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Abstract 

Background: The potential benefits of drug combination synergy in cancer medi‑
cine are significant, yet the risks must be carefully managed due to the possibility 
of increased toxicity. Although artificial intelligence applications have demonstrated 
notable success in predicting drug combination synergy, several key challenges persist: 
(1) Existing models often predict average synergy values across a restricted range 
of testing dosages, neglecting crucial dose amounts and the mechanisms of action 
of the drugs involved. (2) Many graph‑based models rely on static protein–protein 
interactions, failing to adapt to dynamic and higher‑order relationships. These limita‑
tions constrain the applicability of current methods.

Results: We introduce SAFER, a Sub‑hypergraph Attention‑based graph model, 
addressing these issues by incorporating complex relationships among biological 
knowledge networks and considering dosing effects on subject‑specific networks. 
SAFER outperformed previous models on the benchmark and the independent test 
set. The analysis of subgraph attention weight for the lung cancer cell line highlighted 
JAK‑STAT signaling pathway, PRDM12, ZNF781, and CDC5L that have been implicated 
in lung fibrosis.

Conclusions: SAFER presents an interpretable framework designed to identify 
drug‑responsive signals. Tailored for comprehending dose effects on subject‑specific 
molecular contexts, our model uniquely captures dose‑level drug combination 
responses. This capability unlocks previously inaccessible avenues of investigation 
compared to earlier models. Furthermore, the SAFER framework can be leveraged 
by future inquiries to investigate molecular networks that uniquely characterize indi‑
vidual patients and can be applied to prioritize personalized effective treatment based 
on safe dose combinations.

Keywords: Hypergraph representation learning, Graph attention mechanisms, Drug 
combination prediction, Context‑aware models, Dose–response drug combination 
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Background
Combination therapies are widely used therapeutic strategies in oncology, designed to 
enhance therapeutic outcomes and reduce the risk of acquired resistance [1]. By simulta-
neously targeting multiple pathways, these approaches offer the potential for more dura-
ble effects in cancer treatment. In certain cases, such combinations can provide greater 
benefits to cancer patients than single agents. However, finding effective drug combina-
tions faces significant challenges, primarily due to the vast amount of potential drug and 
dosage combinations. Additionally, the limited or modest response to drugs complicates 
actionable drug combination discovery and clinical drug development. Notably, oncol-
ogy drugs have the lowest clinical trial success rate (3.4%) among other types of treat-
ment, which ranges from 15 to 33%, and the drug response rate in cancer patients is the 
lowest (25%) compared to patients with other diseases which had 30–80% of response 
rate [2]. This emphasizes the complexity of cancer development. Unfortunately, the com-
plexity of highly variable drug responses can be attributed to several factors: (i) Indi-
vidual variability. Cancer subtypes could respond differently to the specific targeted 
therapies [2]. (ii) Tissue specificity. Drugs may not always achieve their intended effects 
on tissue-specific pathways [3–5]. (iii) Inappropriate dosing. While a higher dosage may 
be effective for severe conditions, it could result in unexpected outcomes for patients 
with less severe conditions [6, 7]. Therefore, accurately predicting individual drug 
responses to combinatorial therapies is of critical importance for clinical drug discovery 
and development.

High-throughput drug screening, while efficiently screening large libraries of small 
molecules, encounters the challenge of combinatorial explosion. Furthermore, the effi-
ciency of high-throughput screening techniques may unintentionally hinder the identifi-
cation of meaningful synergistic interactions due to the inherent randomness in sample 
selection. In response to these challenges, advances in deep learning approaches have 
emerged as invaluable solutions. They help streamline drug development by accelerat-
ing the prioritization of drug candidates with large-scale training data, thus reducing 
both time and associated costs. As exemplified by DeepSynergy [8], the typical com-
putational approach to predict drug synergistic effects is to learn the inter-correlation 
of drug molecule embeddings and baseline gene expression data through deep neural 
networks. Integration of heterogeneous data is crucial. High dimensional gene expres-
sion data were typically used to train a deep neural network, such as DeepSynergy, Tran-
Synergy [9], and DeepDDs [10]. However, not all genes are predictive of drug response, 
and high-dimensional data are prone to overfitting [11, 12]. On the other hand, models 
have made attempts to extract drug embeddings from pair-wise similarity based on drug 
properties (i.e., CCSynergy [13]) or from a static protein–protein interaction (PPI) of 
drug-targeting genes (i.e., TranSynergy). DeepDDs employed graph attention networks 
to emphasize the sub-structures of drugs’ molecular graphs as a drug feature representa-
tion. However, drug synergy is highly context-dependent, drugs may behave differently 
in different biological contexts, making it challenging to predict drug responses purely 
from similarity. Further, genes play different roles in different pathways, which indicate 
the nature of multiple relationships, and static PPI might not capture these nuances. 
Recently, hypergraph attention networks have gain increasing attention in text classifica-
tion [14] and cancer subtype classification [15]. Different from a typical graph in which 



Page 3 of 19Tang et al. BMC Bioinformatics          (2024) 25:250  

an edge can only connect two nodes, hyperedges can connect two or more nodes, mak-
ing it suitable for modelling complex functional networks, such as pathways. For exam-
ple, in a pathway hypergraph, nodes represent genes and hyperedges connect genes that 
are in the same pathways. As a gene may participate in different pathways, there may be 
multiple edges connecting to this gene. Therefore, the use of hypergraph representation 
learning enables a model to learn a more expressive representation from a higher-order 
context.

In addition to multiple-relation modelling, dose amount is another critical factor for 
optimizing therapeutic outcomes and ensuring treatment safety. Nevertheless, current 
models are limited in their ability to determine personalized, safe, and effective treat-
ment because they were designed to predict average synergistic effects within a narrow 
and inconsistent dose range. In this study, we present SAFER, a context-aware frame-
work for drug combination prediction. Our contributions include: (1) We propose to use 
hypergraphs to represent complex relationships among drugs and among genes. This 
approach enables the model to comprehensively capture interactions within transcrip-
tional regulatory networks associated with drug response. (2) We develop a multi-modal 
model that combines cell-gene interactions, drug-gene relationships, compound struc-
tures, and dosage data. This comprehensive framework enhances dose-level prediction 
accuracy by 20–30% compared to current models. (3) We demonstrated model’s inter-
pretability through subject-based attention weights, which uncovered distinct gene set 
importance signals for synergistic and antagonistic drug combination responses, includ-
ing PRDM12, ZNF781, CDC5L-targeting genes, and the JAK-STAT signaling pathways 
(adjusted P-values < 0.05).

Materials and methods
We first introduce SAFER, which stands for sub-hypergraph attention-based neural net-
work for predicting effective responses to dose combinations. Then, we describe each 
component of the framework. Figure  1 shows the overview of the analysis pipeline. 
SAFER utilizes the attention-based hypergraph neural networks to learn the represen-
tations of cell line-gene, drug-gene, and drug-structure in the context of gene regula-
tory networks (Fig. 1A). It then uses two-layer feed-forward neural networks to learn the 
inter-correlation between these data representations along with dose combinations and 
synergistic effects at different dose combinations (Fig. 1B). Analysis of attention weights 
is designed to study the correlation between molecular mechanisms and responses to 
drug combinations (Fig. 1C).

Sample collection

Table 1 describes the overview for the datasets used in this study. We provide detailed 
descriptions in the following.

Drug combination data

We downloaded drug combination datasets from the DrugComb database (v1.5) [16]. 
Dose-level drug synergy measures were used in this study and were retrieved via the API 
(https:// api. drugc omb. org/ respo nse/). The DrugComb database is the most compre-
hensive resource for studying drug synergism. It harmonized the degree of combination 

https://api.drugcomb.org/response/
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additive, synergistic, or antagonistic by cell inhibition rate (i.e., percent inhibition or 
%inhibition) relative to the corresponding untreated control model, and presented with 
different synergy principles, including Bliss independence (BLISS) [17], Highest single 
agent (I) [18], Loewe additivity (LOEWE) [19], and Zero interaction potency (ZIP) [20] 
(more detailed description about the equations has been provided in the official web-
site: https:// drugc omb. org/ help/). For each drug-drug-cell triplet, synergy scores were 

Fig. 1 A. Hypergraph representation learning: attention‑based graph neural network was used to generate 
context‑specific subject embeddings for downstream prediction tasks. B. Synergy prediction: A two‑layer 
neural network takes in concatenation of three vectors, including cell line embedding, drug pair embedding, 
and one‑hot encodings of drug‑drug‑cell line triplet, and output drug synergy label represented by 1 as 
synergistic or 0 as antagonistic. C. Attention weight analysis: comparison of attention weights between 
synergistic and antagonistic groups and highlight differentially weighted functional gene sets

Table 1 Summarization of dataset collected and used in this paper

Category Description Source/data retrieval Specifics/notes

Main dataset overview Analysis of drug synergy 
measures

DrugComb database (v1.5) Focus on non‑additive drug 
combination effects; con‑
tains 225,608 data points, 
104,819 combinations, 9078 
pairs, 90 cancer cell lines

Cell line data Genomics profiles of 
cancer cell lines

DepMap portal (22Q4) Gene expression (log2 
TPM + 1), CRISPR screen 
gene essentiality scores, 
TF‑gene regulatory network 
from GRAND

Drug data Information on compound 
structures and associated 
genes

DrugComb database, 
DrugBank, TTD, STITCH

SMILE strings for compound 
identification, exclusion of 
non‑human genes

Functional gene sets Sets of genes related to 
canonical pathways and 
transcription factor‑target 
genes

MSigDB (v2022) Utilized C2 and C3 collec‑
tions, gene size filtering 
based on one standard 
deviation from the mean

Benchmarks & validation Reference datasets for 
comparison and validation

O’Neil et al. [21] (bench‑
mark); Holbeck et al. [22] 
(validation)

Used to assess the perfor‑
mance of drug synergy 
predictions

https://drugcomb.org/help/
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averaged if it had experiment replicates. We removed non-cancer samples in the dataset 
(i.e., malaria and SARS-COV-2). The remaining samples that have available drug data 
and cell line data were included in this study. We focused on predicting drug combina-
tion effects deviating from additive, and therefore we excluded additive samples that had 
synergy scores within –10 and 10 in all measures (i.e., BLISS, I, LOEWE, and ZIP). Addi-
tionally, samples with full agreement synergistic effects but had less ability to kill cancer 
cells (i.e., percent inhibition < 0) than the untreated control were also excluded as they 
are not within the scope of our study. As a result, the datasets we used contain 225, 608 
data points, consisting of 104,819 drug combinations and 9,078 drug pairs from 11 stud-
ies, and 90 cancer cell lines from 14 tissues. Finally, we used the dataset from the O’Neil 
study [21] as the benchmark for comparison purposes and used the Almanac dataset 
[22] for external validation.

Cell line data

While baseline gene expression data remain widely used for their ability to predict drug 
response, gene essentiality scores and transcription factors have shown demonstrative 
potential [4, 9, 23]. Cancer cell lines used in this study were unified by DepMap ID, and 
their genomics profiles were retrieved from the DepMap portal (public 22Q4, https:// 
doi. org/https:// doi. org/ 10. 6084/ m9. figsh are. 21637 199. v2), including the gene expres-
sion TPM values (i.e., log2 TPM + 1) of bulk RNA sequencing [24], gene knockout read-
outs derived from CRISPR screen (i.e., gene essentiality scores) [25–28]. In addition, we 
obtained the cell line-specific transcription factor (TF)-gene regulatory network from 
the GRAND [23] database and averaged across transcription factors to generate a cell 
line by gene matrix representing probabilities of being a TF-targeting gene in a cell line.

Drug data

We leverage molecular structures and drug-targeting genes to learn property relation-
ships and mechanism of actions. Compound structures (i.e., SMILE strings) were used 
and retrieved directly from the DrugComb database. In the dataset, drug names were 
coded using various labels, such as the company’s serial number, the generic name, or 
chemical name. We unified drug names with unique SMILE strings to avoid data leak-
age. Drug-associated genes were collected from DrugBank [29], TTD [30], and STITCH 
[31] databases. Non-human genes were excluded, and gene symbols were assigned using 
NCBI’s genes.

Functional gene sets

Our previous findings revealed pathway-level signals have advantage to improve 
model performance and explainability [32]. Studies also showed tissue-specific drug 
response in transcription factors [4]. In this study, we used two different gene sets to 
learn biological contextual information of drug synergy. Functional gene sets were 
downloaded from the Molecular Signatures Database (MsigDB) [33], including C2 
Canonical Pathways and C3 transcription factor-target genes (v2022). The C2 collec-
tion used in this study contains pathway gene sets form BioCarta [34], KEGG [35], 
PID [36], REACTOME [37], and WikiPathways [38]. The C3 collection is a subset of 

https://doi.org/
https://doi.org/
https://doi.org/10.6084/m9.figshare.21637199.v2
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GTRD [39] transcription factor (TF) binding genes. We retained gene sets using one 
standard deviation of the gene size. That is, gene size below or above one standard 
deviation of the mean was excluded.

Sub‑hypergraph representation learning

A hypergraph can be viewed as an incidence matrix, H ∈ {0, 1}|V|×|E| , with nodes V 
and hyperedgesE . It is different from a standard graph in that a hyperedge can con-
nect to more than two nodes, making it suitable for learning complex interactions of 
molecular networks, such as gene-pathway relationships. The SHINE [15] frame-
work represents gene-pathway relationship as a hypergraph in which nodes were 
genes and hyperedges were pathways, and then employs message passing neural net-
works to learn node representation. The main contribution of this learning process 
is that it allows for subgraph representation learning through both node and hyper-
edge representation. Specifically, the representation for a hyperedge pj at layer k , 
hkE

(

pj
)

 , is calculated from the nodes’ representation at k − 1 layer, hk−1
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gi
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c is a learnable context vector and s is the attention ready state. Likewise, the nodes’ 
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This dual attention allows the subsequent subgraph attention to learn nodes and 
hyperedges’ representation simultaneously. Sub-hypergraph Gj refers to a subset of 
nodes in a hypergraph and can be used to represent a subject. In other words, a sub-
graph representation, h
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matrix in which each row represents a subject, and each column corresponds to 
node features. Finally, the output subgraph embedding, S , is obtained through con-
catenation of all node representations: S =

[
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 . In this 

study, we applied this subgraph attention mechanism to generate context-specific 
cell line-gene embedding, drug-gene embedding, and drug-structure embedding.
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Cancer‑gene representation

We used the Python library, ssGSEApy (version 1.0.4) [40], to perform the Single-
Sample Gene Set Enrichment Analysis (ssGSEA) using cancer cell lines’ gene expres-
sion data, which outputs normalized enrichment score (NES) representing the level 
of enrichment of a gene set in a cell line. We represented the C3 TF-targeting genes 
as a hypergraph by using TFs as nodes and their targeting genes as hyperedge, and 
then applied the subgraph attention on the enrichment matrix (For SAFER-c2 model, 
the hypergraph is replaced by C2 pathway gene sets). By doing this, we can benefit 
from enrichment analysis to capture TF activities specific to cell lines and leverage 
the built-in dual attention mechanisms to learn the relationship across gene sets. To 
model dosage effects on cell line’s transcriptional changes in the context of gene regu-
lation, we injected dose combinations (e.g., the addition of drug dose a and drug dose 
b) into the node values by multiplying dose combination values with NES. Therefore, 
the subgraph embedding has the size of the number of subject and embedding dimen-
sions, where subjects represent drug combinations (i.e., drugA-drugB-cell line) at dif-
ferent dose combinations (i.e., doseA-doseB).

Drug‑gene and drug‑structure representation

Drug embeddings were extracted from the heterogeneous hypergraphs that consists of 
two types of nodes: molecular structures and drug-targeting genes. First, we created 
the structure hypergraph. To represent chemical structures in a hypergraph, we used 
the k-mer approach [41] which splits a SMILE string into sub-strings with a length of 
k as nodes. The choice of the k is determined by the ablation study. Second, we used 
hypergraph to model functional gene sets in which nodes are functional gene sets that 
drug-genes participated in (which is C2 pathways for SAFER-c2 model, and C3 TFs for 
SAFER-c3 model). A hypergraph can be represented as an incidence matrix where rows 
are nodes and columns are hyperedges. As we represent drugs as hyperedges, such that 
a cell value of one at node i for hyperedge drug j represents this drug has the substruc-
ture/TF-associated gene in i.To reflect dose effects, we injected the drug dose of each 
drug into the node values of its associated genes and sub-structures, respectively. We 
then used the same attention mechanism described above to generate subgraph embed-
dings for drug-gene and drug-structure multiple relationships.

Dose combination representation

We also used one-hot encoding to represent drug doses in the dataset as we observed 
an increase in per-triplet AUPRC from 0.81 to 0.83. In addition, we encoded pheno-
types of cancer cell lines, including tissue of origin, patient gender, and age in a one-
hot vector as this information help to improve the overall AUPRC from 0.87 to 0.89. 
Therefore, we concatenated them all, including the dose combination vector.

Synergy prediction

Model architecture

The resulting embeddings described above were concatenated and used as the input 
to the two-layer feed-forward neural (FNN) networks to generate synergy predictions. 
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We applied batch normalization to the input layer. The ELU activation function 
was used for the FNN layers. We binarized Loewe scores into synergistic samples 
(LOEWE > 10) and antagonists (LOEWE < -10) and used the BCELoss function com-
bined with a sigmoid layer (i.e., the BCEWithLogitsLoss function in PyTorch library 
version 2.1.2 [42]). As for model training, we used group k fold to split dataset into ten 
folds to ensure that there is no overlapping drug-drug-cell line triplet in the training 
and the test folds. To reduce the impact of graph smoothing effects, we implemented 
regularization methods including L2 regularization, employed dropout rate, and 
limited the number of attention layers to two following previous approach [15]. We 
performed Bayesian optimization for hyperparameter tuning with the Optuna [43] 
package (version 3.1.0), and we tuned the hidden dimension of sub-hypergraph repre-
sentation ∈ (100, 200, 300, 400, 500), the dropout rate layer for the subgraph attention 
layer and for the feed-forward neural networks 0.2 ≤ dropoutrate ≤= 0.8 . All hyper-
parameters were tuned on the validation set in a ten-fold cross-validation manner to 
optimize the area under the precision–recall curve (AUPRC). The best hyperparam-
eters were determined by averaging AUPRC on the validation set across all folds. We 
used a learning rate scheduler, so we did not tune the learning rate and weight decay. 
The final hyperparameters used in this study are as follows: hidden dimension = 200, 
dropout rates = 0.2, 0.3 for the subgraph layer and FNN layers, respectively.

Model evaluation

The area under the receiver operating characteristic curve (AUROC) and the area under 
the precision–recall curve (AUPRC) were chosen to assess the overall performance of 
our binary classifier. To assess the model’s capability of predicting dose-level drug com-
bination response, we averaged AUROC and AUPRC by drug-drug-cell line groups 
which we called them per-triplet AUROC and per-triplet AUPRC, respectively. Model 
performance was evaluated internally and externally under the following scenarios:

• Cross-validation on the benchmark dataset

 In this setting, we used the O’Neil dataset which is a screening of 490 drug pairs on 
34 cell lines on a 5 by 5 dose-grid matrix. We split the data into 10 folds with a ratio 
of 80:10:10 for train, validation, and test partition. We then averaged performance 
on the test set across all folds for our models and the competing models, includ-
ing the typical deep learning model, DeepSynergy, and three other state-of-the-art 
models, which are DeepDDs, TranSynergy, and CCSynergy. We reported the results 
of CCSynergy V as it shows a better performance among the other four versions. 
Hence, the CCSynergy mentioned in this study refers to CCSynergy V.

• Split the O’Neil dataset by pair-wise drug pair similarity
 In this out-of-distribution (OOD) scenario, we created test sets distinct from the 

training and test data by dividing drug pairs based on their compound properties and 
overlapping targeting genes, respectively. We used two measures: Tanimoto similar-
ity for comparing SMILE strings of compounds, and cosine similarity for target gene-
based comparisons. This resulted in two data splits: one based on target similarity 
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(i.e., OOD-target) and another on compound similarity (OOD-structure). Test on 
the unseen data.

 We used the dataset from the Almanac study that contains 4 by 4 and 4 by 6 dose-
response matrices for 3811 drug pairs and 46 cell lines. We excluded the common 
drug-drug-cell line triplets seen in the O’Neil dataset, generating an independent test 
with 72,785 samples. We trained our model on the O’Neil data to obtain the best-
performing model and then applied it to the Almanac data to generate predictions. 
We repeated this procedure ten times and reported mean and standard deviation.

• Evaluation on different dose areas
 We obtained the half-maximal inhibitory concentration (i.e., IC50) for each drug 

from the DrugComb database and used that to dissect dose-response matrix into 
four quadrants for each drug-drug-cell line triplet in the dataset. We defined a higher 
dose if the tested concentration is above the IC50 of a drug, a lower dose implies 
the drug is tested at a dose lower than its IC50. When graphically represented, these 
are the lower-left (or low dose area), upper-left (or low-high dose area), upper-right 
(or high dose area), and lower-right (or high-low dose area) quadrants. The overall 
AUPRC and AUROC for these areas is reported.

Model ablation analysis

To find the best-performing model, we first compared different sizes of k for the com-
pound structure hypergraph used for creating drug pair embeddings, and then we 
tested different cell line-gene embedding using single transcriptomics data against 
multi-omics. To construct the multi-omics model, we used DepMap’s gene essentiality 
scores (GES) and GRAND’s cell line-specific TF-gene regulatory networks (TF-GRNs) 
to obtain subgraph embeddings, respectively. Then, we concatenated them with the gene 
expression-based subgraph embeddings. The final comparison was conducted by com-
paring different molecular contexts including the C2 and the C3 collections, represent-
ing extracellular signaling pathways and intracellular regulatory networks, respectively.

Attention weight analysis

Statistical testing

We obtained weighted subgraphs by multiplying attention weights by subgraph values 
(e.g., dosage effects on enrichment scores for cell lines), then we applied the Mann–
Whitney U test to compare difference in weights between synergistic and antagonistic 
samples. The P-values were adjusted using the Benjamini–Hochberg method to control 
the false discovery rate at a level of 0.05.

Sample pools

We performed attention weight analysis for the top 20 drug-drug-cell line triplets our 
model performed well for. In this experiment, we sought to identify functional gene sets 
that were significantly differentially weighted between synergistic and antagonistic inter-
actions. For each triplet, we first search such gene sets in a sample pool consisting of dif-
ferent dose combinations, and then search in another sample pool consisting of different 
cell lines that were also screened against the same pair of drugs. Gene sets with adjusted 
P-value smaller than 0.05 were reported.
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Results
We used hypergraphs to learn intricate relationships among cell line-gene, drug-gene, 
and drug-structure in the context of gene regulation. Dose effects on subject-specific 
networks captured by the subgraph attention mechanism allow us to study how indi-
vidual molecular networks would be influenced by drug combinations and dose concen-
trations. The multi-modal model integrates different types of data to represent cell line 
data. Hence, we conducted the ablation study to find the best-performing modal.

Table  2 shows that increasing the size of k-mer can improve performance, among 
which using 9-mer to construct the chemical hypergraph obtained the best overall per-
formance on the benchmark dataset with an average AUPRC of 0.9 ± 0.006 and an aver-
age AUROC of 0.773 ± 0.009. While gene expression is beneficial for the prediction of 
drug response, studies have shown predictability of signals within GES [9] and TF-GRN 
[23]. Thus, we further constructed the multi-omics model incorporating gene expres-
sion, GES, and TF-GRN (see Methods), and compared it to the single transcriptomics 
model. The result showed that adding more features into the model slightly decreased 
the performance from 0.9 of AUPRC to 0.889 and 0.773 of AUROC to 0.751. We then 
continued with the single omics model that uses only gene expression as cell line rep-
resentation for further comparison. The experiment of comparing different cellular 
contexts also showed that combining multiple cellular contexts did not benefit model 
performance. However, different gene sets contribute to model performance differ-
ently. Using the C3 TF-targeting gene set achieved better performance for all evalua-
tion metrics, including AUPRC (0.9 ± 0.06 vs. 0.889 ± 0.005), AUROC (0.773 ± 0.009 
vs. 0.751 ± 0.008), per-triplet AUPRC (0.825 ± 0.229 vs. 0.808 ± 0.238), and per-triplet 
AUROC (0.697 ± 0.362 vs. 0.668 ± 0.370). We continued with these two models. From 
now on, we term them as SAFER-C2 and SAFER-C3, respectively.

We went on to compare our models to other state-of-the-art models. All models 
were evaluated on the same data splits. As shown in Table 3, all models can perform 
well on the benchmark dataset with the average AUPRC above 0.8 and the aver-
age AUROC above 0.7. We observed that two deep neural networks, CCSynergy 

Table 2 Model ablation analysis under different settings

The best scores were bolded

Single transcriptomics: gene expression as cell line representation

Multi‑omics: a concatenation of gene expression, cell line‑specific TF‑GRNs, and GES as cell line representation

Experiment settings AUPRC AUROC Per‑triplet AUPRC Per‑triplet AUROC

Wo one‑hot 0.873 ± 0.005 0.73 ± 0.011 0.812 ± 0239 0.662 ± 0.387

With one‑hot 0.900 ± 0.006 0.773 ± 0.009 0.825 ± 0.229 0.697 ± 0.362
3‑mer 0.888 ± 0.005 0.750 ± 0.08 0.811 ± 0.236 0.671 ± 0.369

6‑mer 0.887 ± 0.004 0.750 ± 0.08 0.810 ± 0.236 0.669 ± 0.369

9‑mer 0.900 ± 0.006 0.773 ± 0.009 0.825 ± 0.229 0.697 ± 0.362
12‑mer 0.888 ± 0.004 0.749 ± 0.07 0.811 ± 0.236 0.670 ± 0.369

Single transcriptomics 0.900 ± 0.006 0.773 ± 0.009 0.825 ± 0.229 0.697 ± 0.362
Multi‑omics 0.889 ± 0.005 0.751 ± 0.10 0.811 ± 0.236 0.671 ± 0.369

C2 0.889 ± 0.005 0.751 ± 0.008 0.808 ± 0.238 0.668 ± 0.370

C3 0.900 ± 0.006 0.773 ± 0.009 0.825 ± 0.229 0.697 ± 0.362
C2 and C3 0.887 ± 0.005 0.749 ± 0.009 0.808 ± 0.237 0.668 ± 0.369
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and DeepSynergy, performed better than the graph-based models, DeepDDs, Tran-
Synergy, SAFER-C2, and SAFER-C3, achieving superior overall performance with 
0.943 ± 0.005, 0.935 ± 0.15 of AUPRC, and 0.864 ± 0.009, 0.845 ± 0.013 of AUROC, 
which could be due to a larger number of hidden layer neurons between 2000 to 4096 
that are able to capture more nuances in the data. However, such “deep” architecture 
is not suitable attention-based models because of graph smoothing problem [10]. Fur-
thermore, given the subtle differences less than 0.05 in AUPRC, increasing the num-
ber of neurons in the feed-forward layers is not necessary for graph-based models. 
When testing on out-of-distribution (OOD) scenarios with substantial differences 
in drug pairs between training and test sets (average pairwise similarities of 0.13 for 
OOD-structure and 0.11 for OOD-target), all models showed reduced accuracies, 
as shown in Tables 4 and 5. However, SAFER-c2 and SAFER-c3 consistently outper-
formed DeepDDs, the graph attention network, suggesting that hypergraphs can bet-
ter capture multiple relationships. Notably, deep neural networks generally produced 

Table 3 Prediction performance on the O’Neil dataset

The best scores were bolded

Model AUPRC AUROC Per‑triplet AUPRC Per‑triplet AUROC

SAFER‑C2 0.889 ± 0.005 0.751 ± 0.008 0.808 ± 0.238 0.668 ± 0.370

SAFER‑C3 0.900 ± 0.006 0.773 ± 0.009 0.825 ± 0.229 0.697 ± 0.362
CCSynergy 0.943 ± 0.005 0.864 ± 0.009 0.548 ± 0.216 0.500 ± 0.008

DeepDDs 0.884 ± 0.009 0.773 ± 0.011 0.564 ± 0.223 0.495 ± 0.136

DeepSynergy 0.935 ± 0.015 0.845 ± 0.015 0.548 ± 0.216 0.50 ± 0.0

TranSynergy 0.90 ± 0.006 0.771 ± 0.011 0.553 ± 0.217 0.50 ± 0.010

Baseline 0.73 0.5 0.56 0.5

Table 4 Prediction performance on OOD‑target splits

The best scores were bolded

Model AUPRC AUROC Per‑triplet AUPRC Per‑triplet AUROC

SAFER‑C2 0.877 ± 0.06 0.732 ± 0.027 0.803 ± 0.239 0.657 ± 0.373

SAFER‑C3 0.887 ± 0.022 0.750 ± 0.035 0.817 ± 0.232 0.680 ± 0.368
CCSynergy 0.921 ± 0.015 0.820 ± 0.019 0.548 ± 0.216 0.500 ± 0.0

DeepDDs 0.884 ± 0.026 0.772 ± 0.020 0.565 ± 0.223 0.500 ± 0.133

DeepSynergy 0.907 ± 0.033 0.789 ± 0.054 0.548 ± 0.216 0.499 ± 0.005

TranSynergy 0.922 ± 0.011 0.820 ± 0.025 0.552 ± 0.216 0.500 ± 0.0

Baseline 0.73 0.5 0.54 0.500 ± 0.0

Table 5 Prediction performance on OOD‑smile splits

The best scores were bolded

Model AUPRC AUROC Per‑triplet AUPRC Per‑triplet AUROC

SAFER‑C2 0.880 ± 0.271 0.737 ± 0.031 0.802 ± 0.238 0.657 ± 0.370

SAFER‑C3 0.891 ± 0.215 0.755 ± 0.024 0.815 ± 0.233 0.681 ± 0.366
CCSynergy 0.921 ± 0.016 0.819 ± 0.023 0.548 ± 0.216 0.500 ± 0.0

DeepDDs 0.883 ± 0.019 0.773 ± 0.014 0.567 ± 0.224 0.500 ± 0.133

DeepSynergy 0.914 ± 0.021 0.797 ± 0.034 0.548 ± 0.216 0.500 ± 0.0

TranSynergy 0.920 ± 0.012 0.815 ± 0.012 0.552 ± 0.216 0.500 ± 0.0

Baseline 0.73 0.5 0.54 0.500 ± 0.0
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better results compared to graph embedding methods, indicating that larger embed-
ding sizes may be more effective.

On the comparison of per-triplet performance, SAFER surpassed all the other com-
peting models, with a 20–30% of performance gain. In contrast, all previous state-of-
the-art models showed poor performance no better than random guesses. This result 
suggests that our approach can capture response variations at the dose level, which can 
be confirmed by the result of the baseline model devised to predict the most prevalent 
label in the dataset. We can see that the baseline model can benefit from the unbal-
anced ratio between positive and negative samples (nearly 4 to 1) to achieve an over-
all performance above a random guess (AUPRC = 0.73). However, it fails to distinguish 
dose-level variations as demonstrated by its’ poor per-triplet performance that is equal 
to random guesses (per-triplet AUPRC = 0.56, per-triplet AUROC = 0.50). Such com-
parison demonstrated that dosing information is helpful for drug combination response 
classification.

It is of clinical interest to know if drug combinations can improve clinical outcomes 
without harm. Typically, higher dosages are more likely to cause unexpected out-
comes than lower doses. This drives us to evaluate model performance at different 
dose levels. We used IC50 values to define low and high-dose areas and then averaged 
their AUPRC and AUROC scores (see Materials and Methods). The results show that 
our models perform well regardless of dose regions as demonstrated by their superior 
performance than the baseline model. Furthermore, SAFER-C2 and SAFER-C3 have 
equally good performance in all dose areas with a small standard deviation of 0.01 as 
displayed by the short error bars in Fig. 2. Averaging the AUPRCs of the two models, 
we obtained 0.953, 0.865, 0.765, and 0.855 for the low, low–high, high, and high–low 
dose areas, respectively. As for the mean AUROC, they were 0.748, 0.696, 0.765, and 
0.738, respectively. Properly utilizing IC50 values is non-trivial as it is commonly used 

Fig. 2 Bar plots of AUPRC (upper panel) and AUROC (bottom panel) at four dose areas for models SAFER‑C2 
(blue) and SAFER‑C3 (red). Error bars indicate standard deviation across all folds
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to estimate drug response in vitro and in vivo. Furthermore, cross validation on the 
Almanac data that tested with 4 by 4 dose grid different from the O’Neil data which 
is 5 by 5 demonstrated SAFER’s applicability to different dose ranges (Average of 
AUPRC of two models = 0.775, AUROC = 0.777, average of per-triplet AUPRC = 0.8, 
per-triplet AUROC = 0.64). Together, in this experiment, we demonstrate that rank-
ing drug combinations based on effective dosages is possible with our approach given 
its robust performance across different dose ranges.

The Almanac dataset contains cancer cell lines that were not included in the O’Neil’s 
study, including brain, haematopoietic and lymphoid, and kidney tissue despite the 
two datasets share similar age and sex distribution, providing a valuable independent 
data to investigate tissue-specific drug responses (see Additional file 3, Figure S1–3). 
To test whether our context-dependent model can benefit model generalizability 
across tissue types, we applied our models trained on the O’Neil dataset to generate 
predictions for the non-overlapping Almanac dataset. The baseline performance on 
this independent data is 0.498 and 0.5 for AUPRC and AUROC because the class ratio 
is one-to-one (35,648 positive samples and 37,277 negative samples). As shown in 
Table 6, most of the models had prediction performance close to the baseline, indicat-
ing the difficulties of this task. SAFER-C2 outperformed all models in all measures and 
all scores were above the baseline (AUPRC = 0.540 ± 0.004, AUROC = 0.538 ± 0.004, 
per-triplet AUPRC = 0.677 ± 0.314, per-triplet AUROC = 0.549 ± 0.430), echoing 
previous findings that pathway information is more generalizable because of shar-
ing pathways across cancer types [15, 32]. SAFER-C2 and SAFER-C3 showed better 
per-triplet performance standing at top of the other competing models, which once 
again shows the importance of dosing information to dose-level synergy predictions. 
While integrating different modalities could help improve accuracy, the overall per-
formance may not be optimal for all competitors. Study has revealed the tissue-spec-
ificity nature of TF activities, which could provide insights into drug responses across 
various cancer types [4]. Hence, we reasonably hypothesize that this specificity might 
contribute to the observed low generalizability in our experiment. In other words, 
knowledge learned from the O’Neil dataset were not sufficient to capture the asso-
ciations with drug responses in the brain, haematopoietic and lymphoid, and kidney 
tissues. This highlights the necessity of tailoring learning models to specific contexts. 

Table 6 Prediction performance on the non‑overlapping Almanac dataset

–Indicates processed data (i.e., features) not available

The best scores were bolded

Model AUPRC AUROC Per‑triplet AUPRC Per‑triplet AUROC

SAFER‑C2 0.540 ± 0.004 0.538 ± 0.004 0.677 ± 0.314 0.549 ± 0.430
SAFER‑C3 0.471 ± 0.014 0.452 ± 0.018 0.630 ± 0.240 0.560 ± 0.317

CCSynergy 0.512 ± 0.004 0.530 ± 0.004 0.500 ± 0.000 0.500 ± 0.142

DeepDDs 0.492 ± 0.007 0.504 ± 0.012 0.509 ± 0.140 0.499 ± 0.006

DeepSynergy – – – –
TranSynergy 0.321 ± 0.000 0.396 ± 0.000 0.625 ± 0.176 0.500 ± 0.000

Baseline 0.489 0.50 0.5 0.5
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Further exploration of activities of transcription factors within these tissues could 
offer valuable insight into their potential influence on drug responses.

SAFER has some model interpretation advantages that it can learn the importance 
of functional gene set through subject-level enrichment scores and subject-level 
attention weights. Through statistical testing, we identified gene sets that are differ-
entially weighted between synergistic and antagonistic samples. Here, we highlight 
an example for the drug-drug-cell line triplet: 5-FU, Lapatinib, and MSTO, a lung 
cancer cell line that exhibits fibroblast morphology, and we provided the detailed list 
in the supplementary file (see Additional files 1–2, Table  S1–2). Briefly, this triplet 
was tested with 16 different non-zero dose combinations, and the drug pair exhibited 
synergistic effects in this lung cancer cell line only at the low dose area. Our atten-
tion weight analysis identified several zinc finger proteins and two signaling pathways 
involved in immune response that might account for drug combination responses in 
this lung cancer cell line (n = 15, adjusted P-value = 0.03) (Additional file 1, Table S1). 
Notably, these functional gene sets were also found in the other lung cancer cell lines 
in the dataset (n = 14,218, adjusted P-value = 0.01) (Additional file 2, Table S2). The 
results of our data-driven analysis can be confirmed by literature findings presented 
below.

Patients with lung fibroblasts typically have difficulties to breath. This is because zinc 
deficiency can cause oxidative stress and because such zinc-dependent DNA damages 
will alter binding activity of zinc finger transcription factors [44, 45]. Studies have rec-
ognized the regulation roles of some zinc-finger proteins in oncogenesis [45, 46]. While 
different types of zinc finger proteins may have different contributions to diseases, our 
findings of the positive regulatory domain (PRDM12) that encodes for zinc-finger pro-
teins, zinc-finger protein 781 (ZNF781), and cycle division cycle 5-like (CDC5L) echo 
previous research findings that suggest they could be biomarkers for lung adenocarci-
noma. For example PRDM12 was found only upregulated in lung, ovary, and prostate, 
breast, colon, kidney, and liver cancers and is not expressed in normal tissues [47]. 
CDC5L may contribute to metastasis in lung cancer through regulating cell division 
[48]. In this example, we can see that drug response variations might be related to tran-
scriptional changes resulted from changes in TF binding activities and/or subsequent 
post-translational modification. From SAFER-C2, we found REACTOME’s antiviral 
mechanism by interferons (IFN) stimulated genes (i.e., JAK-STAT signaling pathway) is 
closely related to various cancers including non-small cell lung cancer [49–51]. The other 
pathway is the thermogenesis pathways of WiKiPathways, a typical heat production pro-
cess during immune reactions. Two pathways are related to immune response. It is worth 
noting that, the low doses, synergistic and the high doses, antagonistic responses were 
clustered in different groups by all the functional gene sets discussed above, as shown 
in the cluster heatmaps of Fig. 3. While it is known that adaptive immune system will 
develop more specific antibodies when carrying certain tumors for a long time, but little 
is known about if dose amount can influence the adaptive immunity. Further investiga-
tions are needed to find out whether increasing dose amount will induce a new immune 
response through heat production or enhance the existing defence mechanisms. Like-
wise, whether the amount of dose combination will influence TF-binding activity identi-
fied from SAFER-C3 needs to be elucidated.
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Fig. 3 Heatmaps of functional gene sets differentially weighted between synergistic and antagonistic 
samples from SAFER‑C2 (a) and SAFER‑C3 (b). These figures utilize a diverging color palette, where higher 
weights are represented in rad and lower weights in blue. Synergistic and antagonistic effects are annotated 
on the top of the heatmap, with red indicating synergistic and green indicating antagonistic interactions
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Discussions
We have presented the context-aware hypergraph-based prediction model. To the best 
of our knowledge, this study is the first work to employ attention-based hypergraph 
models for learning dose-level drug combination responses. It is known that previous 
state-of-the-art suffer from distinguishing dose-level synergistic interactions. On the 
other hand, the subgraph attention mechanisms were useful for capturing dosage effects 
on gene activities within molecular contexts. We injected dose information in every 
component, each of them provides distinct but complementary features that helps to 
improve prediction performance.

The internal and external validation indicates different molecular contexts have differ-
ent contributions to predictive models: SAFER-C2 is more generalizable while SAEFR-
C3 is more tissue-specific. Given their distinctive roles, integration analysis of signaling 
pathways and transcription factors could potentially provide a more comprehensive 
perspective of cellular communication [52]. However, our model performance dropped 
when using both C2 and C3 gene sets, indicating that current approach has limitation. 
We provided two future directions to address this: (1) the gene-set enrichment scores 
can be used to exclude irrelevant gene sets. (2) the attention-based hypergraph represen-
tation learning is based on static hypergraph structure, but different cancers or subtypes 
may develop unique pathways as disease progress. Effectively pruning hyperedges based 
on an individual’s molecular characteristics could be an interesting direction. While we 
recognize that our approach may not match the performance of deep neural networks, 
expanding the embedding size would increase computational costs and potentially lead 
to a smoothing effect, diminishing the model’s ability to differentiate between synergistic 
effects. Future research should not only focus on reducing the hypergraph size, as men-
tioned earlier but also explore hierarchical relationships among gene sets. Implementing 
hierarchical models could capture local and global contextual information, thereby pre-
serving diversity in node embeddings without requiring overly large embedding dimen-
sions. We expect our framework to be a useful platform for discovering mechanistic 
insights into dose-dependent drug combination responses.

Despite we carefully selected an independent data, the Almanac data is not patient 
tumor data. Although determination of drug doses is essential for clinical drug discov-
ery, studies often release only drug responses either IC50 values or clinical outcomes 
(e.g., Response Evaluation Criteria in Solid Tumors, or RECIST) when published their 
datasets. The lack of proper training data poses an obstacle for us to apply our models to 
tumor data. We suggest future investigators to also release dosing information for their 
studies, to increase the translational value of computational models by bridging the gap 
between immortal cancer cell lines and patient-derived tumors. Based on our previous 
success for monotherapies [32], we believe that SAFER-C2 has the transferrable poten-
tial and can generalize well to a tumor data through transfer learning.

Conclusions
We have presented a multi-modal hypergraph-based model tailored for context-
aware drug combination prediction and mechanistic interpretation of drug responses. 
We have demonstrated SAFER’s capacity to effectively capture dose-level variations 
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in drug combination responses, surpassing the limitations of previous models. By 
integrating gene set knowledge and molecular contexts, SAFER offers a comprehen-
sive understanding of the underlying mechanisms driving drug responses. Through 
a proof-of-concept application on established biological knowledge networks associ-
ated with context-specific drug response, SAFER showcases its adaptability to diverse 
biological gene sets of interest. Its innovative design enables the elucidation of the 
intricate relationship between dosage effects on molecular networks and drug syner-
gistic interactions. SAFER provides an interpretable framework for exploring molecu-
lar context-dependent genetic changes and unlocking the potential for personalized 
medicine. By leveraging SAFER, future research can delve deeper into individual 
patient molecular profiles, ultimately enhancing our ability to tailor treatments and 
improve patient outcomes in diverse clinical settings.
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