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Abstract 

Background:  Conditional logistic regression trees have been proposed as a flexible 
alternative to the standard method of conditional logistic regression for the analysis 
of matched case–control studies. While they allow to avoid the strict assumption 
of linearity and automatically incorporate interactions, conditional logistic regression 
trees may suffer from a relatively high variability. Further machine learning methods 
for the analysis of matched case–control studies are missing because conventional 
machine learning methods cannot handle the matched structure of the data.

Results:  A random forest method for the analysis of matched case–control studies 
based on conditional logistic regression trees is proposed, which overcomes the issue 
of high variability. It provides an accurate estimation of exposure effects while being 
more flexible in the functional form of covariate effects. The efficacy of the method 
is illustrated in a simulation study and within an application to real-world data 
from a matched case–control study on the effect of regular participation in cervical 
cancer screening on the development of cervical cancer.

Conclusions:  The proposed random forest method is a promising add-on to the tool-
box for the analysis of matched case–control studies and addresses the need 
for machine-learning methods in this field. It provides a more flexible approach com-
pared to the standard method of conditional logistic regression, but also compared 
to conditional logistic regression trees. It allows for non-linearity and the automatic 
inclusion of interaction effects and is suitable both for exploratory and explanatory 
analyses.

Keywords:  Conditional logistic regression, Conditional logistic regression forests, 
Matched case–control studies, Machine learning, Random forest, CLogitForest

Background
A random forest is a machine learning technique first proposed by Breiman [1]. It is an 
ensemble learning algorithm, where several individual models (or base-learners) are 
combined into a final estimator. The individual learners in random forests are trees, for 
example, classification and regression trees (CART) [2]. CARTs are a partitioning tech-
nique which divides the covariate space using binary splits. For each partition, a different 
prediction is calculated, for example by averaging over all outcome values or computing 
the relative frequencies of the single outcome categories among the observations in the 
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respective partition. Their tree structure can be visualized via dendrograms, where each 
split in a particular variable generates a new branch.

Random forests use the machine learning principle of ’bagging’  [3] (i.e. bootstrap 
aggregating). In bagging, bootstrap samples  [4] are drawn from the original training 
data. Each bootstrap sample is then used to estimate an individual model, a so-called 
base-learner. The final model is built by an aggregation of all individual base-learners. 
The main idea of ensemble learners in general and of bagging in particular is that the 
variability of the ensemble will be smaller than the variability of the single base-learners. 
Accordingly, the variability of random forests will be smaller than the variability of trees. 
While the commonly high variability of trees can be a disadvantage if trees are used indi-
vidually, it serves as a strength if trees are used as base-learners in random forests. The 
more variable the individual learners in ensemble methods are, the lower the expected 
loss of the ensemble they constitute (assuming a constant individual loss). Furthermore, 
ensemble learners will be better if the individual base-learners are less correlated with 
each other. Therefore, bagging methods seek to de-correlate the individual base-learn-
ers to improve the ensemble model by using bootstrap samples instead of the original 
data. Random forests use a second step of randomization to de-correlate the individual 
base-learners. When a new partition is searched for in an individual tree, only a random 
subset of all variables is used. This automatically leads to somewhat different (i.e., less 
correlated) trees, as specific structures in one tree become impossible to find in other 
trees.

Matched case–control studies are an important tool for the generation of real-world 
evidence (RWE) through real-world data (RWD) [5]. They are particularly helpful for 
relatively rare diseases, as they allow researchers to achieve a comparatively large num-
ber of diseased persons in the data. For a given number of cases, controls are searched 
for which are not suffering from the disease of interest, but are similar or equal to the 
corresponding cases in other variables (i.e. the matching variables). Popular matching 
variables are sex, age and area of residence. Cases and their corresponding controls 
then constitute strata which cannot be treated as independent observations in a logistic 
regression model (with the respective disease as the outcome). A downside of match-
ing is that matching on potential confounders can lead to a selection bias, which causes 
cases and controls to be more similar in the respective data set than in the underlying 
population. Recently, Mansournia and Poole [6] highlighted that the effects of this selec-
tion bias are prone to misinterpretations and not fully understood yet. However, while 
typical confounders like sex or age potentially could also be adjusted for within the data 
analysis, this is not feasible for matching variables with many categories like area of 
residence  [7, 8]. Therefore, methods which account for matching are needed in many 
applications.

The standard way of analyzing matched case–control studies while accounting for 
matching is conditional logistic regression. It can integrate covariates for confounder 
adjustment and uses strata-specific intercepts in order to account for possible strata 
effects. Estimation is done using a conditional likelihood approach, which eliminates 
the strata-specific parameters from the objective function. Building upon this princi-
ple, Schauberger et al.  [9] proposed conditional logistic regression trees as an alterna-
tive to ordinary conditional logistic regression. Conditional logistic regression trees are 
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embedded into the general framework of conditional logistic regression and, therefore, 
automatically include adjustment for the matched strata. Compared to the standard 
method of conditional logistic regression, conditional logistic regression trees do not 
require the strict assumption of a linear functional association between covariates and 
the outcome and allow for an automatic and data-driven way of including interactions 
between the single variables.

Conditional logistic regression trees are the first machine learning technique for 
matched case–control studies that goes beyond a simple linear and additive modeling 
of the single covariates. However, alternatives to ordinary conditional logistic regression 
with respect to the estimation concept have been proposed.Avalos et al.  [10] and Reid 
and Tibshirani [11] proposed to use L1 penalization techniques which allow for an auto-
matic variable selection during the estimation process. Zetterqvist et al.  [12] proposed 
the concept of doubly-robust conditional logistic regression.  Shomal Zadeh et  al. [13] 
proposed matched forest, which is also a random forest method for matched case–
control studies. Matched forest is a method for variable selection, particularly focus-
ing on high-dimensional matched case–control studies. However, matched forests 
are not designed to actually perform modelling of the data, the actual analysis of the 
selected variables is subsequently done via conditional logistic regression. Furthermore, 
matched forests are limited to matched pairs while the method proposed in this manu-
script addresses the more general matching of one case to several controls. As outlined 
below, the method proposed in this manuscript will allow for a discrimination between 
a dedicated exposure variable which is of main interest and other (confounding) vari-
ables which are included in the analysis. In matched forests, such a discrimination is not 
considered.

In general, the main goal behind the analysis of matched case–control studies can be 
either exploratory or explanatory. While in an explanatory analysis, the researcher is 
mostly interested in the effect of a dedicated exposure variable, an exploratory analysis 
is designed to create hypotheses about which variables are potential risk (or protective) 
factors for the disease at hand and which variables are negligible.

In this manuscript, we propose a random forest method that builds upon the condi-
tional logistic regression trees proposed in Schauberger et al.  [9]. Analogous to condi-
tional logistic regression trees, the proposed method has an option to specify a dedicated 
exposure variable, but can also be used for a purely exploratory analysis. Compared to 
conditional logistic regression trees, it provides a more stable estimation and increased 
flexibility in the potential functional forms of the covariates. Beside the basic algorithm, 
it is described how a separate exposure effect together with confidence intervals can be 
estimated within the random forest framework. Furthermore, an accompanying method 
of variable importance is introduced and an implementation of the proposed method 
in R is presented. The proposed method is compared to ordinary conditional logistic 
regression and conditional logistic regression trees in a simulation study using different 
types of data-generating processes. For further illustration, the method is applied to data 
from the TeQaZ study, a matched case–control study on cervical cancer.
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Methods
Conditional logistic regression

Conditional logistic regression  [14] is applied if, for example in a matched case–control 
study, the observations come in n strata of size mi, i = 1, . . . , n . The case–control status 
defines the binary outcome yij ∈ {0, 1} where yij = 1 for cases and yij = 0 for controls. By 
design, a stratum contains one case and one or more controls which are matched to this 
case. We assume the number of cases per stratum to be restricted to one, i.e. 

∑mi
j=1 yij = 1 . 

For these data, an ordinary model of conditional logistic regression (CLR) can be denoted 
as

The strata-specific intercepts αi represent strata effects, which describe the similarity 
between all observations in one stratum with respect to the matching criteria. All other 
variables are modeled using the simple linear term zTij γ with coefficient vector γ and 
covariate vector zij.

In cases of explanatory models, where we are interested in one particular of the variables 
(i.e. the exposure variable), we separate this variable in our mathematical notation. For the 
rest of the manuscript, the exposure variable will be denoted as x (with treatment effect β ) 
while all further covariates are collected in the vector z . Using this notation, CLR is denoted 
as

For the estimation of such a model, the corresponding conditional likelihood is used 
where the stratum-specific intercepts αi are eliminated from the likelihood by condition-
ing on the number of cases per stratum. For further details see  Schauberger et  al.  [9] 
or Breslow and Day [15].

Conditional logistic regression trees

The method of conditional logistic regression trees [9] (CLogitTree) was introduced as an 
alternative to CLR. It has the advantage, that the assumptions for the functional relation-
ship between the covariates (i.e. the variables contained in z ) and the outcome are much 
weaker. In particular, no linear relationship is assumed, and interactions are included auto-
matically in a data-driven manner.

Conditional logistic regression trees take advantage of the fitting process of CLR models 
via the conditional (log-)likelihood. They start with an initial model that only contains the 
strata-specific intercepts and a separate exposure effect and then gradually evolve by find-
ing optimal partitions of the covariate space. The final model can be denoted as

where f (zij) represents the effect of the variables collected in z and can be displayed 
as a tree via dendrograms. In an explorative setting, where we are not interested in a 

(1)log

(

P(yij = 1)

P(yij = 0)

)

= αi + z
T
ij γ , i = 1, . . . , n, j = 1, . . . ,mi .

(2)log

(

P(yij = 1)

P(yij = 0)

)

= αi + xijβ + z
T
ij γ , i = 1, . . . , n, j = 1, . . . ,mi .

(3)log

(

P(yij = 1)

P(yij = 0)

)

= αi + xijβ + f (zij),
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particular exposure variable, the separate term xijβ containing a linear exposure effect 
can be omitted. The tree is embedded into the CLR framework via (products of ) indica-
tor functions, which represent the terminal nodes of the tree S1, . . . , St . Accordingly, the 
tree f (zij) can in general be denoted as

where δ1, . . . , δt represent the parameter estimates for the single terminal nodes.
Figure 1 exemplarily shows a representation of f (zij) as a tree with four terminal nodes 

S1, . . . , S4 where z consists of p covariates Z1, . . . ,Zp , but only the first three variables 
Z1, . . . ,Z3 are selected for splits. In this example, the tree would be represented as

Each terminal node can be represented as a product of indicator functions. For example, 
S1 is denoted as I(zij ∈ S1) = I(zij1 ≤ 2) I(zij2 ≤ −1).

Conditional logistic regression forests

In this paragraph, the proposed conditional logistic regression forests (CLogitForest) are 
introduced. We start by explaining the estimation process before elaborating on their 
interpretation via variable importance and the potential use of bootstrap confidence 
intervals for exposure effects.

Estimation

CLogitForest is an ensemble learner technique with CLogitTree as base-learner. The 
estimation is based upon ntree bootstrap samples which are sampled from the original 
training data. A main characteristic of data from matched case–control studies is that 
they are built up by a number of strata which cannot be separated. Therefore, sampling 
of the different bootstrap samples has to be done on the level of the n strata. Sampling 
is either performed by regular bootstrap sampling (sampling of n strata with replace-
ment) or by taking a subsample of 63.2% of the n strata without replacement. The num-
ber 63.2% results from the fact that in the case of regular sampling with replacement, the 
expected number of unique elements is (1− e−1)n ≈ 0.632 n.

In each of the samples, a separate CLogitTree is estimated. In order to additionally 
de-correlate the single trees, the parameter mtry needs to be specified. In each potential 
split, only a random subset of mtry out of all p covariates is used. This guarantees that 

(4)f (zij) = δ1I(zij ∈ S1)+ . . .+ δt I(zij ∈ St)

(5)f (zij) = δ1I(zij ∈ S1)+ δ2I(zij ∈ S2)+ δ3I(zij ∈ S3)+ δ4I(zij ∈ S4) .

Fig. 1  Exemplary illustration of f (zij) as a tree with four terminal nodes S1, . . . , S4
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the different trees will differ even more than already by the fact that they use different 
samples of the data.

In contrast to single trees, trees serving as base-learners of ensemble methods are 
allowed to overfit the data. The overfitting of single base-learners (in our case single 
trees) is compensated by combining them to a joint model (in our case to a random for-
est). Therefore, within CLogitForest the single trees are not pruned via permutation 
tests or the Bayesian information criterion (BIC), which were the possibilities of pruning 
proposed by Schauberger et al. [9]. However, in the accompanying implementation [16] 
other arguments can be applied to prevent the tree from producing terminal nodes with 
a too small number of observations (see Sect. 2.4).

A recommended option is to perform the estimation of the conditional logistic regres-
sion (underlying each tree from CLogitTree) using an L2 penalty term. Using an L2 pen-
alty has the goal of stabilizing the estimates in cases where perfect separability between 
cases and controls is achieved within the tree. The penalty term is scaled by a regulariza-
tion parameter � , which is typically set to a small value like � = 10−20 . For further details 
on the exact implementation of these arguments see Schauberger et al. [9].

The final forest model is the aggregation of the single trees. Prediction can simply be 
done by averaging the predictions of the ntree different trees. In case a separate exposure 
effect β is estimated, the final estimate for β is the average of all single estimates in the 
trees.

Variable importance

The main advantage of using trees instead of forests in general, but also in our particular 
application to matched case–control studies, is that the resulting models are much more 
stable than single tree models. Also, the functional relationship between the covariates 
and the outcome can be much more complicated than in a single tree. The downside of 
this increased degree of flexibility is, that the interpretation of the functional relation-
ships between covariates and the outcome becomes much harder. Accordingly, random 
forests are often termed as black-box models which do not allow for any insights of the 
functional relationships while trees are very intuitive to understand and easy to display.

However, also for black-box models methods of interpretable machine learning  [17] 
exist which can help identify the fitted model’s underlying structures. A popular method 
to identify the relevance of the various covariates within random forest models is the 
concept of variable importance  [1], which can also be implemented for CLogitForest. 
In order to measure the variable importance of a particular variable, this variable is 
permuted within the given training data. Subsequently, the estimated forest (which is 
based on the non-permuted variables) is used to predict the respective outcome using 
the permuted variable (while all other variables remain unchanged). In CLogitForest, we 
use the predictive conditional likelihood on the level of the single strata as the quality 
measure of the respective prediction. Finally, this predictive conditional likelihood can 
be compared to the predictive conditional likelihood based on the non-permuted vari-
ables. The larger the difference, i.e. the more the predictive accuracy decreases after per-
mutation of a variable, the more important is the variable for the estimated forest model. 
Two versions of measuring variable importance are implemented in the accompanying R 
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package. The first version is the rather classic version where measuring variable impor-
tance is based on all observations for all trees. The second version only relies on out-of-
bag observations for each tree. That means, that for each tree only observations are used 
which are not part of the training data of the respective tree, as they are not part of the 
respective bootstrap sample. The later version is preferred due to its increased robust-
ness against overfitting to the training data.

If the model incorporates an explicit exposure effect, the variable importance gives 
us valuable information about which covariates have the highest importance. This can 
be substantially different to the importance of the single variables we would see in CLR 
where variables with an important (but non-linear) influence will be neglected. However, 
this can be highly valuable information for researchers interested in gaining a deeper 
understanding of the underlying confounding structure.

Furthermore, variable importance measures can also be immensely helpful in cases 
where an exploratory analysis is applied to a matched case–control study. In such a case, 
one is usually interested in finding the most important risk factor(s) for the disease at 
hand from a set of potential candidates. If the association between the risk factors and 
the outcome is complicated, is potentially non-linear or includes multiple interactions 
with other variables, this can be detected by CLogitForest much better than by CLR, but 
also CLogitTree. Additionally, as CLogitForest provides a more stable estimation, it will 
also lead to a more stable and reliable detection of the most important variables com-
pared to CLogitTree. Therefore, implementing variable importance measures can help 
to identify important risk (or protective) factors in an exploratory analysis and to distin-
guish between important and unimportant variables.

Confidence intervals

Conventional random forests are not able to provide single parameter estimates and 
accompanying confidence intervals, as they typically do not contain any global linear 
parameters. In the method proposed here, the random forest can contain a linear term 
representing the overall exposure effect. In explanatory analyses of matched case–con-
trol studies, this effect is of main interest for researchers. Accordingly, it is important 
to not only quantify the effect itself but also its uncertainty. We propose to quantify the 
uncertainty of the exposure effect via nonparametric bootstrap confidence intervals, 
adapting the concept of confidence intervals for CLogitTree to CLogitForest. The details 
of the procedure can be found in Schauberger et al. [9]. The main idea is to repeatedly 
apply the whole procedure of estimating a random forest to a large number of bootstrap 
samples  [4] of the training data. From the resulting estimates of the exposure effect, 
quantiles can be deduced which represent the corresponding bootstrap confidence 
interval.

Implementation

The proposed method is implemented in R within the add-on package CLog-
itTree [16] and publicly available from https://​github.​com/​Schau​bert/​CLogi​tTree.

https://github.com/Schaubert/CLogitTree
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Main functions

The package contains both a function to fit conditional logistic regression trees (CLog-
itTree()) and a function to fit conditional logistic regression forests (CLogitFor-
est()). Both algorithms can be run parallel on several nodes. The most important 
parameters to choose in CLogitForest() are ntree (the number of trees) and 
mtry (the number of randomly selected possible splitting variables). While the number 
of trees is less important as long as it is chosen large enough, the choice of mtry can 
have a significant effect on the performance [18]. Therefore, the user is offered an inter-
nal tuning procedure for the choice of mtry. Within this procedure, all possible values 
for mtry between 2 and p are cross-validated using a pre-defined number of trees. The 
predictive out-of-bag conditional likelihood is used as the optimality criterion.

Furthermore, the user can choose specific options for the trees which are fitted within 
the forest. In particular, there are arguments for the maximal depth of the trees, the min-
imal node size in order to be eligible for further splitting and the minimum number of 
observations in any terminal node. For a deeper introduction into the different argu-
ments typically used in random forests and further important aspects for the training of 
random forests we refer to Boulesteix et al. [19].

Supporting functions

The most important supporting functions for CLogitForest() are the function 
varimp() for calculating and plotting the variable importance as well as the function 
boot.ci() for calculating bootstrap confidence intervals for the exposure effect.

Inclusion of a linear offset

As described above, in case an exposure variable is defined, each tree is initialized with 
only this exposure effect as a linear effect. However, the initial model could actually 
be extended. In the software implementation of CLogitForest, an option is offered to 
include the linear fit of all covariates as an offset before the trees are grown. This offset 
is the sum of the linear effects of all covariates from CLR but excludes the linear effect of 
the exposure variable. By using this design, each tree is built upon the fit of CLR before 
the first split is performed. All potential further splits only have the goal to account for 
all non-linear effects or interactions which have not yet been captured within the linear 
fit.

Results
Simulation study

A simulation study compares CLogitForest (with and without linear offset) to CLog-
itTree and CLR. In order to get some insight into the strengths and weaknesses of the 
methods, we compare different settings for the data-generating process (DGP).

Simulation settings

We use three different DGP settings: A, B, and C. Each of the three DGPs is explored 
together with three combinations of the number of signal and noise variables. The set-
tings we explore are i) 10 signal and 0 noise variables (denoted as 10/0), ii) 5 signal and 
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5 noise variables (denoted as 5/5), and iii) 10 signal variables and 20 noise variables 
(denoted as 10/20). For each setting, 100 replications are performed. In all settings, the 
simulation process follows the same basic structure. They all have in common that we 
assume a hypothetical population consisting of 500  000 persons, which are randomly 
distributed to 1000 districts representing the area of residence as a matching variable. 
Subsequently, the following steps are taken to create a single simulated data set: 

1) Sampling of District Effects:	� For each district j, we randomly draw two 
district effects from a uniform distribution 
between −2 and 2. The first district effect τj rep-
resents the effect of district j on the probability 
of being diseased P(yij = 1) . The second dis-
trict effect τ xj  represents the effect of district j 
on the probability of being exposed P(xij = 1).

2) Sampling of Person Characteristics:	� For each person, depending on the data gen-
erating process either 10 or 30 normally 
distributed person characteristics zij were 
sampled, where two of these variables were 
dichotomized.

3) Sampling of Exposure Variable:	� Based on a linear function of the variables in 
zij and the district effects τ xj  , the probability of 
being exposed was computed for each person 
via the logistic function and the exposure vari-
able xij was sampled (the exact function can be 
found in the supplement of this manuscript).

4) Sampling of Outcome Variable:	� In order to get the probability of being diseased 
for each person we computed 

where β = log(2) represents the exposure effect. Using the logistic function, ηij is trans-
formed into the probability of being diseased, which is used to sample the disease status 
yij . The function fk(·) differs between the settings where k ∈ {A,B,C} . In setting A, fA(·) 
is an additive linear function of the signal variables in zij . In setting B, fB(·) is the sum 
of two decision trees, which are based on the signal variables in zij . In setting C, fC(·) is 
the sum of smooth functions of the signal variables in zij . In each replication, the order 
of the signal variables of zij is permuted so that the true DGP differs in each simulation 
round. The exact implementations of the functions can be found in the supplement of 
this manuscript.
5) Sampling of Final Data Set:	� The final data sets consist of 400 strata. First, 

randomly, 400 of the diseased persons were 
sampled as cases. Based on the districts of 
the sampled cases, each case is matched with 
three controls (randomly selected from the 
non-diseased persons). Therefore, a data set 
ultimately consists of 400 strata and a total of 
1600 observations.

ηij = −2+ τj + β · xij + fk(zij)
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Quality measures

We use two different quality measures for the comparison of the methods. The first qual-
ity measure is the predictive conditional likelihood. In order to compute this measure 
out-of-sample, a new second sample of the respective data set is simulated. For this 
validation data, the conditional likelihood per stratum is computed and averaged across 
strata. The higher the predictive likelihood, the better the general fit of the model.

The second quality measure is the absolute errors in the estimation of the exposure 
effect.

Here, no validation data are needed as the true value of the exposure effect is known 
within the simulation study.

Simulation results

Figure  2 displays the average values of the predictive conditional likelihood across 
the 100 iterations in each simulation setting. We can see that the performance mainly 
depends on the type of the data generating process and less on the number of signal and 
noise variables.

Clearly, in the linear setting A, CLogitForest with a linear offset outperforms the ver-
sion without a linear offset and CLogitTree. CLR performs equally well. In tree setting 
B, the regular version of CLogitForest performs slightly better than its competitors. All 
three tree-based methods outperform CLR here. In the smooth setting C, again the 
tree-based methods perform better than CLR (with CLogitForest with offset as the best 
method), however, the difference is less clear than in B.

Fig. 2  Average predictive conditional likelihood in different simulation settings
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In all settings, both versions of CLogitForest performed better than CLogitTree with 
respect to the predictive conditional likelihood. This indicates that the forests indeed are 
better (i.e. more flexibly) able to adapt to different functional relationships, which leads 
to a better model fit. Accordingly, in an exploratory setting, we could expect the variable 
importance values from CLogitForest to be more realistic than from CLogitTree. CLR is 
only a strong competitor with respect to the predictive conditional likelihood if the DGP 
is linear.

Figure 3 displays the absolute error for estimating the log exposure effect. In the lin-
ear setting A, CLogitTree and regular CLogitForest are outperformed by CLR. However, 
CLogitForest with a linear offset performs equally well as CLR. In settings B and C, we 
hardly see any major differences. Overall, all methods perform comparably well. The 
best performance of the tree-based methods can be seen in setting B with 10 signal vari-
ables and 20 noise variables, where all three methods perform slightly better than CLR.

Application to TeQaZ study data

Analogous to the data application in Schauberger et al. [9], the proposed method is illus-
trated by applying it to data from the TeQaZ study [20]. In this study, women suffering 
from invasive cervical cancer (ICD-10 C53) were matched to eligible controls based on 
age (± 2 years) and residence area. The exposure of interest in this study was whether 
the women frequently participated in cervical cancer screening (CCS). The correspond-
ing variable was defined as CCS = 1 if women had attended CCS at least every three 
years within the past ten years, including at least once in the three years preceding 
diagnosis, and CCS = 0 otherwise. In total, the data set comprises 170 cases and 425 

Fig. 3  Absolute errors for log exposure effect in different simulation settings
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controls. Beside the exposure variable CCS, several further covariates were considered 
as potential confounders and predictors which should be included in the data analysis. A 
listing of all variables from the data set can be found in Table 3 in the supplement of this 
manuscript.

The goal of this case study is to analyse the TeQaZ data using our newly proposed 
method CLogitForest and to compare it to CLR and CLogitTree in a real-world data 
application. However, analogous to the analyses performed in Tanaka et al.  [20], for 
CLR we cannot use the original variables. Many of the variables are categorical (ordi-
nal) variables, which would result in a vast amount of parameters if they were used 
in their original version in CLR. Therefore, in Tanaka et al. [20] all categorical varia-
bles were dichotomized previous to the analysis (compare column Coding (CLR) from 
Table  3 in the supplement of this manuscript). For CLogitTree and CLogitForest, 
arbitrary dichotomization of variables previous to the actual analysis is not necessary, 
as these methods inherently find splits between categories during the fitting process. 
This can be seen as an advantage of the tree-based methods CLogitTree and CLogit-
Forest over CLR. Accordingly, the underlying data in CLR will not be exactly the same 
as the data used in CLogitForest and CLogitTree.

Explanatory analysis

Our first analysis of the data is an explanatory model with a special focus on the dedi-
cated exposure variable CCS. CLogitForest is applied both in its default version and with 
the option of a linear offset. The results are compared to the results of CLogitTree (where 
BIC is used as pruning criterion), and CLR. For further comparison, a CLR model with-
out covariates is estimated (CLR0 ). In this and all following analyses, both CLogitForest 
and CLogitTree will internally be used with a small L2 penalty where � = 10−20 . Moreo-
ver, we set ntree = 500 and mtry is tuned internally as described in Sect. .

Table 1 shows the estimates of the exposure parameter β separately for all methods, 
together with its equivalent as adjusted odds ratio and a corresponding 95% confi-
dence interval. For CLogitForest and CLogitTree, the confidence intervals are esti-
mated via bootstrap using 50 replications.

The results show some diversity with respect to the estimate of the exposure effect 
of CCS, with the largest effects estimated by CLogitForest and the smallest effects 
estimated by CLR. Of course, the true parameter value is unknown to us. Interest-
ingly, the bootstrap confidence interval from CLogitForest is more narrow compared 

Table 1  Comparison of parameter estimates and adjusted odds ratios (TeQaZ data)

Estimates for CCS (exposure) effect β and corresponding adjusted odds ratio with estimates for 95% confidence interval, 
separately for CLogitForest, CLogitForest with linear offset, CLogitTree, CLR, and CLR0

CCS effect β̂ Adj. OR exp(β̂) 95% CI for β

CLogitForest 2.106 8.214 1.875–3.224

CLogitForest (linear offset) 1.695 5.447 1.290–2.753

CLogitTree 1.830 6.235 1.355–2.881

CLR 1.586 4.882 0.999–2.172

CLR0 1.806 6.086 1.317–2.295
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to the confidence interval from CLogitTree. We suspect that this results from the fact 
that the estimation process via random forests is generally more stable than via single 
trees. The results from ClogitForest with a linear offset are closer to the results from 
CLR, which is also an intuitively plausible results.

Figure  4 displays the (out-of-bag) variable importance for the regular (i.e. not 
including a linear offset) CLogitForest. The exposure variable CCS is missing in this 
graphic as it is not part of the random forest but modeled separately in a linear effect. 
The variable Income turns out to be the most important of all covariates, followed by 
Education and Age.Diff. It is well known that a high social status is a preventive factor 
against cervical cancer [21]. In our analysis, income serves as a proxy for social status.

For comparison, Fig.  5 shows the dendrogram we get if we analyse the TeQaZ data 
using CLogitTree.

Interestingly, the first split in the tree is in Age.Diff, which is only the third most 
important variable in CLogitForest. This indicates that random forests may present a 

Fig. 4  Variable importance for CLogitForest applied to TeQaZ data

Fig. 5  Dendrogram for CLogitTree applied to TeQaZ data. BIC is used as pruning criterion, L2 penalty 
parameter � = 1e − 20
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more complete picture than a single trees as the first split may not always turn out to be 
the most important explanatory variables. However, the four variables used for splits by 
CLogitTree (i.e. Age.Diff, Income, Education, and Sex.Partners) also turned out to be the 
four most important variables in CLogitForest.

Exploratory analysis

The second type of analysis represents an exploratory instead of an explanatory analysis.
We claim CLogitForest to be advantageous for exploratory analyses when the func-

tional relationships between potential risk factors and the outcome are unknown, poten-
tially complex, non-linear, or include interactions.

For this exploratory analysis, we for now ignore the fact that this study contains a dedi-
cated exposure variable CCS. Rather, we treat CCS as all other covariates to be one of 
several potential risk factors for our disease at hand.

Figure  6 shows the corresponding variable importance values for an application of 
CLogitForest to the TeQaZ data without specifying CCS as the dedicated exposure 
variable.

We can see that CCS is ranked highest among all variables. Accordingly, in this fictive 
exploratory data analysis, we would have detected CCS to be the by far most influential 
risk factor among all candidate variables. As CCS originally was the exposure variable of 
interest in this study, this result appears to be particularly reasonable.

Model comparison via cross‑validation

For comparison, we present a 10-fold cross-validation of this analysis. Using cross-val-
idation, we can see which method performed best with respect to a specific measure, 
even in a real-world analysis where the true parameter values are unknown. For a gen-
eral introduction to cross-validation, we refer to Hastie et al.  [22]. In our analysis, the 
data set was randomly split into ten subsets (based on strata level). Iteratively, each sub-
set was once used as the prediction data set while all other subsets were used to build 
the respective training data. Thus we can compare the observed outcomes to predicted 

Fig. 6  Variable importance for CLogitForest applied to TeQaZ data without specifying CCS as the dedicated 
exposure variable
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outcomes for all strata while the respective strata have not been part of the respective 
training data set. The performance measure we used is the (predictive) conditional likeli-
hood per stratum.

Figure 7 shows violin plots of the predictive conditional likelihood results for all strata, 
separately for the different methods we compare. The average values are 64.3% for CLog-
itForest, 63.6% for CLogitForest without specifying CCS as exposure effect, 65.6% for 
CLogitForest with linear offset, 52.1% for CLogitTree, 53.3% for CLR and 41.1% for 
CLR0 , where the CLR only contains the exposure variable CCS, but no covariates. We 
can interpret this predictive conditional likelihood as the probability predicted by the 
model, that (conditional on the fact that each stratum contains exactly one case) the case 
is the one diseased person from the stratum. The three versions of CLogitForest perform 
very similar and clearly outperform all other methods. This indicates, that the true data 
structure is more complicated than captured by a single tree or assuming linearity and 

Fig. 7  Violin plots for predictive conditional likelihood from 10-fold cross-validation for TeQaZ data, 
separately for different methods. Numbers on top of violin plots represent average values

Table 2  Comparison of computation time and object size (TeQaZ data)

Computation time (in seconds) and object size (in MB) for two versions of CLogitForest (explanatory and expolartory) and 
two versions of CLogitTree (pruned using BIC or permutation tests), respectively

Method Computation Time (in seconds) Size (in MB)

CLogitForest (explanatory) 1412.55 1126.39

CLogitForest (exploratory) 1597.20 1409.00

CLogitTree (BIC) 18.08 0.21

CLogitTree (permutation tests) 59.48 0.60
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that the increased flexibility of forests leads to a drastic improvement in the model fit. 
Accordingly, choosing one of the three versions of CLogitForest (depending on the exact 
research question) for the analysis of the TeQaZ data clearly seems to be advantageous 
both compared to CLogitTree and CLR.

Computation time and memory usage

Finally, as an add-on to the comparison using cross-validation presented above, we also 
present a short comparison in terms of computation time and memory usage between 
the models estimated via CLogitForest and CLogitTree presented above.

Computation was done using parallelization over 20 cores in RStudioServer, running 
under Ubuntu 22.04.3 LTS. Table 2 contains the computation time in seconds and the 
size of the resulting objects in R in MB. All of these models have been presented above, 
except for CLogitTree using permutation tests, which is the alternative to BIC when it 
comes to pruning in CLogitTree. In this case, the respective tests are based on 500 trees. 
Clearly, CLogitForest is computationally much more demanding compared to CLogit-
Forest, both with respect to computation time and memory usage.

Discussion
We present CLogitForest as a machine learning method to analyse matched case–con-
trol studies. The method builds upon the concept of CLogitTree as it uses single trees 
as base learners which build an ensemble learner. CLogitForest shares the advantages 
of CLogitTree over CLR. These are mainly the increased flexibility with respect to the 
functional relationship between covariates and outcome as well as the incorporation of 
interactions between covariates in a data-driven manner. However, a forest overcomes 
the typical weakness of a single tree of having a comparably high variability. Further-
more, forests are able to learn even more complex functional relationships between the 
covariates and the outcome than trees. It allows to better adapt to non-linear relation-
ships and to learn arbitrarily complex multivariate surfaces instead of only dealing with 
multi-dimensional step functions. The increased flexibility comes with the price, that 
the resulting model is a black-box, which is much harder to interpret. We propose to 
use variable importance measures in order to allow for some interpretation of the single 
covariates.

In a simulation study, we showed that CLogitForest performs equally well as CLR 
when it comes to the estimation of explicit exposure effects within matched case–con-
trol studies. However, it clearly outperforms CLR and CLogitTree with respect to the 
overall model fit. This particularly gives rise to our claim that CLogitForest is a valuable 
tool for exploratory analyses of matched case–control studies. The real-world applica-
tion was used to illustrate the use of the proposed method in an exploratory analysis.
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Variable importance measures can be used to detect the most important covariates. In 
the application, it could be seen that CLogitForest in combination with variable impor-
tance can enhance our understanding of the importance of the covariates, as the variable 
with the first split in CLogitTree turned out not to be the most important variable in 
CLogitForest. In future research, further methods of interpretable machine learning [17] 
could be exploited in CLogitForest which can help to get a deeper understanding of the 
functional relationships between the important risk factors and the outcome.

The main intention of this manuscript is to add a further method to the toolbox for the 
analysis of matched case–control studies. Up to now, CLogitTree was the only machine-
learning tool available for this kind of analysis. We see an urgent need for a broader vari-
ety of choices for the data analyst. Beside random forests and decision trees, also other 
machine-learning methods are certainly worth to be explored. A variety of possibilities 
to analyse matched case–control studies will increase the reliability of the respective 
results and, therefore, help to gain better evidence from them.

Conclusion
The study presents CLogitForest as a new machine learning technique for the analysis 
of matched case–control studies. CLogitForest represents an important contribution as 
machine learning can open a new range of possibilities for researchers to model matched 
case–control studies more realistically and, therefore, to gain better insights. Up to now, 
the range of machine learning techniques for matched case–control studies is very lim-
ited, because regular methods fail to take the matching information into account. CLog-
itForest is based on CLogitTree, which is a tree-based method for modelling matched 
case–control studies. CLogitForests extends the possibilities provided by CLogitTree as 
it allows for more stable and more complex functional structures and interactions for the 
explanatory variables.

Appendix A functions for outcome sampling in simulation study
In the simulation study in Sect.  , different simulation settings were investigated, which 
differed with respect to the functional relationships between the covariates and the out-
come variable. In this appendix, we present the code for the different functions fk(zij) in 
the simulation settings A, B, and C. Each function takes the following arguments: 

Z	 Matrix of dimension N × p (where N =
∑n

i=1mi and p = p.signal + p.noise ) con-
taining all covariates (not the exposure) for all observations

p.signal	 Number of signal variables
p.noise	 Number of noise variables
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In each of the settings A, B, and C, the functions distinguish between the settings 

i)	p.signal = 10, p.noise = 0
ii)	 p.signal = 5, p.noise = 5
iii)	p.signal = 10, p.noise = 20

Setting A

Setting A represents a setting where fA(zij) consists of additive linear functions of the 
single variables. The R-code of the corresponding function is found below:

Setting B

Setting B represents a setting where fB(zij) consists of two additive trees. The R-code of 
the corresponding function is found below:
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Setting C

Setting C represents a setting where fC(zij) consists of additive smooth functions of 
the single variables. The R-code of the corresponding function is found below:

Appendix B Variable description of TeQaZ data
See Table 3.
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Table 3  Variable description of TeQaZ data

‘Coding’ refers to coding for CLogitForest and CLogitTree, ‘Coding (CLR)’ refers to coding for CLR

Variable Description Coding Coding (CLR)

ID Case-control strata ID 1, . . . , 170 1, . . . , 170

CCS Frequent participation in CCS 1: yes, 0: no 1: yes, 0: no

Smoking Ever smoked 1: yes, 0: no 1: yes, 0: no

Education Highest school degree 1: no degree
2: Hauptschule
3: Realschule
4: Polytechn. Oberschule
5: Fachoberschule
6: Gymnasium/Abitur

1: Fachober-
schule / Gymna-
sium
0: else

Income Net monthly household income 1: < 1250€
2: 1250€–1749€
3: 1750€–2249€
4: 2250€–2999€
5: 3000€–3999€
6: 4000€–4999€
7: ≥ 5000€

1: ≥ 3000€
0: < 3000€

BMI Body mass index in kg/m2 in kg/m2

Partner Currently living with partner 1: yes, 0: no 1: yes, 0: no

OC Ever used oral contraceptives 1: yes, 0: no 1: yes, 0: no

Sports Sporting activity 0: Never
1: ≤ 1–3 times/month
2: 1–2 times/week
3: 3–4 times/week
4: ≥ 5 times/week

1: ≥ 1 time/week
0: < 1 time/week

Parity Number of children 1: ≥ 4 children
0: < 4 children

Sex.Partners Number of sexual partners 1: 1 partner
2: 2–3 partners
3: 4–10 partners
4: ≥ 10 partners

1: > 1 partners
0: 1 partner

Nutrition Portions of fruit and vegetables/day 0: none
1: 1–2 portions
2: 3–4 portions
3: ≥ 5 portions

1: ≥ 3 portions
0: < 3 portions

Herpes Ever genital Herpes infection 1: yes, 0: no 1: yes, 0: no

Chlamydia Ever Chlamydia infection 1: yes, 0: no 1: yes, 0: no

Condyloma Ever Condyloma infection 1: yes, 0: no 1: yes, 0: no

PA30min 30 min physical activity/day 1: yes, 0: no 1: yes, 0: no

Age.Diff Age–average age in stratum in years in years

Y Case-Control status 1: Case, 0: Control 1: Case, 0: Control
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