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Abstract 

Background: Thermostability is a fundamental property of proteins to maintain their 
biological functions. Predicting protein stability changes upon mutation is important 
for our understanding protein structure–function relationship, and is also of great inter-
est in protein engineering and pharmaceutical design.

Results: Here we present mutDDG-SSM, a deep learning-based framework 
that uses the geometric representations encoded in protein structure to predict 
the mutation-induced protein stability changes. mutDDG-SSM consists of two parts: 
a graph attention network-based protein structural feature extractor that is trained 
with a self-supervised learning scheme using large-scale high-resolution protein 
structures, and an eXtreme Gradient Boosting model-based stability change predictor 
with an advantage of alleviating overfitting problem. The performance of mutDDG-
SSM was tested on several widely-used independent datasets. Then, myoglobin 
and p53 were used as case studies to illustrate the effectiveness of the model in pre-
dicting protein stability changes upon mutations. Our results show that mutDDG-SSM 
achieved high performance in estimating the effects of mutations on protein stability. 
In addition, mutDDG-SSM exhibited good unbiasedness, where the prediction accu-
racy on the inverse mutations is as well as that on the direct mutations.

Conclusion: Meaningful features can be extracted from our pre-trained model 
to build downstream tasks and our model may serve as a valuable tool for protein engi-
neering and drug design.

Keywords: Protein stability changes, Mutation, Graph attention network, Self-
supervised learning, EXtreme Gradient Boosting model

Background
The biological function of a protein is largely determined by its tertiary structure and the 
associated thermodynamic stability [1], and thus the mutation of residues may affect pro-
tein function through changing its structural stability [2]. Previous studies have revealed 
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that many human disorders were attributed, at least partially, to protein stabilization or 
destabilization caused by missense mutations [3]. Therefore, accurate prediction of pro-
tein thermostability changes resulted by residue substitution is crucial for better under-
standing protein function, and assists in predicting deleterious mutations responsible for 
human diseases [4]. In addition, improving thermodynamic stability is one of the com-
mon requirements in protein engineering for biopharmaceuticals [5]. Protein stability 
optimization is important for the development, manufacture, storage and clinical utili-
zation of biological products [6]. Consequently, effective prediction of mutation-induced 
protein stability changes also has significant applications in bioindustry.

The thermodynamic stability of a protein is usually represented as the difference in 
free energy between the folded and unfolded states (ΔG) [7], which is determined by 
the inter-residue interactions within the protein structure as well as the interactions 
between the protein and the aqueous solution [8]. Upon the mutation of a residue, the 
interactions involving the mutated residue will be altered, which results in the changes 
in the thermodynamic stability (ΔΔG) of the protein [9]. Experimentally evaluating the 
effects of mutations on protein stability is expensive and time-consuming [10]. Espe-
cially, protein stability optimization usually involves the screening of numerous pos-
sible mutations, and thus experimental measurement is a huge task, if not impossible. 
Computational methods, such as molecular dynamics (MD) simulations [11], empirical 
potential-based calculations, and machine learning (ML) models, provide a complemen-
tary approach to experiments in characterizing protein stability changes [12, 13]. These 
computational methods are relatively faster and can also be applied to predict the effects 
of mutations that are difficult or impossible investigated by experiments [14]. MD sim-
ulations in combination with the molecular mechanics-generalized Born surface area 
(MMGBSA) [15] or free energy perturbation (FEP) [16] methods have been largely used 
in computing the mutation-induced protein stability changes, and the FEP method is 
believed to be one of the most accurate computational methods to date. However, MD 
simulations require significant computational resources. Empirical potential-based 
methods, for example, FoldX [17] and Rossetta [18], are computationally more efficient 
and usually applied in large-scale mutation screening, but the accuracy of this kind of 
methods is limited.

With the rapid developments in artificial intelligence, many effective methods with 
low computational cost based on machine learning (ML) models have been proposed 
for predicting the impact of mutations on protein thermodynamic stability [19]. In these 
ML-based methods, a variety of algorithms have been applied, ranging from the classical 
decision tree, random forests, support vector machine and artificial neural network to 
the newest deep learning approaches. The information used in these prediction methods 
includes protein sequence [20], molecular evolution [21], tertiary structure [22], physical 
and statistical energies [12], or combination of them [12], in which three-dimensional 
structure and the related features were taken into accounts for most of the leading ML-
based models [23]. ML-based methods are powerful in extracting the vital informa-
tion that determines the changes in protein stability upon point mutation, however, the 
performance of these methods is relied on large amounts of high-quality experimental 
data for model training [24]. Unfortunately, the number of cases in the available training 
dataset, for example, the most commonly used Q3421 [25], is currently still limited, and 
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a large portion of the previously published ML-based methods for predicting mutation-
induced stability changes are prone to overfitting [26]. These methods only perform well 
on the cases similar to the mutations in training sets, but cannot be generalized well 
to the unseen protein structures. Besides that, the available experimental datasets are 
unbalanced, which are dominated by destabilizing cases, and therefore most of the ML-
based prediction methods are also biased. The performance of these methods on the 
inverse mutations is not as well as that of the direct mutations in the test dataset [27]. It 
is highly desirable, but also challenging, to develop a ML model with good generalizabil-
ity and unbiasedness.

In the present work, inspired by the study of Liu et al. [28], we designed a novel deep 
learning framework, called mutDDG-SSM, to predict the changes in protein stability 
upon residue mutations. In our method, the essential features underlying the interac-
tions of a residue with its surrounding neighbors were extracted from a large number 
of known protein structures by using a graph attention network (GAT) [29] with a self-
supervised learning scheme. The task in the self-supervised learning process is to predict 
the original conformation of a given perturbed protein, in which the side chain of a resi-
due was randomly rotated. By this way, the intrinsic inter-atomic interactions between 
residues were extracted. Then, the learned representations were applied in an eXtreme 
Gradient Boosting (XGBoost) [30] model to predict the impacts of residue mutations on 
protein stability. In our mutDDG-SSM method, the atomic representations were learned 
from large-scale unlabeled protein structures across divergent classes. These learned 
representations can be used for different downstream tasks including but not limited to 
protein stability prediction, protein–protein binding affinity prediction, and so on. The 
self-supervised learning scheme by large amounts of protein structures can help to avoid 
the overfitting and unbalance problems commonly faced by previously reported models. 
The XGBoost model used in the latter training stage also has the advantage of avoiding 
overfitting compared to other ML models. These schemes enable our method to be bet-
ter generalizability and unbiasedness. Tests on the widely used independent  Ssym [31], 
S350 [32], S611 [33], S276 [34] and S669 [19] datasets demonstrated that our method 
achieved one of the best unbiased performance for the direct and the corresponding 
inverse mutations compared to other methods tested. Given that the majority of protein 
mutations seen in nature are single nucleotide variants (SNVs) [35], which are usually 
associated in human diseases [36], we also evaluated the performance of mutDDG-SSM 
by classifying the mutations into SNVs and non-SNVs. Then, myoglobin [37] and p53 
[38] were used as case studies to illustrate the effectiveness and unbiasedness of mut-
DDG-SSM in predicting mutation-induced protein stability changes.

Methods
The architecture of mutDDG‑SSM

The proposed mutDDG-SSM consists of two parts: the protein structural feature extrac-
tor and the mutation-induced protein stability change predictor, as shown in Fig. 1. The 
GAT model, which is excellent in extracting geometric features, was used as the feature 
extractor. A self-supervised learning scheme was designed for the training of the GAT 
model to extract the representation of the intrinsic inter-residue interactions within 
protein structure. The geometric representations extracted from the pre-trained GAT 
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model were inputted to the second part of mutDDG-SSM to predict the changes of pro-
tein stability caused by residue mutation. The XGBoost model was applied as the pro-
tein stability change predictor owing to its good performance in avoiding overfitting 
problem.

Design of tasks for the self‑supervised learning scheme

To learn the intrinsic features encoding the atomic interactions of the residue with its 
surrounding neighbors in protein structures, a self-supervised learning scheme was 
designed. A large-scale non-redundant and high-resolution protein structures were used 
for the self-supervised learning. For a given protein structure, the side chain of a ran-
domly selected residue was perturbed, and the task for the self-supervised training was 
to predict the original conformation of the perturbed residue within the protein. By this 
way, the essential geometric features underlying the atomic interactions of the residue 
with its surroundings in the protein structure were captured.

Fig. 1 Overall view of the mutDDG-SSM framework. a The self-supervised GAT encoder to extract the 
geometric representations encoded in the protein structure. b The XGBoost predictor to evaluate the 
changes in protein stability upon residue mutation by using the features learned by the GAT encoder
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Specifically, in residue perturbation, the values of the torsion angles of the perturbed 
residue were sampled according to the distribution and probability provided by the 
Dunbrack backbone-dependent rotamer library [39]. Dunbrack rotamer library, which is 
derived from the analysis of large-scale protein native structures, provides the probabil-
ity of discrete side-chain torsion angles of a residue dependent on the backbone dihe-
dral angle values. Based on the Dunbrack rotamer library, we randomly alter the residue 
conformation within the protein structure to adopt a new conformation. Based on the 
perturbed conformation, the task of the self-supervised learning is to predict the origi-
nal conformation of the residue within the protein. For glycine and alanine, whose side 
chain only consist of hydrogen or methyl groups, the original conformation of the side 
chain remains unchanged.

Representation extraction by the self‑supervised learning scheme with a graph attention 

network model

The GAT model was used for the self-supervised learning to capture the geometric fea-
tures encoding the inter-residue interactions within the protein structure. GAT model 
describes protein structures as graphs, in which atoms in the structure were represented 
by nodes and the interactions between atoms were represented as edges. The attention 
mechanism of the model enables the features of the nodes to be updated using their 
neighborhood’s features with different weights. The GAT model has been widely applied 
to bioinformatics studies, such as protein–protein binding prediction [40], protein–
ligand interaction prediction [41], and protein function prediction [42].

Specifically, for a given protein structure with a perturbed residue, a graph was firstly 
built, in which the atoms in the protein were represented by nodes and the interactions 
between atoms were simplified by edges [29]. Only the heavy atoms in the structure, 
including carbon, nitrogen, oxygen, and sulfur, were considered for the graph construc-
tion. Besides that, to reduce the computation complexity, only the atoms within a radius 
of 12.0  Å to the center of the perturbed residue were taken into account to build the 
graph. In the case of the residue having only a portion of its atoms falling within the 
12.0 Å range, all the atoms belonging to the residue were retained in the graph. If the 
distance between two nodes is less than a threshold (3.0 Å was adopted), an edge was 
assumed to exist between these them. The nodes in the graph were attached with attrib-
utes that describe the properties of the atoms. In this study, for each node, 36-dimen-
sional attributes were considered, which include:

(1) The atom type, i.e., carbon, nitrogen, oxygen, or sulfur, represented by one-hot 
encoding;

(2) The type of the amino acid, to which the atom belongs, represented by 20-dimen-
sional one-hot encoding;

(3) The type of DSSP secondary structure [43] involving the atom, i.e., alpha-helix, iso-
lated beta-bridge residue, strand,  310-helix, pi-helix, turn, bend or none, encoded by 
one-hot codes;

(4) A one-hot encoding of the atom that was perturbed or not;
(5) A binary attribute representing whether the solvent accessible surface area (SASA) 

[44] of the atom is greater than 0 or not (denoted by 1 or 0, respectively);
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(6) A binary feature indicating whether the atom is a Cα atom or not, represented by 1 
or 0, respectively.

The node figures and edges constructed from the protein structure upon residue per-
turbation were fed into the GAT model. GAT updates the node features using a self-
attention mechanism. The normalized attention coefficients were calculated according 
to the formula described in the reference [29]. Then, based on the normalized attention 
coefficients, the node features were updated by weighted summation of the features 
from its neighboring nodes. In this study, a multi-head attention was used in the self-
attentional layer, in which the feature representation output was the concatenation of 
the output from eight independent self-attention operations. To better extract the rep-
resentations encoding the inter-residue interactions within the protein structure, four 
eight-head attention layers were stacked, and the output representations from the third 
and fourth layers were concatenated as the final geometric representations.

Based on the geometric representations extracted by the GAT model, a three-layer 
perceptron network was employed to predict the original conformation of the per-
turbed residue within the protein. Considering that directly predicting the absolute 
value of the atomic positions increases the difficulty, our model aimed to predict the 
deviation of the atoms between the perturbed and original positions, expressed by

where �di is the predicted deviation of the perturbed atom i from its native position, 
−→
g i is the geometric representations of atom i , and MLP stands for the multi-layer per-

ceptron network. The real value for the deviation of the perturbed atom i , denoted as 
�dreali  , was computed by the root mean square deviation (RMSD) of the atomic coor-
dinates between the perturbed and original conformations. Then, the loss function of 
the GAT model for the self-supervised learning was defined as the mean square error 
between the predicted and real deviations of the perturbed atoms, given by

where Np is the number of atoms in the perturbed residue. The GAT model was imple-
mented in the framework of PyTorch [45] and PyTorch Geometric [46].

In summary, based on the self-supervised learning scheme with the GAT model, 
the geometric representations encoding the inter-residue interactions were extracted 
from the large-scale non-redundant protein structures.

Prediction of mutation‑induced protein stability changes by eXtreme Gradient Boosting 

model

Based on the geometric representations extracted by the self-supervised learning 
scheme, the changes in protein stability upon residue mutation were predicted using 
a XGBoost model. XGBoost model has good performance in avoiding overfitting 
compared to other ML models.

(1)�di = MLP
(−→
g i

)

(2)L =
1

Np

∑

i∈Np

(

�di −�dreali

)2
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The geometric representations of both the original protein and its mutant were first gen-
erated by using the trained self-supervised GAT model. As given by Eq. (3), the geometric 
representations of each atom were taken from the third and fourth attention layers of the 
GAT model. The representations of the atoms in the mutated residue and those of the other 
atoms within a radius of 12.0 Å to the center of the mutated residue were represented by.

where L = 3 or 4 that stands for the representations derived from the third and fourth 
layers of the GAT model, respectively; Amo , Ano , Amm , and Anm denote the atoms belong-
ing to the mutated residues in the original protein, the non-mutated residues within a 
12.0 Å radius in the original protein, the mutated residues in the mutant protein, and 
the non-mutated residues within a 12.0  Å radius in the mutant protein, respectively. 
Then, both the maximum and mean values over the atoms in the mutated residue were 
computed to represent the geometric features of the mutated residue. The maximum 
and mean values of the non-mutated atoms were calculated to represent the geometric 
features of the environment around the mutated residue. The differences in the maxi-
mum and mean values between mutated and non-mutated atoms were also computed 
to represent the distinct geometric features of the mutated residue in comparison of its 
environment. All these geometric representations both for the original protein and its 
mutant were concatenated together, and standardized by removing the mean and scaling 
to unit variance, which can be expressed as

where L = 3 or 4 that stands for the representations derived from the third and fourth 
layers of the GAT model, respectively; std(· · · ) means the standardization operation for 
each feature over the whole training dataset; The subscripts ‘max’ and ‘mean’ denote the 
max-pooling and mean-pooling operations over the atoms in the corresponding atom 
sets, respectively; ‖ represents the concatenation of the geometric representations. Then, 
these geometric representations from the third and fourth layers of GAT model were 
concatenated together and fed into the XGBoost model, and the change of protein sta-
bility ��G caused by residue mutations was outputted, i.e.,

(3)
{

�h
′(L)
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}

,
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In our study, the XGBoost model was trained and tested, respectively, by using inde-
pendent protein datasets with available experimental mutation-caused stability change 
data.

The training techniques of mutDDG‑SSM

The architecture of the proposed mutDDG-SSM framework is composed of two sepa-
rate components, i.e., the self-supervised GAT encoder to extract the geometric repre-
sentations of the protein structure and the XGBoost predictor to predict the changes 
in protein stability upon residue mutation by using the features learned by the GAT 
encoder. These two parts were trained separately by using different datasets. The GAT 
model was trained on a large-scale unlabeled high-resolution protein structure data-
set via a self-supervised learning scheme. The XGBoost model was trained on the 
labeled dataset with available mutation-induced stability change values obtained from 
experiments.

The GAT model was trained by using batch gradient descent approach with the 
Adam optimizer, The batch size was 128 and the learning rate was set to 0.001. For 
the training of the XGBoost model, the training set was divided into ten subsets, and 
then ten separate models were optimized. Each model was trained on nine subsets 
and the remaining one subset was utilized as the validation set. The average value of 
the outputs of these optimized ten models was taken as the final output. The hyperpa-
rameters of XGBoost model were chosen from n_estimators ∈ {10000, 20000, 30000} , 
max_depth ∈ {5, 6, 7} , subsample ∈ {0.6, 0.7, 0.8} , colsample_bytree ∈ {0.55, 0.56, 0.57} 
and learning_rate ∈ {0.02, 0.05, 0.1} by grid search procedure. The best hyperparameters 
were determined to yield the highest performance of the model.

Dataset preparation

To train the geometric feature extractor, i.e. the GAT model, via the self-supervised 
learning approach, a large-scale training dataset was constructed from the Protein Data 
Bank (PDB) by using the PISCES [47] server. PISCES provided a tool to screen non-
redundant and high-resolution protein structures from PDB based on sequence identity 
and structural quality. Considering that the quality of protein structures in the training 
dataset influences the performance of the model [48], only the protein structures meet-
ing the following criteria were selected and included in the dataset:

(1) The structure was obtained by X-ray crystallography with an R-value less than 0.25;
(2) The resolution of the structure was below 2.0 Å;
(3) The protein length was within the range of 40–500 amino acids and devoid of any 

break or missing of residues;
(4) Sequence identity among the proteins in the dataset was below 25%.

A total of 5893 protein structures were collected. After adding missing atoms by 
using PDBFixer (https:// github. com/ openmm/ pdbfi xer) [49], these protein structures 
were included in the dataset for the training and validation of the GAT model. From 
the collected dataset, 5238 protein structures were randomly partitioned into training 
set, which were used to train the protein geometric feature extractor, namely the GAT 

https://github.com/openmm/pdbfixer
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model, using the self-supervised learning scheme as discussed above. The remaining 
655 protein structures from the dataset were taken as the validation set. The PDB acces-
sion code, along with the organism and structural class, of the protein structures in the 
training and validation set were listed in Supplementary Table 1. During the training and 
validation of the GAT model, residue perturbation was performed 2000 times for each 
protein structure, and therefore 10,476,000 and 1,310,000 data were used, in fact, for the 
training and validation of the GAT model, respectively.

The mutation-induced ��G predictor, namely the XGBoost model, was trained using 
the widely adopted Q3421 dataset. The prediction performance of the model was tested 
on several commonly used datasets, including  Ssym, S350, S611, S276 and S669, and two 
protein cases, i.e., myoglobin and p53, to explore the accuracy and generalizability of our 
model.

Q3421 contains 3421 single-point mutations with experimentally measured ��G val-
ues from 150 proteins. This dataset contains 14 proteins that are also included in the 
 Ssym test dataset. Therefore, these 14 proteins along with the related mutation data were 
removed from Q3421, and then a dataset consisting of 3213 mutations, called Q3213, 
was obtained. Furthermore, to balance the stabilizing and destabilizing mutations in the 
dataset, the inverse mutation assigned with opposite ��G value was created for each 
direct mutation in the dataset. The structure of the protein with inverse mutations was 
constructed using Rossetta [50]. By this way, the Q3213 dataset was augmented to a bal-
anced dataset containing 6426 mutation data.

For the test datasets,  Ssym is composed of 684 mutation data, including 342 direct 
mutations with available experimental ��G values as well as the corresponding inverse 
mutations. S350 consists of 350 experimental mutations from 67 different proteins. S611 
is an extension of S350, which includes 611 direct and inverse mutations. S276 con-
tains 276 experimental ��G values from 37 different proteins, and S669 consists of 669 
experimental data from 94 proteins. These datasets were used to test the performance 
of the model trained by Q3213. After removing the shared mutations in the training set 
Q3213, the number of mutation data points in S350 was decreased to 203, named as 
S203, and that of S611 was reduced to 347, called S347, with 203 direct and 144 inverse 
mutations. For S276 and S669, the number of experimental values was reduced to 254 
and 615 (called S254 and S615 respectively) after removing the same mutations shared 
with Q3213. Then, S254 and S615 were augmented to include the corresponding inverse 
mutations of the experimental data. The PDB accession code and mutation information 
of the protein structures in S203, S347, S254 and S615 were listed in Supplementary 
Tables 2, 3, 4 and 5, respectively. Myoglobin and p53 that were used as case studies in 
our study contain 134 and 42 experimental mutations, respectively. The mutations in 
myoglobin and p53 were listed in Supplementary Tables 6 and 7. In our study, the corre-
sponding inverse mutations were also constructed and included in the datasets for these 
two proteins.

Performance measures

In this study, the performance of mutDDG-SSM model was evaluated and compared 
with other previously developed methods using the Pearson correlation coefficient 
(PCC), root mean square error (RMSE), and mean absolute error (MAE) between the 
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predicted ��G values and the experimental data. The accuracy (ACC), sensitivity 
(SEN), specificity (SPE) and Matthews correlation coefficient (MCC) were applied to 
evaluated the performance of the model in classifying the stabilizing and destabilizing 
mutations. In addition, to evaluate the biasedness of the model in predicting the ΔΔG 
values of direct and inverse mutations, rd−i and < δ > were calculated by

here ��Gdirect and ��Greverse represent the predicted values for the direct and inverse 
mutations, respectively. n is the number of data points.

Results
Performance in predicting mutation‑induced protein stability changes

The prediction performance of our mutDDG-SSM model was compared with 
other 14 previously published models on the  Ssym test set. As shown in Table  1 
and Fig.  2, mutDDG-SSM obtained PCC = 0.64 , RMSE = 1.28 kcal/mol and 
MAE = 0.90 kcal/mol in the direct mutations, and PCC = 0.64 , RMSE = 1.28 kcal/mol 
and MAE = 0.90 kcal/mol in the inverse mutations. For the overall test set con-
taining both direct and inverse mutations, mutDDG-SSM showed PCC = 0.73 , 
RMSE = 1.28 kcal/mol , MAE = 0.90 kcal/mol , respectively. Compared to the previ-
ously reported methods, our model achieved better performance. For direct mutations, 
the PCC value of our model is lower than that of SAAFEC-SEQ [51] and cartesian_ddg 

(6)rd−i = PCC(��Gdirect ,��Ginverse)

(7)< δ >=
1

n

∑n

i=1
(��Gdirect +��Ginverse)

Table 1 Comparison of the ��G prediction performance between different methods on the  Ssym 
dataset

The best predicted results among all tested methods on the  Ssym dataset are shown in bold for each criteria. The units of 
RMSE, MAE and δ are kcal/mol

Method Overall Direct Inverse Prediction bias

PCC RMSE MAE PCC RMSE MAE PCC RMSE MAE rd−i  < δ > 

mutDDG-SSM 0.73 1.28 0.90 0.64 1.28 0.90 0.64 1.28 0.90 − 0.99 0.00
KORPM [54] 0.69 1.35 0.97 0.56 1.30 0.94 0.49 1.40 1.00 − 0.88 − 0.06

Cartddg 0.63 3.44 2.64 0.66 3.32 2.66 0.45 3.56 2.63 − 0.41 − 1.56

FoldX 0.54 1.88 1.31 0.64 1.49 1.08 0.38 2.20 1.54 − 0.27 − 0.63

Evo [55] 0.55 1.57 1.13 0.58 1.36 1.00 0.32 1.75 1.26 − 0.58 − 0.18

PoPMuSiC [32] 0.52 1.60 1.17 0.48 1.58 1.16 0.47 1.62 1.18 − 0.77 − 0.03

DDGun3D [56] 0.63 1.45 1.06 0.55 1.43 1.05 0.53 1.47 1.07 − 0.99 − 0.02

ThermoNet [57] 0.55 1.55 1.11 0.47 1.55 1.11 0.47 1.56 1.12 − 0.96 − 0.01

ACDC-NN [58] 0.69 1.40 1.02 0.61 1.37 1.01 0.59 1.43 1.04 − 0.98 − 0.03

MAESTRO [59] 0.43 1.79 1.29 0.57 1.31 0.91 0.27 2.16 1.66 − 0.33 − 0.62

Dynamut [60] 0.50 1.61 1.15 0.56 1.46 1.04 0.35 1.75 1.26 − 0.57 − 0.13

mCSM [38] 0.40 1.93 1.42 0.61 1.23 0.91 0.14 2.43 1.93 − 0.26 − 0.91

SDM 0.32 1.99 1.51 0.50 1.57 1.22 0.17 2.34 1.80 − 0.43 − 0.55

DUET [61] 0.43 1.84 1.32 0.63 1.22 0.87 0.17 2.30 1.76 − 0.30 − 0.74

SAAFEC-SEQ 0.26 2.08 1.42 0.73 1.05 0.73 − 0.43 2.75 2.11 0.67 − 0.97
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(Cartddg) [52], while for inverse mutations, our model outperforms all other models 
listed in Table 1. The overall prediction accuracy of our model is the best, which is not 
only significantly superior than the empirical potential-based methods, such as Cartddg, 
FoldX and SDM [53], but also better than other machine learning (ML)-based models, 
as shown in Table 1. The PCC value obtained by our model is higher than all the other 
previously developed models listed in Table 1, and the RMSE and MAE values are lower 
than all of previous models. 

Our model also exhibited unbiased performance with high anti-symmetric proper-
ties. Table 1 and Fig. 2 show that the prediction accuracy of our model on the inverse 
mutations is as good as that of the direct mutations. In order to measure the predic-
tion bias, the PCC value rd−i between the predictions for direct mutations and those 
for inverse mutations, along with the 〈δ〉 value, was calculated according to Eqs. (6) and 
(7) described in the Method section. The closer the values of  rd−i and 〈δ〉 are to − 1 
and 0, the better the unbiasedness of the model. Table 1 and Fig. 2 show  rd−i = −0.99 
and �δ� = 0.00 for mutDDG-SSM, indicating that our model is unbiased in predicting 
the ��G values. Table 1 also display that both the  rd−i and 〈δ〉 values of our model are 
better than all the other previous methods, which demonstrates that the unbiasedness of 
our model outperforms other methods.

Considering that the naturally-occurring disease-related mutations in proteins are 
usually SNVs, we then assess the performance of mutDDG-SSM on the  Ssym dataset by 
classifying mutations into SNVs and non-SNVs.  Ssym dataset consists of 214 SNVs and 
128 non-SNVs, respectively. The calculation results show the performance of mutDDG-
SSM is better than all other models on non-SNVs, as displayed in Table 2. The prediction 
accuracy of mutDDG-SSM on SNVs is obviously inferior to that of non-SNVs, but it is 
also superior than most of the other models listed in Table 2. Pandey et al. also revealed 
that all the models tested in their study work better on non-SNVs than SNVs [35], which 
is consistent with our results.

Performance in classifying stabilizing and destabilizing mutations

We also explored the performance of mutDDG-SSM in distinguishing the stabilizing and 
destabilizing mutations in the  Ssym test set. The mutations with a negative ΔΔG value 
were defined as stabilizing ones, and those with a positive value were destabilizing ones. 

Fig. 2 The performance of mutDDG-SSM in predicting ��G on the  Ssym dataset. a The performance of 
mutDDG-SSM on direct mutations. b The performance of mutDDG-SSM on inverse mutations. c Prediction 
bias of mutDDG-SSM
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The ACC, SEN, SPE, and MCC of our mutDDG-SSM model were computed, and com-
pared with other previously developed methods. The calculation results are displayed 
in Table  3. mutDDG-SSM is one of the best models in classifying the stabilizing and 

Table 2 Comparison of the ∆∆G prediction performance between different methods on the  Ssym 
dataset by classifying mutations into SNVs and non-SNVs

The best predicted results among all tested methods on the  Ssym dataset  by classifying mutations into SNVs and non-
SNVs are shown in bold for each criteria. The units of RMSE and MAE are kcal/mol

Method SNVs non‑SNVs

PCC RMSE MAE PCC RMSE MAE

mutDDG-SSM 0.55 1.27 0.90 0.84 1.32 0.95
KORPM 0.60 1.22 0.92 0.77 1.54 1.05

Cartddg 0.62 3.08 2.37 0.64 3.97 3.11

FoldX 0.49 1.65 1.20 0.48 1.67 1.18

Evo 0.41 1.43 1.05 0.65 1.78 1.26

PoPMuSiC 0.39 1.40 1.04 0.63 1.89 1.39

DDGun3D 0.41 1.38 0.99 0.43 1.39 0.97

ThermoNet 0.43 1.37 0.99 0.63 1.81 1.32

ACDC-NN 0.51 1.32 0.95 0.51 1.32 0.95
MAESTRO 0.27 1.61 1.17 0.27 1.61 1.17

Dynamut 0.30 1.48 1.06 0.30 1.48 1.06

mCSM 0.26 1.73 1.30 0.26 1.73 1.30

SDM 0.26 1.72 1.32 0.26 1.72 1.32

DUET 0.32 1.63 1.18 0.32 1.63 1.18

SAAFEC-SEQ 0.21 1.80 1.26 0.31 2.49 1.68

Table 3 Comparison of the performance between different methods in distinguishing the 
stabilizing and destabilizing mutations on the  Ssym dataset, as well as on the SNVs and non-SNVs 
subsets of  Ssym

The best predicted results among all tested methods in distinguishing the stabilizing and destabilizing mutations on 
the  Ssym dataset are shown in bold for each criteria

Method Overall SNVs non‑SNVs

ACC SEN SPE MCC ACC SEN SPE MCC ACC SEN SPE MCC

mutDDG-SSM 0.77 0.77 0.77 0.54 0.75 0.76 0.74 0.50 0.82 0.81 0.83 0.65

KORPM 0.78 0.78 0.78 0.56 0.75 0.75 0.75 0.50 0.84 0.83 0.84 0.67
Cartddg 0.73 0.58 0.87 0.48 0.73 0.58 0.87 0.47 0.74 0.59 0.88 0.49

FoldX 0.66 0.55 0.77 0.33 0.64 0.55 0.74 0.29 0.69 0.56 0.82 0.39

Evo 0.65 0.61 0.69 0.31 0.63 0.59 0.67 0.25 0.70 0.65 0.74 0.40

PoPMuSiC 0.69 0.68 0.71 0.38 0.65 0.63 0.67 0.31 0.75 0.75 0.76 0.51

DDGun3D 0.67 0.67 0.67 0.34 0.66 0.65 0.67 0.32 0.70 0.70 0.69 0.39

ThermoNet 0.69 0.67 0.71 0.38 0.68 0.66 0.71 0.36 0.70 0.69 0.71 0.40

ACDC-NN 0.69 0.7 0.69 0.39 0.64 0.64 0.64 0.29 0.78 0.79 0.77 0.56

MAESTRO 0.6 0.24 0.93 0.24 0.57 0.19 0.94 0.18 0.64 0.33 0.93 0.33

Dynamut 0.68 0.68 0.68 0.35 0.66 0.68 0.64 0.32 0.71 0.67 0.74 0.41

mCSM 0.55 0.13 0.96 0.15 0.54 0.10 0.97 0.14 0.57 0.19 0.93 0.18

SDM 0.62 0.46 0.76 0.24 0.62 0.47 0.77 0.25 0.60 0.44 0.75 0.20

DUET 0.63 0.35 0.89 0.29 0.62 0.31 0.91 0.28 0.64 0.42 0.86 0.31

SAAFEC-SEQ 0.56 0.16 0.93 0.15 0.56 0.19 0.92 0.15 0.55 0.13 0.95 0.13
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destabilizing mutations on the overall  Ssym test set, with  ACC = 0.77 and MCC = 0.54 . 
Our method not only outperforms the empirical potential-based methods, such as Cart-
ddg, FoldX and SDM, but also is better than most of other previously reported ML-
based models, as shown in Table 3. We also compared the performances of the models 
on SNVs and non-SNVs. Most of the models including mutDDG-SSM perform better 
on non-SVNs than SVNs, and mutDDG-SSM outperforms most of the methods both on 
SVNs and non-SVNs.

Testing results on other different datasets

We also tested mutDDG-SSM using two other independent datasets, i.e., S203 and 
S347, which are derived from S350 and S611, respectively, after removing the mutations 
shared with the training dataset Q3213. The PCC, RMSE and MAE values between the 
mutDDG-SSM predicted and the experimental ��G were calculated, and compared 
with the results obtained by other previously developed methods. The computed results 
show that the PCC value of mutDDG-SSM on the S203 dataset is 0.74, as displayed in 
Table 4 and Fig. 3, which is lower than the value of SAAFEC-SEQ but higher than all 
the other models listed in Table  4. For the S347 dataset, the PCC values obtained by 
mutDDG-SSM reached 0.69, as shown in Table 5 and Fig. 3, which is higher than all the 
statistical potential-based methods (for example SDM and FoldX) and other ML-based 
methods. We then separated mutations into SNVs and non-SNVs. S203 dataset com-
prises 119 SNVs and 84 non-SNVs, and S347 consists of 208 SNVs and 139 non-SNVs. 
For SVNs and non-SVNs, the similar results were obtained, where the performance of 
mutDDG-SSM is better than all the other models except SAAFEC-SEQ, as shown in 
Tables 4 and 5.

Comparison between Table 4 with Table 5 shows that the prediction performances for 
all the methods, except FoldX, on the S347 dataset are inferior to those on the S203 data-
set. The result indicates that these methods performed weaker on the inverse mutations 

Table 4 Comparison of the ��G prediction performance between different methods on the S203 
dataset, as well as on the SNVs and non-SNVs subsets of S203

The best predicted results among all tested methods on the S203 dataset are shown in bold for each criteria. The units of 
RMSE and MAE are kcal/mol

Method Direct SNVs non‑SNVs

PCC RMSE MAE PCC RMSE MAE PCC RMSE MAE

mutDDG-SSM 0.74 1.24 0.95 0.67 1.26 0.94 0.80 1.21 0.97

Dynamut 0.47 1.77 1.39 0.51 1.68 1.33 0.44 1.88 1.48

mCSM 0.69 1.20 0.93 0.65 1.16 0.87 0.73 1.26 1.02

DUET 0.70 1.18 0.91 0.66 1.15 0.86 0.74 1.22 0.99

SDM 0.55 1.86 1.43 0.54 1.78 1.34 0.56 1.98 1.56

I-Mutant2.0 [62] 0.59 1.33 1.01 0.51 1.31 0.94 0.67 1.36 1.12

MAESTRO 0.66 1.75 1.39 0.61 1.69 1.31 0.72 1.83 1.50

ThermoNet 0.62 1.48 1.15 0.59 1.45 1.13 0.65 1.52 1.18

FoldX 0.50 2.18 1.26 0.54 1.64 1.03 0.49 2.77 1.58

SAAFEC-SEQ 0.90 0.82 0.60 0.90 0.73 0.52 0.90 0.92 0.71
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than on the direct mutations, and therefore including inverse mutations in the S347 
dataset distinctly reduced the prediction accuracy. However, our method mutDDG-SSM 
performed well both on the S203 and S347 datasets and outperformed FoldX, demon-
strating the unbiasedness and accuracy of our method.

Furthermore, the performance of mutDDG-SSM was also tested on the S254 and S615 
datasets. The calculation results demonstrate that the PCC values between the predicted 
and experimental data are 0.46 and 0.49 on these two datasets, respectively. In addition, 
mutDDG-SSM also exhibited unbiased performance, with the rd−i values to be − 0.99 
and − 1.00 for S254 and S615, respectively, as shown in Supplementary Fig. 1, 2 and Sup-
plementary Tables 6, 7.

Fig. 3 The performance of mutDDG-SSM in predicting ��G on the S203 and S347 datasets. a The 
performance of mutDDG-SSM on S203. b The performance of mutDDG-SSM on S347

Table 5 Comparison of the ��G prediction performance between different methods on the S347 
dataset, as well as on the SNVs and non-SNVs subsets of S347

The best predicted results among all tested methods on the S347 dataset are shown in bold for each criteria. The units of 
RMSE and MAE are kcal/mol

Method Overall SNVs Non‑SNVs

PCC RMSE MAE PCC RMSE MAE PCC RMSE MAE

mutDDG-SSM 0.69 1.12 0.85 0.65 1.12 0.83 0.74 1.13 0.89
Dynamut 0.34 1.52 1.17 0.39 1.41 1.08 0.29 1.67 1.29

mCSM 0.51 1.48 1.17 0.46 1.42 1.13 0.56 1.55 1.23

DUET 0.52 1.46 1.14 0.47 1.40 1.09 0.58 1.54 1.21

SDM 0.43 1.94 1.49 0.41 1.84 1.36 0.45 2.08 1.67

I-Mutant2.0 0.38 1.53 1.20 0.31 1.47 1.13 0.45 1.62 1.30

MAESTRO 0.48 1.66 1.25 0.42 1.43 1.09 0.54 1.59 1.28

ThermoNet 0.56 1.30 1.00 0.54 0.96 1.25 0.58 1.38 1.06

FoldX 0.55 1.87 1.15 0.48 1.61 1.14 0.41 2.58 1.67

SAAFEC-SEQ 0.68 1.24 0.93 0.65 1.23 0.91 0.72 1.27 0.98
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Case studies
To further illustrate the prediction performance of mutDDG-SSM, two protein systems, 
i.e., myoglobin and p53, were investigated as case studies. As shown in Fig. 4, for myo-
globin, the PCC between the predicted and experimental ��G values reached 0.66, with 
RMSE = 0.96 kcal/mol and MAE = 0.70 kcal/mol . As to p53, mutDDG-SSM obtained 
a PCC value of 0.56, the RMSE and MAE values are 1.95 kcal/mol and 1.47 kcal/mol , 
respectively. We also assessed the prediction bias of the mutDDG-SSM predictor on 
these two protein systems. The  rd−i values for myoglobin and p53 arrived at − 0.99 and 
− 0.98, respectively, indicating that mutDDG-SSM is an unbiased predictor with good 
antisymmetric properties.

It should be noted that due to the unique conformations of alanine and glycine, we 
refrained from perturbing their side chains in the self-supervised training stage of 
mutDDG-SSM. However, our model also performed well in predicting protein stability 
changes for the mutations associated with these two residues. The PCC values for the 

Fig. 4 The performance of mutDDG-SSM in predicting ∆∆G on two cases, i.e., myoglobin and p53. a The 
performance of mutDDG-SSM on myoglobin. b Prediction bias of mutDDG-SSM on myoglobin. c The 
performance of mutDDG-SSM on p53. d Prediction bias of mutDDG-SSM on p53
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subsets involving alanine and glycine are closely comparable to that of the entire data-
sets, as shown in Supplementary Table 8. In the second part of our model, XGBoost was 
employed as the ��G value predictor. To illustrate the superiority of XGBoost, several 
other ML models were also tested in our framework. Our results demonstrated that 
XGBoost achieved the best performance against other ML models, as shown in Supple-
mentary Table 9.

Discussion
Effectively predicting the changes in protein stability caused by residue mutations is cru-
cial and valuable for the understanding of protein structure–function relationship and 
the application in protein engineering. Because the available experimental data that can 
be used for the model training is limited and unbalanced with much more destabiliz-
ing mutations than stabilizing ones, a large portion of the existing ML-based models 
are considered to be overfitting and biased. In the present study, we presented mut-
DDG-SSM, a ML-based framework to predict the changes of protein stability upon a 
single-point residue mutation. Tests on several widely-used independent datasets and 
two protein cases demonstrated that mutDDG-SSM achieved high performance in pre-
dicting the mutation-induced ΔΔG values, which outperformed not only the empirical 
potential-based methods, but also many of other previously reported ML-based models. 
mutDDG-SSM also obtained one of the best performances in distinguishing stabilizing 
and destabilizing mutations. In addition, mutDDG-SSM exhibited unbiased prediction 
performance with high anti-symmetric properties. When separating mutations into 
SNVs and non-SNVs, the performance of mutDDG-SSM is superior than most of other 
ML-based models both on SNVs and non-SNVs, although the prediction accuracy for 
SNVs is lower than that of non-SNVs. The robust and unbiased prediction performance 
may enable our model to serve as a valuable tool for protein engineering and drug 
design.

In mutDDG-SSM, a protein structure was simplified as a graph with nodes and edges, 
in which the exact interactions between protein atoms, e.g. hydrogen bonds, were not 
explicitly incorporated into the model. However, through a self-supervised training 
strategy, the interactions of a residue with its surrounding neighbors can be extracted 
implicitly. mutDDG-SSM also has some limitations. In this study, our model was trained 
and tested using monomeric proteins, and the pH of protein solution was not explicitly 
considered. We will further extend the model to multimeric proteins and the proteins 
with multiple mutations, and incorporate more biological information into the model in 
the following studies.
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