representation 
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is assessed using the hypergeometric test. By testing for over-representation, we ensure 
that there is no bias against cell-types (or groups) that have fewer cells while predicting 
the cell-type identity for any given cell.

Comparing clustering metrics obtained using the different normalization methods

For the 100 random subsets generated using the Zheng Mix 8eq data set, we applied 
the respective normalization methods and performed dimensionality reduction using 
PCA. We used the top 50 PCs for each of them, and with our kNN-based classifica-
tion approach predicted cell-type labels for each cell that we then compared with the 
known cell labels using the following clustering metrics: Macro F1 (harmonic mean 
between precision and recall, averaged across the classes), adjusted Rand index (ARI), 
and adjusted mutual information (AMI). We compared the values of each of these met-
rics obtained with the different normalization methods by using the paired Wilcoxon 
rank-sum test. The null hypothesis is that there is no difference in the values of the met-
rics between the two groups being compared. The paired-test is essential in this context 
since the values of the metrics have to be compared pairwise for the same subset, and 
cannot be compared across different subsets.

The same 100 subsets were used to also evaluate how well Piccolo performs when 
we rely on HVGs shortlisted based on other normalization methods. Once again, we 
relied on the paired Wilcoxon rank-sum test to assess whether there are differences in 
clustering performance as evaluated through the clustering metrics: Macro F1, ARI, and 
AMI.

Evaluating k‑nearest neighbors consistency

For the Zheng Mix 8eq (10X), Mouse Cortex r1 (DroNC-seq) and PBMC r1 
(inDrops) datasets, we randomly split the genes into two even subsetted datasets - Gene 
Subset 1 and Gene Subset 2. We normalized the observed counts in each subset using 
the four methods discussed in the paper. We performed PCA on the normalized values 
to shortlist the top 50 PCs and identified the 10 nearest neighbors of each cell by relying 
on Euclidean distances between pairs of cells in the 50 dimensional PC space (dbscan 
[42, 43] was used to identify the NN cells). For each cell, we thus obtained two sets of 10 
nearest neighbors from the respective subsets and quantified the extent of their overlap. 
We then took the mean of these per cell overlaps across all cells in the given data set to 
calculate the mean overlap for any given normalization method.

This procedure was repeated 100 times and the mean overlap values were recorded for 
each iteration. To obtain the relative k-NN overlap values, we took the ratio of each of 
the mean overlap value obtained from a given iteration for each normalization method 
with the average of all the mean overlap values across all iterations and all normalization 
methods. This yielded the relative k-NN overlap values shown in panel D in Fig. 4.

Simulations

We used SPARSim [38], Splat [39], and SCRIP [40] to generate the simulated counts 
datasets. SPARSim scRNA-seq simulator is based on a Gamma-Multivariate Hypergeo-
metric model, while Splat relies on the Gamma-Poisson distribution to simulate counts. 
Single-cell RNA sequencing information producer (SCRIP) extends the framework of 
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Splat to be capable of simulating data by relying on Gamma-Poisson or Beta-Gamma-
Poisson models (latter specifically designed for modeling the transcriptional bursting 
effect). Splat and SCRIP are similar in the way the choices of parameters need to be 
specified for de novo simulations - we can specify both the number of groups, as well 
as the extent of differential expression between the groups (this is specified in terms of 
the probability that a gene will get picked to be differentially expressed in each group). 
In order to generate the simulated counts, they both require a homogeneous cell popu-
lation based on which the parameters for the simulation are estimated. SPARSim also 
allows for the exact specification of the number of cells per group with simulation of 
multiple cell-types/groups accomplished by introducing DE genes through user-speci-
fied fold-changes for subsets of genes. Their procedure for the introduction of DE genes 
accounts for the well-known fact that gene biological variability is related to gene expres-
sion level, thus the fold-changes result in changes not only the mean gene expression 
level but also in gene variability values (implemented in their SPARSim_create_DE_
genes_parameter(sim_param, fc_multiplier) function).

Below we provide details of the parameters specified for each of the simulation meth-
ods for the two simulation scenarios described in the main text:

• SPARSim (Scenario 1): First, we estimated the simulation parameters for each refer-
ence data set - B cells (Zheng Mix 8eq), NIH/3T3, and HEK293T. For each data 
set, we randomly picked 10000 genes to use for generation of the simulated counts. 
This was done 50 times to generate 50 simulated counts datasets corresponding to 
each of the reference data set. We adopted the suggestion of the authors of SPARSim 
to create multiple cell-types/groups by specifying fold-changes between the homog-
enous cell population used to estimate the simulation parameters (hereafter referred 
to as cell type A) and the new cell-type/group for a subset of genes; half of the DE 
genes were specified to have fold-changes between 0.05 to 0.1 (sampled uniformly) 
for down-regulation and the other half were specified to have fold-changes between 
1.5 and 2 (sampled uniformly) for up-regulation compared to cell type A. For the B 
cells based simulation, we set the number of DE genes to be 430, while for NIH/3T3 
and HEK293T we set the number of DE genes to be 150 and 80 respectively. To sim-
ulate 6 groups overall, we picked 5 disjoint and random sets of DE genes to simulate 
5 groups (apart from cell type A). The number of cells in each group were specified 
as follows: Group 1 (cell type A) - 750, Group 2 - 750, Group 3 - 400, Group 4 - 250, 
Group 5 - 250, Group 6 - 100. In total, we had 2500 cells in the simulated datasets.

• Splat (Scenario 1): For each reference data set (B cells (Zheng Mix 8eq), 
NIH/3T3, and HEK293T), we first randomly picked 10000 genes to use for estima-
tion of parameters and generation of the simulated counts. This was done 50 times 
to generate 50 simulated counts datasets corresponding to each of the reference data 
set. We simulated 6 groups containing cells in the following proportions: Group 1 
- 0.30, Group 2 - 0.30, Group 3 - 0.20, Group 4 - 0.15, Group 5 - 0.04, and Group 6 - 
0.01. The probability that a gene will be picked to be differentially expressed was kept 
fixed at 0.4 for all the groups (parameter de.prob in Splatter).

• SCRIP (Scenario 1): For each reference data set (B cells (Zheng Mix 8eq), 
NIH/3T3, and HEK293T), we first randomly picked 10000 genes to use for estima-
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tion of parameters and generation of the simulated counts. This was done 50 times 
to generate 50 simulated counts datasets corresponding to each of the reference data 
set. We simulated 6 groups containing cells in the following proportions: Group 1 
- 0.30, Group 2 - 0.30, Group 3 - 0.20, Group 4 - 0.15, Group 5 - 0.04, and Group 6 - 
0.01. The probability that a gene will be picked to be differentially expressed was kept 
fixed at 0.5 for all the groups (parameter de.prob in SCRIP).

• SPARSim (Scenario 2): First, we estimated the simulation parameters for each refer-
ence data set - B cells (Zheng Mix 8eq), NIH/3T3, and HEK293T. After esti-
mating the parameters, for each data set we randomly picked 10000 genes to use 
for generation of the simulated counts. This was done 50 times to generate 50 simu-
lated counts datasets corresponding to each of the reference data set. For the B cells 
based simulation, to simulate 6 groups overall we picked 5 disjoint and random sets 
of DE genes to simulate 5 groups (apart from cell type A) with the number of DE 
genes in each group specified as follows: Group 2 - 1750, Group 3 - 1400, Group 
4 - 1050, Group 5 - 700, Group 6 - 350 (note Group 1 was the reference group). For 
NIH/3T3 and HEK293T, the number of DE genes in each group were specified as 
follows: Group 2 - 250, Group 3 - 200, Group 4 - 150, Group 5 - 100, Group 6 - 50 
(note Group 1 was the reference group). As with Scenario 1, the DE genes were 
specified to have fold-changes between 0.05 to 0.1 (sampled uniformly) for down-
regulation and the other half were specified to have fold-changes between 1.5 and 
2 (sampled uniformly) for up-regulation compared to cell type A. For all SPARSim 
based simulations of Scenario 2, the number of cells in each group were kept 
fixed at 400. In total, we had 2400 cells in the simulated datasets.

• Splat (Scenario 2): For each reference data set (B cells (Zheng Mix 8eq), 
NIH/3T3, and HEK293T), we first randomly picked 10000 genes to use for estima-
tion of parameters and generation of the simulated counts. This was done 50 times 
to generate 50 simulated counts datasets corresponding to each of the reference data 
set. We simulated 6 groups containing roughly equal numbers of cells (total number 
of cells set to 2500). The probability that a gene will be picked to be differentially 
expressed per group was specified as follows: Group 1 - 0.25, Group 2 - 0.2, Group 
3 - 0.15, Group 4 - 0.1, Group 5 - 0.05, Group 6 - 0.025.

• SCRIP (Scenario 2): For each reference data set (B cells (Zheng Mix 8eq), 
NIH/3T3, and HEK293T), we first randomly picked 10000 genes to use for estima-
tion of parameters and generation of the simulated counts. This was done 50 times 
to generate 50 simulated counts datasets corresponding to each of the reference data 
set. We simulated 6 groups containing roughly equal numbers of cells (total number 
of cells set to 2500). The probability that a gene will be picked to be differentially 
expressed per group was specified as follows: Group 1 - 0.25, Group 2 - 0.2, Group 
3 - 0.15, Group 4 - 0.1, Group 5 - 0.05, Group 6 - 0.025.

System configuration and software used

We used a Macbook Pro with the Apple M1 pro chip and 16GB RAM for all the analyses 
in this paper. Piccolo was developed using R (version 4.2.0), and all the analyses were 
also performed using R [44]. We used the following R packages in this study: cluster [45], 



Page 31 of 42Singh and Khiabanian  BMC Bioinformatics          (2024) 25:248  

data.table [46], dbscan [42, 43], ggplot2 [47], igraph [48], Matrix [49], matrixTests [50], 
RSpectra [51], Rtsne [52–54], umap [55], viridis [56]. In addition, the Piccolo package 
also includes a helper function made by Kamil Slowikowski called write MMgz to help 
prepare .mtx.gz files.

Datasets

Name Technology Tissue Type Source Reference

Svensson 1 10X Chromium v1 Technical Control Technical Control Link [10, 57]

Klein 2015 inDrops Technical Control Technical Control Link [10, 32]

NIH/3T3 10X Chromium v3 3T3 Cell Line Link [10]

HEK293T 10X Chromium v3 HEK Cell Line Link [10]

PBMC 33k 10X Chromium v1 PBMC Heterogeneous Link [20]

PBMC r1 inDrops PBMC Heterogeneous GSE13 2044 [8]

Mouse Cortex DroNC-seq Cortex Heterogeneous GSE13 2044 [8]

Mouse Lung Drop-seq Lung Heterogeneous GSE12 4872 [25]

Zheng Mix 8eq 10X Chromium v1 PBMC Heterogeneous Link [35, 58]

Haber 2017 10X Chromium v1 Mouse Small Intes-
tine Epithelium

Heterogeneous GSE92 332 [59]

Appendix
Regression‑based approach to estimate QP dispersion coefficients

The regression-based test proposed by Cameron and Trivedi [23, 24] relies on the idea 
that under the null hypothesis - counts, x, are Poisson distributed - the expected value of 
(x − E[x])2 − x is zero, while under the alternative hypothesis the expected value would 
be a scalar multiple of a function of E[x]. Since E[x] is unknown, we replace it by the 
estimate under the null hypothesis and estimate the scalar multiple using least squares 
regression.

The choice of the QP mean-variance relation corresponds to the alternative hypothesis 
in which the variance (Var[x]) is a linear function of the mean (E[x]),

Given this specification of the alternative hypothesis, the αQP are estimated by auxiliary 
ordinary least-squares regression using,

with E[x] = µ = Poisson estimate for the expected value of the counts.

QP variance as a special case of NB variance and the manifestation of a non‑decreasing 

relationship between θ and µ

It is instructive and useful to view QP variance as a special case of NB variance wherein 
αNB exhibits dependence on µ through the following relationship

(17)Var[x] = αQP .E[x]

αQP = 1+ E[ (x − E[x])2 − x

E[x] ]

https://slowkow.com/notes/sparse-matrix/
https://data.caltech.edu/records/1264
https://data.caltech.edu/records/1264
https://data.caltech.edu/records/1264
https://data.caltech.edu/records/1264
https://osf.io/49mjf/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132044
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132044
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124872
https://bioconductor.org/packages/release/data/experiment/html/DuoClustering2018.html
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92332
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Based on the relation above, we expect that if the values of αQP for genes with µ within 
a given range of mean expression levels do not exhibit a dependence on their µ (genes 
with larger µ do not necessarily have larger αQP ), then we would observe a monotonic 
dependence between θ and µ ( θ ∝ µ ) for the genes with means within that range of 
mean expression levels.

Using Eq. 18, we obtained estimates of θ for each gene using the corresponding values 
of αQP and µ . We plotted the θ vs µ log-log plots for the genes using these values. For 
Svensson 1 (left panel in Additional file 1: Fig. S1C), we observe a clear non-decreas-
ing relationship between θ and µ , particularly for genes with low mean expression levels. 
In order to make the monotonic increase even more apparent, we plotted estimates of 
θ obtained by fixing αQP to the value of αQP for the gene with the highest point density 
estimate in the the θ vs µ log-log plot (the dashed red line). Furthermore, we plotted con-
tour lines (white curves) based on the point densities as a visual aid to infer how the den-
sity of the points (genes) varies depending on µ . If we imagine a closed contour loop as 
an ellipse, the straight line through the center of the ellipse that joins the two points fur-
thest from the center is called the major axis of the ellipse. We refer to analogous lines 
for the contours as their longer axes. Supposing no dependence of θ on µ , the longer axes 
of the contours would be parallel to the x−axis (zero slope). Instead, we observe that the 
dashed red line of the estimated θ with fixed value of αQP lies along the same direction 
as the longer axes of the contours, particularly for genes located in the region with high 
point density (bright yellow region). For PBMC 33k (right panel in Additional file 1: Fig. 
S1C), once again, despite greater variability in θ due to the inherent biological variability, 
the monotonic increase in θ with µ particularly for genes with low mean expression lev-
els is still very evident. Particularly for genes located in the region with high point den-
sity (bright yellow region), the dashed red line of the estimated θ with fixed αQP closely 
follows the direction of the longer axes of the contours. The NIH/3T3 data provides an 
insightful contrast (middle panel in Fig.  1C) - while the monotonic increase in θ with 
increase in µ is evident for genes with low mean expression levels, there is a clear dis-
crepancy between the slope of the dashed red line (estimated θ with fixed value of αQP ) 
and the slope of the longer axes of the contours, particularly for genes in the region with 
the highest point density (bright yellow region). A closer examination reveals that for 
this data set the mean expression level ( µ ) of genes in the region of highest point density 
lie between 0.1 and 1, which is an order of magnitude higher than what we observe for 
Svensson 1 and PBMC 33k ( µ lies between 0.01 and 0.1 for genes in their respective 
regions of highest density). This difference actually stems from the differences in their 
respective sequencing depths - while the median total UMIs per cell in Svensson 1 
and PBMC 33k are 2309 and 1891 respectively, it is 15560 in NIH/3T3.

We must mention here that scTransform [20] relies on this non-decreasing relation-
ship between gene abundance ( µ ) and the inverse over-dispersion parameter ( θ ) to 
perform regularization. In a recent paper [29], Choudhary and Satija argued that when 
modeling scRNA-seq data using a Gamma-Poisson distribution the inverse over-disper-
sion parameter ( θ ) does vary as a function of the gene abundance ( µ ), but that the true 

(18)θ = 1

αNB
= µ

αQP − 1
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nature of this relationship can be masked for genes with low molecular counts. Their jus-
tification for such a relationship primarily rests on observations made for bulk RNAseq 
studies. However, for scRNA-seq counts data there appears to be a simpler explanation 
not linked to any underlying biological cause, namely the Poisson-like variance of counts 
for genes with low mean expression levels. This QP variance for low abundance genes 
holds not just for biological datasets but also for negative control datasets thus suggest-
ing that there is no biological source for this non-decreasing relationship.

Hoes does the number of bins impact the feature selection process? And what 

about ribosomal genes?

The choice of number of bins plays an important role in the feature selection process. 
Fewer bins would lead to more genes per bin and this would result in an underesti-
mation of the value of the quantile, especially for the bin that contains genes with the 
largest mean expression levels since their αQP vary the most with µ . We show this in 
Additional file 1: Fig. S13 for the PBMC 33k data set. When we pick the number of bins 
to be 10 (top left panel in Additional file 1: Fig. S13), we observe a noticeable increase in 
the values of αQP − αQP(Reference|Bin) with µ for genes with the highest mean expression 
levels. This will lead to a bias towards selection of high expression genes as HVGs. We 
can increase the number of bins to reduce this bias since this will ensure that genes with 
comparable mean expression levels are being grouped together (see bottom left panel 
for 1000 bins). However, if we keep on increasing the number of bins there will be very 
few genes per bin. Since we effectively assume that in every bin there is a stable gene 
we would end up concluding for a significant proportion of genes that these genes are 
stable even if they actually exhibit biological variability (note the decrease in values of 
αQP − αQP(Reference|Bin) for genes with high mean expression levels in the bottom right 
panel; FTH1 for instance goes from having a value above 40 when the number of bins 
was set to 1000 to a value below 40 with the number of bins set to 10000). In practice, 
setting the number of bins to the default value of 1000 typically leads to 10-15 genes per 
bin with the gene with the smallest or the second smallest value within the bin providing 
the αQP(Reference|Bin) value for that bin.

Hafemeister and Satija [20] noted earlier that the highly variable genes should not 
include housekeeping genes such as the ribosomal genes. This was based on the ration-
ale that these genes while expressed at high levels are not expected to be variable across 
cell-types. However, it is increasingly being recognized that there can be tissue and 
development-stage specific variation in the transcription of the ribosomal genes [61]. 
Our feature selection method identifies genes as highly variable as long as they exhibit 
higher variability in their counts relative to other genes with comparable mean expres-
sion levels. Thus, we expect to observe variable numbers of ribosomal genes among the 
HVGs depending on the nature of the cells constituting the data set. Indeed, we observed 
that in the Mouse Cortex (DroNC-seq) data set only 14 out of 85 ribosomal genes 
were shortlisted among the top 3000 HVGs, while as many as 72 out of 85 ribosomal 
genes were present among the top 3000 HVGs for the NIH/3T3 mouse fibroblast cell 
line data. In the case of the latter, since the data set comprises a homogenous cell popu-
lation we don’t expect to see much variability overall, and therefore within this context 
where not many genes are expected to exhibit variability the shortlisting of ribosomal 
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genes among the variable is not surprising since the notion of variability in our feature 
selection approach is relative and not absolute.

The standard estimate of cell‑specific size factors assumes that the counts are Poisson 

distributed

There is an intimate link between the estimates of size factors given by Eq. (6) and the 
estimates for expected means ( µ̂gc ) under the assumption that the counts are Poisson 
distributed. Assuming that each gene g contributes a proportion pg of the total count Nc 
in cell c, the counts Xgc are modeled as,

where µgc = pgNc . As shown by Townes et al. [27] and Lause et al. [21], the maximum 
likelihood estimates for pg and Nc under the Poisson model are given by,

Based on these estimates, the maximum likelihood estimate for µgc is given by,

If we divide both the numerator and denominator in Eq. (22) by the total number of cells 
(C), we get,

Since 
∑

c Xgc/C = µg = mean of the observed counts of gene g,

Using Eq. (6), we can rewrite the above equation more simply as,

From this we can conclude that the simple estimates of the size factors given by Eq. (6) 
should be more appropriately viewed as estimates under the approximation that the 
counts are Poisson distributed.

Estimates for mean and variance under variance stabilization transformation

In order to compute z-scores for our data, we first need to apply a variance stabiliza-
tion transformation to the observed counts ( Xgc ) to bring their distribution closer to the 

(19)Xgc ∼ Poisson(µgc)

(20)N̂c =
∑

g

Xgc

(21)p̂g =
∑

c Xgc
∑

c N̂c

(22)µ̂gc =
∑

c Xgc.
∑

g Xgc
∑

c

∑

g Xgc

µ̂gc =
(
∑

c Xgc/C).
∑

g Xgc

(
∑

c

∑

g Xgc)/C

µ̂gc =
µg .

∑

g Xgc

(
∑

c

∑

g Xgc)/C

(23)µ̂gc = µgSFc



Page 35 of 42Singh and Khiabanian  BMC Bioinformatics          (2024) 25:248  

normal distribution. The variance stabilization transformation can be performed using 
monotonic non-linear functions, g(X), such that the transformed counts are given by,

To compute the residuals, we need estimates for the means and variances of Y based on 
estimates for means and variances of X. We can arrive at approximations for both using 
a Taylor expansion around X = µ,

where g ′(µ) and g ′′(µ) are the first and second order derivatives of g(X) evaluated at 
X = µ . Considering the expansion up till the 1st order,

The expected value of Y can be approximated to,

In addition, since

after squaring and taking expectation we get the following approximation for the vari-
ance of Y,

For g(X) = log(X + 1) , the first order approximations of the mean and variance are then 
given by,

Limitation of residuals without variance stabilization

We discuss the limitation of residuals computed for raw untransformed counts by 
considering the analytic Pearson residuals approach proposed by Lause et  al. [21]. 
They proposed that the expected means ( µ̂gc ) can be approximated with the estimates 
given by Eq. (22). Further, they argued that the over-dispersion coefficient ( ̂αg ) can be 
approximated with a fixed value of α̂g = 0.01 corresponding to the typical over-disper-
sion observed in technical control datasets. Their rationale for these choices is that the 
null model should correspond to the measurement process so that the residuals pro-
vide estimates for deviations compared to expectations under the measurement model. 
While conceptually sound, this approach compromises variance stabilization, especially 
for genes that are robustly expressed in only a subset of cells while showing negligible 

Y = g(X)

Y ≈ g(µ)+ g ′(µ)(X − µ)+ 1

2!g
′′(µ)(X − µ)2 + ...

Y ≈ g ′(µ)X + g(µ)− g ′(µ)µ

(24)E[Y ] ≈ g ′(µ)µ+ g(µ)− g ′(µ)µ = g(µ)

Y − g(µ) ≈ g ′(µ)(X − µ)

(25)Var[Y ] = Var[g(X)] ≈ (g ′(µ))2Var[X]

(26)E[log(X + 1)] ≈ log(µ+ 1)

(27)Var[log(X + 1)] ≈ 1

(µ+ 1)2
σ 2
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expression in the rest of the cells (such genes would be considered as markers of the spe-
cific cell sub-populations in which they are expressed).

We can illustrate the nature of the problem with the help of a simplified example. 
Suppose we have a data set consisting of 10000 cells with a gene (gene A) that is only 
expressed in 100 cells with identical counts of 100 in each of those cells; the rest of the 
cells have 0 counts. For simplicity, if we assume that all the cells have the same sequenc-
ing depth ( SFc = 1 ∀ c ) then,

Based on this, Eq. (8) simplifies to,

Given the distribution of counts for gene A stated above, µA = 1 , and since we assume 
α̂g = 0.01 , the residuals of gene A for the cells with counts of 100 are approximately 
98.509, while the residuals for cells with 0 counts are -0.995. The overall variance of the 
residuals for gene A is approximately 98.03, thus exhibiting significant deviation from 
the null expectation of 1. The Pearson residuals method proposed by Hafemeister et al. 
[20] that allows for per gene estimates for α̂g addresses this issue only to a limited extent.

Variance stabilization transformations implemented in Piccolo

Apart from the log transformation as the variance stabilization transformation discussed 
in the main text and implemented as the default option in Piccolo, we also offer the 
option to apply two other transformations which are described below:

Sqrt

For the sqrt transformation, g(X) =
√
X  . The first order approximations of the mean 

and variance under this transformation are,

After accounting for sampling depth differences ( ̂µgc = SFcµ̃g and σ̂ 2
gc = SF2

c σ̃
2
g  ) we have,

Based on these first order approximations for means and variances under the 
√
X  trans-

formation, the residuals are given by,

µ̂gc = µg

rgc =
Xgc − µg

√

µg + α̂gµ2
g

E[
√
X] ≈ √

µ

Var[
√
X] ≈ σ 2

1/(4 ∗ µ)

E[
√

Xgc] ≈
√

µ̂gc

Var[
√

Xgc] ≈
σ̂ 2
gc

1/(4 ∗ µ̂gc)
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Box‑Cox Power Law Transform

The Box-Cox transform [62] belongs to the family of power law transformations. Power 
law transformations are applicable only for positive variables and are indexed by a 
parameter � , such that for an arbitrary observation x, the transformed value is given by 
x� . The Box-Cox transformation is a modified power transformation defined as,

which is a continuous function in � for x > 0 ( g(X) = x(�) = log(x) , when � = 0 ). Box-
Cox proposed that based on the observations x1 , x2,..., xn , the appropriate choice of � 
corresponds to the value that maximizes,

where,

For the Box-Cox transformation, the first-order approximations of the mean and vari-
ance are,

where pseudo-counts of 1 have been added to ensure positive (non-zero) values. After 
accounting for sampling depth differences ( µ̂gc = SFcµ̃g and σ̂ 2

gc = SF2
c σ̃

2
g  ) we have,

Based on these first-order approximations for means and variances under the Box-Cox 
transformation, the residuals are given by,

Z′
gc =

√

Xgc −
√

µ̂gc

σ̂gc/(1/(2 ∗
√

µ̂gc))

g(X = x) = x(�) = x� − 1

�
, � �= 0

l(�) = −n

2
log[1

n

n
∑

j=1

(x
(�)
j − x(�))2] + (�− 1)

n
∑

j=1

log xj

x(�) = 1

n

n
∑

j=1

x
(�)
j = 1

n

n
∑

j=1

(
x�j − 1

�
)

E[g(X)] ≈ (µ+ 1)� − 1

�

Var[g(X)] ≈ σ 2 ∗ (µ+ 1)�−1

E[g(Xgc)] ≈
(µ̂gc + 1)� − 1

�

Var[g(Xgc)] ≈ σ̂ 2
gc ∗ (µ̂gc + 1)�−1

Z′
gc =

(Xgc+1)�−1

�
− (µ̂gc+1)�−1

�

σ̂gc ∗
√

(µ̂gc + 1)�−1
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LogSF

We also provide the popular logSF normalization as an option in Piccolo. The nor-
malized counts under this transformation are given by,

where estimates of SFc are obtained using stable genes (see eq. (7))
We compared these variance stabilization transformations within Piccolo by applying 

them to the 100 subsets created using the Zheng Mix 8eq data set. The results are 
shown in Additional file 1: Fig. S23. The Box-Cox transform performs the best overall. 
However, the trade-off is that it is also the most computationally intensive. Nevertheless, 
we would still recommend users to consider applying it for small or medium sized data-
sets ( 103 − 105 cells).

Differential expression analysis in Piccolo

After applying our normalization to the observed counts, the distribution of the residu-
als are brought closer to the normal distribution due to the variance stabilization. This 
makes it possible to employ the two-sample Student’s t-test with the null hypothesis that 
the means of the two samples are the same. Ideally, the test is applicable only if the vari-
ances of the two samples can be assumed to be equal. The variance stabilization during 
normalization ensures that under most circumstances this assumption holds true.

Typically, the preferred test for single-cell differential expression analyses is the Wil-
coxon rank-sum test which is a non-parametric alternative to the two-sample t-test. A 
key difference between the two is that while the t-test actually tests for location shifts 
(differences in means) between the samples, the Wilcoxon rank-sum test can be sensitive 
to shifts in distribution other than a pure location shift.

Obtaining corrected counts from the z‑scores

While the clustering and the differential expression analyses are performed using the 
z-scores obtained from Piccolo, in some other applications and for the purpose of 
applying other tools we can also obtain estimates of both the log-transformed values as 
well as the corrected counts. We illustrate how this is done for Piccolo normalization 
(log-based variance stabilization).

Recall that,

are the respective estimates for the gene mean and variance after accounting for sam-
pling depths. Based on these, the estimates for the log-transformed values can be 
obtained using Eq. (16) as,

X
′
gc = log(

Xgc

SFc
+ 1)

µ̃g =
1

C

∑

c

Xgc

SFc

σ̃ 2
g = 1

C − 1

∑

c

(
Xgc

SFc
− µ̃g )

2
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Using these log-transformed values, we can then obtain estimates for the corrected 
counts,

where the rounding ensures that the corrected counts have integer values.

Batch effect correction

Batch effects are technical confounders that typically stem from a wide array of non-bio-
logical sources such as differences in the reagents, the individuals handling and process-
ing the samples, as well as the time of experiment. If not accounted for, batch effect can 
be misinterpreted as a biological signal and lead to erroneous conclusions. The z-score 
based normalization of Piccolo allows for a very simplistic approach to perform batch 
effect correction based on the fundamental assumption that all the biological conditions 
are processed in all the batches (Note: It is tempting to apply batch correction even when 
this assumption is not met, however the conclusions drawn from such analyses will be 
unreliable).

The basic idea of our batch effect correction method is to identify HVGs indepen-
dently for each batch, and then seek the HVGs that match between the batches. This 
ensures that we only retain those genes for downstream analysis that are variable in 
every batch, and eliminate genes that exhibit variability of counts only within specific 
batches since the latter likely reflect batch-specific effects. In addition, we identify stable 
genes across all batches as well as stable genes individually for each batch. We retain 
only those stable genes in each batch that are also stable across the batches. This ensures 
that the counts are normalized using size factors estimated with stable genes in each 
batch that we know are less likely to exhibit batch-specific variation. We then perform 
the z-score normalization independently for each batch. PCA is applied on the compos-
ite z-scores matrix obtained by combining the z-scores matrices from all the batches.

We provide an illustration of the application of our simplistic batch effect correction 
on a mouse intestinal epithelium data set (Haber 2017) that consists of cells obtained 
in 10 batches [59] (see Additional file 1: Fig. S24). Further, we used Splat [39] to simulate 
a data set using NIH/3T3 that contained 5 groups of cells, with half the cells in one 
batch, and the other half simulated to belong to another batch (see Additional file 1: Fig. 
S25). With the help of these examples, we are able to show that the simplistic batch cor-
rection approach works well when the assumption that all the conditions are present in 
every batch is reasonably satisfied.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 024- 05872-w.

Supplementary Material 1. Supplementary Tables and Figures 

log(X̃gc + 1) = Z
′
gc ∗

σ̃g

µ̃g + 1
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′
gc ∗

σ̃g

µ̃g + 1
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