
An FPGA‑based hardware accelerator
supporting sensitive sequence homology
filtering with profile hidden Markov models
Tim Anderson1 and Travis J. Wheeler2*

Introduction
After assembling the genome of an organism, it is standard practice to annotate the con-
tents of that genome by comparing it to a library of known sequences. When the organ-
ism is evolutionarily distant from other sequenced genomes, as is common in the context
of environmental metagenomic samples, high quality annotation depends on maximiz-
ing sensitivity in that comparative analysis. To date, high sensitivity in sequence com-
parison is achieved through sequence alignment, in which the letters of two sequences
are arranged to identify regions of similarity. In the context of sequence alignment, mod-
els of mutational probability are used to compute a measure of the significance of the
resulting alignment. Here, we focus on alignment methods for sequences that are highly

Abstract

Background: Sequence alignment lies at the heart of genome sequence annotation.
While the BLAST suite of alignment tools has long held an important role in alignment-
based sequence database search, greater sensitivity is achieved through the use
of profile hidden Markov models (pHMMs). Here, we describe an FPGA hardware accel-
erator, called HAVAC, that targets a key bottleneck step (SSV) in the analysis pipeline
of the popular pHMM alignment tool, HMMER.

Results: The HAVAC kernel calculates the SSV matrix at 1739 GCUPS on a ∼ $3000
Xilinx Alveo U50 FPGA accelerator card, ∼ 227× faster than the optimized SSV imple-
mentation in nhmmer. Accounting for PCI-e data transfer data processing, HAVAC
is 65× faster than nhmmer’s SSV with one thread and 35× faster than nhmmer
with four threads, and uses ∼ 31% the energy of a traditional high end Intel CPU.

Conclusions: HAVAC demonstrates the potential offered by FPGA hardware accelera-
tors to produce dramatic speed gains in sequence annotation and related bioinfor-
matics applications. Because these computations are performed on a co-processor,
the host CPU remains free to simultaneously compute other aspects of the analysis
pipeline.

Keywords: FPGA, Sequence alignment, Profile hidden Markov model

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Anderson and Wheeler BMC Bioinformatics (2024) 25:247
https://doi.org/10.1186/s12859‑024‑05879‑3

BMC Bioinformatics

*Correspondence:
twheeler@arizona.edu

1 Department of Computer
Science, University of Montana,
Missoula, MT, USA
2 R. Ken Coit College
of Pharmacy, University
of Arizona, Tucson, AZ, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05879-3&domain=pdf

Page 2 of 18Anderson and Wheeler BMC Bioinformatics (2024) 25:247

divergent; see Sahlin et al. [1] for a review of methods for rapidly matching nearly identi-
cal sequences (as in the context of read mapping [2–4]).

Sequence alignment has been the target of intense design advances for algorithmic
and statistical inference methods over several decades, resulting in sensitive and remark-
ably fast approaches for sequence annotation. For many years, the dominant tool in the
space of high-volume sequence alignment was BLAST [5], with support from carefully-
designed scoring models like position specific scoring matrices [6, 7]. In the decades
since the introduction of BLAST, advances in sensitivity have come primarily in the
form of position specific scoring matrices [8–10] and eventually profile hidden Markov
models (pHMMs) [11]. Thanks to robust strategies for training and scoring [12, 13] and
their representation of position-specific probabilities of observing letters, insertions, and
deletions, pHMMs have remained the state-of-art for sensitive sequence annotation [14,
15].

Orthogonal to this development of sensitive models has been an ever-present push
for greater speed, motivated by the exponential growth of modern sequence databases.
These speed gains are generally achieved by either (i) filtering candidate alignment data
with less computationally expensive algorithms, or (ii) devising faster implementations
of the basic algorithms. The most popular alignment-based annotation tools achieve
their speed by the first strategy, avoiding data analysis through various fast methods for
predicting whether a sequence has the potential to produce a high score when exposed
to a relatively expensive alignment algorithm [5, 16–20]. These approaches typically
depend on indexing either the target sequences, query sequences, or both, and using the
resulting indices to identify promising “seeds” for more intensive processing.

Any work-avoidance strategy runs the risk of lost sensitivity due to avoiding candi-
dates containing true positive matches. In sequence alignment, index-based seed find-
ing methods address these sensitivity/speed trade-offs through careful selection of data
structures and parameterization. While recent advances retain BLAST-like sensitivity
with 30–100× speed gains [21], the sensitivity of full-featured pHMMs is still unrivaled.

The alternative acceleration strategy (apply the same core algorithm, but faster) typi-
cally depends on some form of hardware acceleration. One such strategy leverages the
SIMD (Single instruction, multiple data) vector instructions available on all modern
CPUs [22]. SIMD sequence alignment implementations [23–26] have achieved impres-
sive speed gains. This technique serves as a core part of the acceleration strategy used in
popular profile alignment tools [21, 27, 28].

Hardware acceleration for sequence alignment has also been developed in the con-
text of specialized hardware such as Graphics Processing Units (GPUs [29]) and field
programmable gate arrays (FPGAs [30]). Here, we introduce an FPGA-base hardware
accelerator that speeds up the key bottleneck stage of the HMMER pipeline by as much
as 60x. Before presenting detailed methods and results, we first provide a brief introduc-
tion to the relevant aspects of HMMER, followed by a light introduction to hardware
acceleration.

Profile HMMs and the HMMER pipeline

A profile HMM is a generative model of a family of sequences, with model parameters
learned from multiple members of that family. Figure 1A shows the Plan-7 architecture

Page 3 of 18Anderson and Wheeler BMC Bioinformatics (2024) 25:247

used in HMMER3 [31]. The architecture includes a core model made up of match states
(which emit letters with position-specific probability at conserved positions in the fam-
ily), insert states (which emit letters inserted between conserved positions), delete states
(which silently bypass conserved positions), and position-specific transitions between
these states, along with a few additional states and associated transitions that model let-
ters not related to the core family—see [32] for further detail. The high sensitivity of
pHMMs is due to (i) these position-specific probabilities, and (ii) application of the For-
ward algorithm [33] for computing support for the relationship between query HMM
and target sequence.

Computation of a sequence alignment amounts to discovering a path through a QxT
2-dimensional matrix, where Q and T are the lengths of the query model and target
sequence respectively. In the context of pHMMs, the Viterbi algorithm identifies a most-
probable path through that matrix, and computes support for the relationship between
Q and T from the single corresponding alignment. This is functionally equivalent [34]
to the Smith-Waterman algorithm [35] that is approximated by BLAST and other faster
tools mentioned above. Meanwhile, the Forward algorithm computes the sum of the
probabilities of all possible paths (all alignments), and uses this as the basis for measur-
ing support for relatedness. The run time complexity of both algorithms is �(QT) , but
Forward is much slower than Viterbi due to increased constant factors [36].

HMMER3 [36] produced a >100× speedup over the prior release, despite utilizing
the relatively slow Forward algorithm, thanks to development of a pipeline consisting of

Fig. 1 The standard and SSV state models for HMMER3 pHMMs. In A, the core model utilized by HMMER3
Viterbi and Forward algorithm consists of states for observed positions in the modeled family (M), states
for insertions relative to those positions (I), and silent states corresponding to the loss or deletion of
those positions (D). The Jump state (J) enables a match between the target genome sequence and two
disconnected (or even repeated) regions of the aligned model. The other states (S,N,B,E,C, and T) and
path-skipping edges (blue/red) are required for proper scoring statistics [31]. B shows the reduced model
utilized by the SSV algorithm implemented in HMMER3 and HAVAC, in which I, D, and J states are removed;
this reduces data dependencies between cells of the Dynamic Programming matrix, and corresponds to
alignments between query and target that contain only consecutive aligned positions

Page 4 of 18Anderson and Wheeler BMC Bioinformatics (2024) 25:247

faster pHMM alignment filters that approximate the Forward score (Fig. 2). The key idea
is that the Forward algorithm is only applied to a small number of candidate sequence
matches that are allowed to pass these earlier, faster filters. Specifically: query/target
pairs are aligned using a SIMD vectorized implementation [23, 25, 37] of the Viterbi
algorithm, using reduced precision 16-bit integers in place of floating-point scores; this
Viterbi stage approximates the score that will be achieved when running Forward, and is
by default parameterized such that ∼ 1/1000 random sequences are expected to pass the
filter. This Viterbi filter is, in turn, preceded by an even simpler filter that compares the
query to the target using a scoring scheme with further reduced precision (8-bit integers)
and a variant of the model that does not allow for gaps (insertions or deletions). In the
context of nucleotide alignment, the HMMER search tool nhmmer [15] calls this stage
the Single Segment ungapped Viterbi (SSV) algorithm (see Fig. 1B). SSV produces a very
rough approximation of the score that will be produced when computing the full For-
ward alignment, and is parameterized such that ∼1/50 random sequences are expected
to pass the filter. The SSV and Viterbi approximations are not particularly accurate, but
are close enough to be generally useful; empirical evidence [36] suggests that nearly all
matches that are reported by an unfiltered Forward implementation will also survive the
Viterbi filter at p ≤ 0.001 and the SSV filter at p ≤ 0.02 [36].

Algorithm 1 describes the basic SSV algorithm, which computes the maximum
ungapped score for matching a sequence to a query pHMM. HMMER3 parallelizes its
SSV implementation using 16-way striped SIMD vector instructions [37]. The score
returned from this algorithm can be compared against a threshold score (by default, the
score required to produce a P-value of 0.02) to determine whether the given sequence is
a sufficiently good match to warrant more robust calculation. Table 1 shows the average
percentage of random sequences that will be processed by each stage in the pipeline and
the total runtime spent in each stage in a typical use case. Even though SSV is the fast-
est stage in the pipeline, it still accounts for the majority of the runtime because every

Fig. 2 HMMER Pipeline. The major stages of the HMMER pipeline. The Ungapped Viterbi, Gapped Viterbi,
and Forward stages of the pipeline function as filters, reducing the number of queries that are passed onto
subsequent stages

Table 1 The major stages of the HMMER3 pipeline, the percentage of random sequences that will
be processed by a given pipeline stage, and the approximate percentage of total runtime required
by each stage in a typical search

Pipeline stage Ungapped Viterbi
(%)

Gapped Viterbi
(%)

Forward filter (%) Align
& post-
process (%)

% random
Ssequences processed

100 2 0.1 0.001

Total % Runtime 70 3 20 7

Page 5 of 18Anderson and Wheeler BMC Bioinformatics (2024) 25:247

sequence must be evaluated by SSV, while only the best matching 2% of sequences are
evaluated by Viterbi, and so on.

Algorithm 1 The Single Segment Ungapped Viterbi Algorithm

Hardware acceleration

An alternative approach to improving the runtime performance of the sequence homol-
ogy search algorithms has been to employ hardware acceleration. ClawHMMER [38]
was the first work to accelerate the pHMM Viterbi algorithm using Graphics Process-
ing Units (GPUs). CUDAMPF [39] later used GPUs to accelerate ungapped Viterbi,
gapped Viterbi, and Forward/Backward in HMMER. Other works have shown that Field
Programmable Gate Arrays (FPGAs) can be used to further improve the pararallel per-
formance of dynamic programming-based sequence alignment algorithms, including
numerous FPGA hardware accelerators for the Smith-Waterman algorithm [40–43].
FPGAs are hardware devices that can be configured by Hardware Description Lan-
guage (HDL) code to implement arbitrary digital logic circuits. Unlilke CPUs and GPUs,
FPGAs have no prestructured computational architecture and can be optimized for a
specific computational task. For example, an FPGA can be used to implement a chain
of Processing Elements (PEs) that feed their outputs directly into the inputs of the next
PE in the chain. These structures are called pipelines. Systolic arrays are a special type of
pipeline with regular structure that synchronize data passing through the PEs in a con-
trolled manner, similarly to their biological namesake. Systolic arrays tightly couple the
control logic to the data being processed in order to compute small sections of a larger

Page 6 of 18Anderson and Wheeler BMC Bioinformatics (2024) 25:247

computational process on a regular basis. Both pipelines and systolic arrays can be used
to efficiently pass data along in a highly parallel computational environment.

In serial implementations of sequence alignment, as in Smith-Waterman or in Viterbi
and Forward with the standard pHMM model (Fig. 1A), it is common to perform cal-
culations in row-major order, so that all calculations on one row are performed before
moving on to the next row. Straightforward parallel implementations in which a batch
of cells on one row are computed concurrently suffer from a data dependency pattern in
which each cell depends on the previous cell in the row as well; multiple cells cannot be
computed concurrently without either speculative calculation techniques as in [44] or
parallelizing computation along the dynamic programming matrix’s anti-diagonal [45].

An additional dependency challenge is presented by the existence of the pHMM
J state, which may increase search sensitivity by allowing multiple passes through the
core model. The inclusion of the J state results in a data dependency between each cell
in the DP matrix and every cell corresponding to the previous sequence character, and
as a result the maximum score from a given row must be identified before any cells in
the subsequent row can be computed. Maddimsetty et al. [46] implement a two-pass hit
detection algorithm by appending a duplicate copy of the model to the end of the model
in lieu of the J state. This effectively allows two separate homologous areas to accumu-
late score as if there is a single-use J state loop. Oliver et al. [47] implements Viterbi on
the full HMMER model including the J state, opting to parallelize over multiple discrete
sequence/model pairs instead of along a single DP matrix anti-diagonal.

Abbas et al. [48] implemented a single accelerator that runs both a Multiple-Segment
Ungapped Viterbi (MSV) filter and Viterbi on the same hardware. The MSV filter is simi-
lar to SSV, but it retains the HMMER pHMM J state. Abbas et al. implement the MSV
filter with a max-reduction tree across a static number of cells from previous model
states, allowing the accelerator to approximate the J state in a reasonable amount of par-
allelizable work, at the cost of a potential drop in sensitivity. Nowak et al. [49] developed
an FPGA implementation of profile-based SSV modeled on the HHBlits [50] implemen-
tation. Their FPGA was limited to profile blocks of at most 220 positions, provided 128-
way parallelism, and achieved a 1.91× speed improvement compared to the HHBlits
function.

Here, we introduce a new hardware accelerator that implements SSV as a standalone
nucleotide sequence homology filter, demonstrating vastly greater speed than similar
previous accelerators. The Hardware Accelerated single-segment Viterbi Additional
Coprocessor (HAVAC), is designed to exist as a standalone nucleotide sequence homol-
ogy filter that can in principle be incorporated into a pHMM alignment pipeline in which
SSV filter is run on the FPGA accelerator while downstream Viterbi and Forward align-
ment algorithms can be run simultaneously on the host CPU. In the standard implemen-
tation, SSV returns a maximum score that is later compared against a threshold score to
determine if there was a matching region in the overall sequence. As alternative, HAVAC
utilizes the parallel nature of reconfigurable hardware to check every cell’s score against
a threshold, and generate hit reports that detail the sequence and model positions of
any hits. This extra information can be useful for downstream applications to determine
areas of likely homology. The relative computational simplicity of the SSV model allows
for better parallel performance than its more intricate counterparts. We also present

Page 7 of 18Anderson and Wheeler BMC Bioinformatics (2024) 25:247

a method for scaling a profile HMM’s emission scores to leverage an 8-bit full adder’s
carry bit to check if a model’s state score passes a significance threshold without requir-
ing an 8-bit comparator. HAVAC returns the (i, j) pairs of DP matrix cells that pass the
given threshold to allow later stages in a sequence homology search pipeline to localize
search around areas of likely homology. HAVAC supports fasta-formatted sequence files
and HMMER3-formatted model files. HAVAC is open-source licensed under BSD-3 and
is available at https://github.com/TravisWheelerLab/HAVAC.

Methods
The HAVAC hardware accelerator was implemented on a Xilinx Alveo U50 FPGA accel-
erator card. The Alveo U50 is a PCI-e card that is simple to install and is modestly priced
($2,965 at time of writing). The Alveo U50 contains a custom-built Ultrascale+ FPGA
with approximately 874K lookup tables (LUTs) and supports two 4GiB banks of High
Bandwidth Memory (HBM). The HAVAC hardware design was implemented using Vitis
High-Level Synthesis (HLS), a tool for synthesizing designs from compliant C/C++
codebases along with FPGA-specific #pragma instructions. Vitis HLS can allow for sig-
nificantly faster development compared to traditional hardware description languages
(HDLs), at a small cost to implemented resource utilization and performance [51]. The
HAVAC host (CPU) driver code was implemented in C++ using the Xilinx Runtime
Library (XRT).

Profile HMM scores

As in the nhmmer SSV filter, HAVAC computes the scores of the Dynamic Program-
ming (DP) matrix using 8-bit integer emission scores. For a given pHMM, a threshold
score t is generated representing the minimum score required for a target database
sequence to pass the requested P-value target (default: P ≤ 0.02) using the pHMM’s pre-
computed gumbel distribution parameters [31] with adjustments to account for SSV’s
removed state transitions. HAVAC uses the threshold to generate a scaling factor τ on
the pHMM’s emission scores. The purpose of τ is to reproject the emission scores such
that an accumulated score passes the query-specific threshold if and only if the score
reaches 256.

The purpose of using τ to re-project the emission scores is twofold. The primary reason
is to simplify the hardware accelerator’s cell Processing Elements (PEs). By enforcing a
threshold score of 256, the cell PEs can check their score against the threshold by using
an 8-bit full adder’s carry bit, eschewing the need for a full 8-bit comparator to check for
hits. As a result, cell PEs require fewer resources to implement, which allows more PEs
to fit into the hardware to improve parallelism. As an added bonus, using τ to reproject
the emission scores allows for better use of the 8-bit integer space, allowing for slightly
more precision in the emission scores when compressed down to 8-bit integers.

The HMMER3 pHMM format stores emission scores as negative log-likelihood values,
and these scores must be converted to bits before being projected using τ . To convert a
negative log-likelihood score s to a τ-reprojected score s′ in bits, the score is represented
as a single-precision floating-point value and extracted from negative log-likelihood

τ = 256/t

Page 8 of 18Anderson and Wheeler BMC Bioinformatics (2024) 25:247

space, divided by the background distribution of equal probability for each of 4 nucleo-
tides, converted to bits, and then multiplied by τ.

The above equation involves performing exp() and log() function calls on each emission
score, which are slow on modern hardware. We eliminate the need to perform these
expensive functions by simplifying as follows.

In the resulting equation, the terms 2τ and τ log2(e) can be computed as constants over
all match states of the model; this means that all match states can be computed with
a single multiplication and subtraction. Each re-projected emission score s ′ is then
rounded to the nearest integer, and cast to signed 8-bit integers. Each individual pHMM
in the input.hmm file is projected in this way using the same P-value and the data are
appended together and written to the FPGA’s HBM memory banks.

SSV processor design

Define M(i, j) as the score of the maximum scoring ungapped Viterbi alignment ending
at the ith letter of the sequence and the jth position of the pHMM. For a sequence of
length L and a pHMM of length K, this requires computation of LK cells. The HAVAC
kernel on the FPGA is comprised mainly of a systolic array of n cell PEs that each indi-
vidually compute a single cell of the DP matrix each cycle. If L > n , then the sequence
is procedurally broken into length-n segments. Each cell PE in the systolic array uses a
different letter from the sequence to find the match score for the current pHMM posi-
tion and adds it to the score computed by the previous cell PE on the previous cycle.
Initially, the systolic array computes the cells M(1, 1) to M(n, 1) in the DP matrix. The
model position is then incremented and the systolic array computes M(1, 2) to M(n, 2),
and so on until a full pass through the pHMM has been completed. Figure 3 shows how
the sequence is broken down into segments of length n, and how the SSV processor
computes rows of length n down the DP matrix. If L > n , then a new segment of the
sequence is loaded into the cell PEs and another pass through the pHMM begins. These
passes through the pHMM compute columns of width n through the DP matrix until the
entire matrix has been calculated. Sequences that are not a multiple of N in length are
padded with random data to reach that target; SSV matches to these random sequences
will be rare, and are easily filtered out by host-side driver.

When the processor is running, n-length sequence segments are read asynchronously
from memory and inserted into a hardware FIFO until the entire sequence is consumed.
Similarly, the pHMM is read asynchronously from memory in full for each sequence
segment, and inserted into its own FIFO. When the processor begins to compute a pass
through a sequence segment, a full segment is consumed from the sequence FIFO to
set each cell’s sequence symbol. Once the sequence is loaded into the cell PEs, the full
pHMM is consumed from the FIFO, one model position at a time. Figure 4 shows a

s′ = log2(e−s/(1/4)) ∗ τ

s′ = log2(4e−s) ∗ τ

s′ = (log2(4)− s ∗ log2(e)) ∗ τ

s′ = 2τ − sτ log2(e)

Page 9 of 18Anderson and Wheeler BMC Bioinformatics (2024) 25:247

Fig. 3 SSV dynamic programming matrix. The Dynamic Programming matrix for the SSV model. Here,
the sequence is comprised of 3 segments of length N = 4 . The light colored row shows the cells being
computed this cycle. The fuchsia arrows indicate the data from the cells M(i − 1, j − 1) . The blue arrows
indicate the cells that will use the data generated this cycle to compute M(i + 1, j + 1)

Fig. 4 HAVAC hardware design overview Diagram of the overall design of the HAVAC hardware accelerator.
Sequence length and model length are provided as inputs. The hardware then asynchronously loads length n
segments of the sequence from HBM. For each of those segments, the model is loaded from HBM. These data
are fed to the SSV processor, which calculates the cells of the DP matrix. The score queue module facilitates
the transfer of scores from the last column of one sequence segment pass to the first of the next. The vector
of bits representing any threshold hits are passed to the hit reporter module, which checks for any hits,
determines the model and sequence positions of the hits, and writes the hits to HBM

Page 10 of 18Anderson and Wheeler BMC Bioinformatics (2024) 25:247

simplified view into the overall HAVAC hardware accelerator. Figure 5 shows the systolic
array of cell PEs that compute the cells of the DP matrix.

For any given sequence segment, the leftmost cell of the systolic array of cell PEs
requires input scores from the previous sequence segment column (except the first seg-
ment, which requires inputs of 0 for each cell in the first column of the matrix). Like-
wise, the scores generated by the rightmost cells in the segment column must be used
as inputs for the next segment column of the matrix. A score queue module that imple-
ments a hardware FIFO structure is used to enqueue the outputs of the rightmost cell
in a segment column, and dequeue scores as needed by the next segment column. The
score queue module uses a series of 36kb block RAM elements to implement the hard-
ware FIFO. Since hardware block RAMs have a definitive capacity, the score queue
module acts as a limiting factor on the total length of phmm vectors that HAVAC can
support. HAVAC supports a maximum of 1,048,576 (1024*1024) model positions for a
single SSV query. This is large enough to hold the entirety of the Rfam database of RNA
families [52](4108 models) twice over.

Hardware cell processing elements

The HAVAC cell PE is designed to minimize the resources required to calculate the
score at a given cell. The cell’s sequence symbol c is used as the select on the current
pHMM vector P(j) to obtain the cell’s signed 8-bit pHMM emission score. This value is
then summed with the score computed by the previous cell PE on the previous cycle,
M(i − 1, j − 1) , to obtain an unsigned 8-bit intermediate sum value T(i, j) and a carry
bit from the 8-bit full adder. This carry bit is then used along with the sign bit from the
emission score to determine if the threshold has been passed and if the final cell’s result,
M(i, j), should be reset back to zero. There are two situations where the result of the
summation should be discarded: if a negative match score was added to M(i − 1, j − 1)
(the carry bit was clear), or if a positive emission score was added to M(i − 1, j − 1) (the
carry bit was set). In the first case the result underflowed the unsigned 8-bit result, and

Fig. 5 Systolic array of N cell PEs. Each cell PE receives the score that was computed in the previous PE on
the previous cycle. All cells use the same pHMM vector on a given cycle, and advance to the next vector on
the subsequent cycle. Each cell uses a different symbol from inside the contiguous sequence segment to
select the correct emission score for the PE’s corresponding DP matrix cell

Page 11 of 18Anderson and Wheeler BMC Bioinformatics (2024) 25:247

in the latter case the result overflowed the maximum representable score of 256. In this
second case, the given cell has passed the score threshold and should be reported. Fig-
ure 6 shows the logic that implements a cell PE.

Hit reporting

HAVAC reports any cell that passes the 256 threshold as an (i, j) position pair in the
sequence and pHMM. HAVAC finds these (i, j) pairs by taking the threshold bit from all
N cell PEs and systematically partitioning the threshold hit bits to find and report any
that were set for a given cycle. These bits represent the cells i‘ < i < i‘+ N where i‘ is
the first position of the N-length current segment of sequence. First, all N threshold hit
bits are bitwise-or reduced; if the result is 1, the threshold hit bits contain at least 1 cell
that passed the threshold. In this case, the threshold hit bits are enqueued to a hardware
FIFO along with the current pHMM position and the current sequence segment index.
Then, in concurrently running processes, the threshold hit bits are partitioned into 16
contiguous bit ranges. HAVAC iteratively bitwise-or reduces each of these 16 bit ranges
to determine if a hit was in any of the ranges. If a bit range contained a hit, the bit range
is enqueued to a subsequent hardware FIFO along with the rest of the position metadata
and the index of the bit range. This process continues, further dividing the threshold hit
bits until it represents a single bit. At this point, the hit’s position in the sequence can
be identified as the index of that bit plus i‘. The hits are then written to the FPGA HBM
memory where they can be read by the host to extract the (i, j) pairs after the HAVAC
hardware accelerator finishes.

Because the hit report partitioning runs concurrently to the main systolic array, and
the hardware does not know a priori how many hit reports will be written for an invo-
cation of the hardware accelerator, an extra terminator bit t is included along with the

T (i, j) = M(i − 1, j − 1)+ P(j, c)

M(i, j) =

{

0, if T (i, j) < 0 or T (i, j) > 256

T (i, j), otherwise

Fig. 6 Logic Diagram of the Cell PE. The pHMM vector’s four 8-bit scores corresponding to each nucleotide
are de-multiplexed by the sequence symbol, and then added to the score from the previous cell PE. Simple
bitwise operations then determine if an overflow or underflow occurred, and reset the score or report a hit
accordingly

Page 12 of 18Anderson and Wheeler BMC Bioinformatics (2024) 25:247

threshold hit ranges and positional data and is normally cleared. On the final cycle of
the matrix computation (the final pHMM position of the final sequence segment index),
the full threshold hit bit range is enqueued to the partitioning system even if it does not
contain any hits, along with a set terminator bit. Each subsequent partitioning tier then
passes along a threshold bit range with a set terminator on the final (16th) section of the
bit range, and then deactivates. Once all hit reports are written to memory and the final
partitioning tier deactivates, the number of hits is written to memory and the hardware
accelerator completes its operation.

Accelerator synthesis and driver

Synthesis of the HAVAC hardware accelerator design was performed inside the Xilinx
Vitis HLS tool. Implementation was performed by the v++ compiler tool. The Alveo
U50 card contains 8GiB of HBM, split between 32 256MiB banks. Of the 8GiB of HBM
available, 4GiB (16 banks) is used to store sequence data. All sequence characters are
represented with 2-bit encoding (ambiguity characters are replaced by random letters,
which may result in rare cases of falsely passing the filter; these are quickly filtered out by
the downstream driver). HAVAC supports target sequences up to an aggregated length
of 16Gbp. 512MiB (2 banks) is allocated for the profile HMM match scores. 3.5GiB (14
banks) is allocated for reporting the 8 byte (i, j) pairs for hits. Therefore, a maximum of
469,762,048 hits can be reported for any query. HAVAC was implemented with 12,288
cell PEs at a clock speed of 144.5 MHz. The number of cell PEs was chosen as a multi-
ple of 4096 to allow the sequence data to better align to the hardware’s 4KiB memory
boundary, while maximizing the number of PEs that could be successfully be synthe-
sized and implemented (by the HLS tool and v++ compiler). The clock speed was deter-
mined automatically by the v++ compiler as the maximum clock speed that could be
successfully implemented.

The HAVAC driver software library allows for simple control over the hardware accel-
erator. Input data is provided to the driver as a fasta file and a HMMER3 model file and is
then preprocessed and loaded onto the board’s HBM memory banks. The SSV computa-
tion can then be performed either synchronously or asynchronously. Once the hardware
accelerator has finished, hit data can be read from the device as global sequence and
model positions. Using these global positions, the HAVAC driver references the fasta
and model files to locate which sequence and model the hits resides in, and the local
positions in the sequence or model the hit refers to. These sequence and model posi-
tions can then be used by other algorithms in a sequence alignment pipeline as positions
of potential homology. Because of the nature of HAVAC being a dedicated co-proces-
sor, SSV calculation may be performed concurrently to these other algorithms, further
reducing the processing time for large queries that can be broken down into smaller
batches.

With enough memory to store 16Gbp of sequence and 13 million positions of pHMM
data, HAVAC has far more memory than would be required for any single sequence or
pHMM. The HAVAC driver concatenates all sequences in a fasta file and all models in
an hmm file before transferring the data to the accelerator for processing. Thus, HAVAC
searches the sequences and models in an all-to-all manner. The only limit to the number
of sequences or pHMMS that HAVAC can process in a single invocation is the size of

Page 13 of 18Anderson and Wheeler BMC Bioinformatics (2024) 25:247

the memory allocated to each on the device. Once the hits are reported to the host, a fast
SSV validity check is performed with the CPU to eliminate any hits that may have been
generated by crossing the boundary between any two sequences or models.

Results
We performed benchmarking experiments on a compute system with two Intel Xeon
X5570 CPUs @ 2.96GHz, each with 4 cores, and 114 GB of memory, with test data was
stored on an Intel 240GB SSD.1 Tests were performed by searching human chromosome
22 against query databases generated from subsets of the Rfam family model database.
Query datasets were generated by selecting models from Rfam, in order of ascend-
ing accession ID, up to a specified number of model positions. For example, for the
total model database length threshold around 10,000, Rfam families RF00001 through
RF00065 were used, with a sum of model lengths equal to 10,122; meanwhile the set of
Rfam families RF00001 through RF00163 produce a subset with a total model length of
20,039.

The HAVAC hardware accelerator was implemented on a Xilinx Alveo U50 Data
Center accelerator card. FPGA routing and implementation typically uses only a frac-
tion of the full board capacity—HAVAC’s final hardware implementation utilized 48.94%
of the device’s hardware lookup tables (LUTs), 21.53% hardware register, and 35.94%
Block RAMs. HAVAC’s runtime was timed as 4 discrete sections; (i) software data allo-
cation and configuring the FPGA with the Xilinx hardware device binary (.xclbin) file,
(ii) file I/O for the sequence and pHMM files, data preprocessing, and loading these data
onto the device’s HBM banks, (iii) runtime of the HAVAC SSV kernel, and (iv) reading
the generated hits from the device memory and resolving the global (i, j) pairs to local
sequence and model positions. It is common to describe the performance of dynamic
programming algorithms in terms of billions of cells updated per second (GCUPS).
HAVAC’s performance was measured to be 1739 GCUPS using the runtime of the ker-
nel from step (iii). This performance represents a realization of 98% of the theoretical
maximum speed achievable with 12,288 cell PEs processing a cell every cycle at 144.5
MHz. In comparison, HMMER3 contains a highly optimized CPU implementation of
MSV that utilizes 16-way striped SIMD parallelization reported to reach 12 GCUPS on
a single thread running on a 2.66 GHz Intel Gainestown X5550 CPU [27]. The nhmmer
SSV matrix calculation on our tests system averaged 7.6 GCUPS when single-threaded,
and 18.9 GCUPS with four threads. We tested nhmmer with 8 and 16 threads, but saw
performance that was nearly identical to 4 threads; this is consistent with reports that
HMMER3 becomes I/O bound at low thread count and does not benefit from additional
threads past this point [53, 54]. The HAVAC kernel represents a 227× matrix calculation
speedup over nhmmer with one thread and a 92× speedup over nhmmer with 4 threads.
Table 2 shows the performance in terms of GCUPS for HAVAC and previous publica-
tions of Viterbi-family algorithms implemented on FPGAs and GPUs.

1 This a fairly old CPU. When we tested on a newer Xeon E5-2695v4 14 core system (192 GB RAM, all data on a local
spinning disk), nmhmmer was 2–4× slower; and when we tested on an AMD EPYC 7642 48-core system (512 GB RAM,
all data on local NVMe disk), nhmmer was 30% slower than the Xeon X5570 with 1 threads, and 25% faster with 8
threads.

Page 14 of 18Anderson and Wheeler BMC Bioinformatics (2024) 25:247

HAVAC’s performance was also measured as a complete SSV filter including all steps
from initial FPGA configuration to resolution of hit positions. These times were com-
pared to nhmmer’s SSV filter using 1, 2, and 4 threads with the subsequent stages of the
HMMER pipeline disabled. At small query sizes, the hardware configuration and PCI-e
data transfer times dominate run time, resulting in poorer performance than nhmmer.
HAVAC and nhmmer with a single thread had similar runtime with a query length of
1000 model positions (representing 6 models), and nhmmer with 4 threads was simi-
lar with a query length of 3000 model nodes (representing 16 models). As the size of
the DP matrix grows, the hardware kernel’s performance becomes the dominating factor
– when querying the entire Rfam database (4108 models) against human chromosome
22, HAVAC is 65× faster than nhmmer with 1 thread. Figure 7 compares the runtime
performance of HAVAC and the nhmmer SSV filter across various lengths of model
databases.

Power utilization of the HAVAC hardware accelerator was approximated using the
Xilinx Board Utility (xbutil) tool. Voltage and Amperage values were reported for the
PCI-express interface and on-board power rails. These mV and mA values were multi-
plied to find the watts used, and them summed to total energy use estimate of 29 watts,
31% of the 95 watts of the Thermal Design Power (TDP) of the Intel Xeon X5570 in our
test system [62]. This TDP represents the average energy usage when all cores are under
full load.

Conclusion
In this work, we have described a new implementation of HMMER’s SSV filter algorithm
on reconfigurable hardware with excellent runtime characteristics. The limited data cell
dependencies of SSV allow design of cell PEs that consume very limited resources. Con-
sidering that SSV represents ∼ 70% of nhmmer’s runtime, a 31× speedup over the cur-
rent SSV implementation would result in a ∼ 3.5× improvement on the pipeline overall
when given 4 threads.

At 50% LUT and 22% register utilization, HAVAC could likely be reimplemented
to increase the number of cell PEs in the design. Attempts were made to increase the

Table 2 Fastest reported FPGA and GPU accelerator speeds for Viterbi-family algorithms on
biological data from the literature

Implementation Algorithm Year GCUPS (Maximum reported) Device used

Jacob et al. [55] Viterbi 2007 10.6 (best case est.) Virtex-II 6000

Walters et al. [56] Viterbi 2007 0.7 Spartan-3 XC3S1500

Benkrid et al. [57] Viterbi 2008 9 Virtex-II Pro 2VP100

Oliver et al. [58] Viterbi 2008 2.1 Spartan-3 XC3S1500

Md Isa et al. [59] Viterbi 2012 11.8 Virtex 5 XC5VLX110

Abbas et al. [60] MSV 2015 81 (two) Stratix-III 260

Viterbi 2015 3.6

MSV + Viterbi 2015 45.7

Jiang and Ganesan [61] SSV (GPU) 2016 440 Tesla K40

MSV (GPU) 2016 277

Viterbi (GPU) 2016 14.3

HAVAC SSV 2023 1739

Page 15 of 18Anderson and Wheeler BMC Bioinformatics (2024) 25:247

number of cell PEs from 12,288 to 16,384, but the Xilinx v++ implementation stage
was unable to generate the design. This is not unreasonable—as utilization grows,
FPGA implementation becomes significantly more difficult as signals must be routed
around increasingly more congested sections of the design, and may not be able to
reach their destination in a reasonable amount of time. Smaller increases to the num-
ber of cell PEs are likely possible, although such changes would require modifications
to the hit report partitioning system, and may further reduce the maximum imple-
mentable clock speed. Importantly, the Alveo U50 represents the lower end of the
Xilinx data center accelerator cards, and a mid-range of FPGA accelerators in general,
and it is reasonable to expect even faster HAVAC implementations on more powerful
hardware.

It is important to remember that the SSV algorithm is a fast approximation of the
Viterbi algorithm, but has limited sensitivity by itself. HAVAC efficiently filters to find
areas of potential homology between sequences and probabilistic models, but is not
an effective tool without a downstream pipeline of more accurate algorithms. As such,
HAVAC is only an effective tool in conjunction with the rest of a bioinformatics pipeline.
Future work would necessarily involve combining HAVAC with CPU-based downstream
Viterbi or Forward algorithms to make a tool that would be applicable to the overall task
of genome annotation.
Acknowledgements
We thank George Vacek who piqued our interest in FPGA acceleration of pHMM search while at Convey Computing. We
are grateful to the Computer Architecture Group (and especially Farzad Fatollahl-Fard) at Lawerence Berkeley National
Labs (LBNL) for providing access to a development FPGA system early in the project. We thank Xilinx for providing a free
Alveo U50 FPGA accelerator platform through their Xilinx University Program. Additionally, Patrick McInerney for sug-
gestions for simplifying the equation for profile HMM re-projection. We also gratefully acknowledge the computational
resources and expert administration provided by the University of Montana’s Griz Shared Computing Cluster (GSCC).

Fig. 7 Runtimes of HAVAC and nhmmer SSV at various numbers of threads

Page 16 of 18Anderson and Wheeler BMC Bioinformatics (2024) 25:247

Author contributions
TA and TJW collaborated in project conception and design. TA designed and developed all software, configuration, and
experimentation. TA prepared all figures and wrote the initial draft of the manuscript. TJW edited the manuscript, and
both authors have approved the final version of the manuscript.

Funding
TA and TJW were supported by NIH NIGMS P20GM103546 and R01GM132600, and by DOE BER DE-SC0021216.

Availability of data and materials
HAVAC code and configuration is available under an open BSD-3-Clause license at https:// github. com/ Travi sWhee lerLab/
HAVAC. Description and code for benchmarking analysis can be found associated with the software release, in https://
github. com/ Travi sWhee lerLab/ HAVAC/ tree/ main/ bench mark.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interest.

Received: 20 December 2023 Accepted: 23 July 2024

References
 1. Sahlin K, Baudeau T, Cazaux B, Marchet C. A survey of mapping algorithms in the long-reads era. Genome Biol.

2023;24(1):133.
 2. Alser M, Rotman J, Deshpande D, Taraszka K, Shi H, Baykal PI, Yang HT, Xue V, Knyazev S, Singer BD, Balliu B, Koslicki

D, Skums P, Zelikovsky A, Alkan C, Mutlu O, Mangul S. Technology dictates algorithms: recent developments in read
alignment. Genome Biol. 2021;22(1):249. https:// doi. org/ 10. 1186/ s13059- 021- 02443-7.

 3. Reinert K, Langmead B, Weese D, Evers DJ. Alignment of next-generation sequencing reads. Annu Rev Genomics
Hum Genet. 2015;16(1):133–51. https:// doi. org/ 10. 1146/ annur ev- genom- 090413- 025358. (PMID: 25939052).

 4. Trapnell C, Salzberg SL. How to map billions of short reads onto genomes. Nat Biotechnol. 2009;27(5):455–7. https://
doi. org/ 10. 1038/ nbt05 09- 455.

 5. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
https:// doi. org/ 10. 1016/ S0022- 2836(05) 80360-2.

 6. Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA.
1992;89(22):10915–9.

 7. Müller T, Spang R, Vingron M. Estimating amino acid substitution models: a comparison of Dayhoff’s estimator, the
resolvent approach and a maximum likelihood method. Mol Biol Evol. 2002;19(1):8–13.

 8. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402. https:// doi. org/ 10. 1093/
nar/ 25. 17. 3389.

 9. Henikoff JG, Henikoff S. Using substitution probabilities to improve position-specific scoring matrices. Bioinformat-
ics. 1996;12(2):135–43. https:// doi. org/ 10. 1093/ bioin forma tics/ 12.2. 135.

 10. Schäffer AA, Wolf YI, Ponting CP, Koonin EV, Aravind L, Altschul SF. IMPALA: matching a protein sequence against a
collection of PSI-BLAST-constructed position-specific score matrices. Bioinformatics. 1999;15(12):1000–11.

 11. Eddy SR. Profile hidden Markov models. Bioinformatics (Oxford, England). 1998;14(9):755–63.
 12. Sjölander K, Karplus K, Brown M, Hughey R, Krogh A, Mian IS, Haussler D. Dirichlet mixtures: a method for improved

detection of weak but significant protein sequence homology. Bioinformatics. 1996;12(4):327–45.
 13. Ahola V, Aittokallio T, Uusipaikka E, Vihinen M. Efficient estimation of emission probabilities in profile hidden Markov

models. Bioinformatics. 2003;19(18):2359–68.
 14. Madera M, Gough J. A comparison of profile hidden Markov model procedures for remote homology detection.

Nucleic Acids Res. 2002;30(19):4321–8. https:// doi. org/ 10. 1093/ nar/ gkf544.
 15. Wheeler TJ, Eddy SR. nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013;29(19):2487–9.

https:// doi. org/ 10. 1093/ bioin forma tics/ btt403.
 16. Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic sequence comparison. Genome Res.

2011;21(3):487–93.
 17. Ma B, Tromp J, Li M. PatternHunter: faster and more sensitive homology search. Bioinformatics. 2002;18(3):440–5.
 18. Kent WJ. Blat-the blast-like alignment tool. Genome Res. 2002;12(4):656–64.
 19. Söding J. Protein homology detection by HMM-HMM comparison. Bioinformatics. 2005;21(7):951–60.
 20. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using diamond. Nat Methods. 2015;12(1):59–60.
 21. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets.

Nat Biotechnol. 2017;35(11):1026–8.

https://github.com/TravisWheelerLab/HAVAC
https://github.com/TravisWheelerLab/HAVAC
https://github.com/TravisWheelerLab/HAVAC/tree/main/benchmark
https://github.com/TravisWheelerLab/HAVAC/tree/main/benchmark
https://doi.org/10.1186/s13059-021-02443-7
https://doi.org/10.1146/annurev-genom-090413-025358
https://doi.org/10.1038/nbt0509-455
https://doi.org/10.1038/nbt0509-455
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/bioinformatics/12.2.135
https://doi.org/10.1093/nar/gkf544
https://doi.org/10.1093/bioinformatics/btt403

Page 17 of 18Anderson and Wheeler BMC Bioinformatics (2024) 25:247

 22. Hassaballah M, Omran S, Mahdy YB. A review of SIMD multimedia extensions and their usage in scientific and engi-
neering applications. Comput J. 2008;51(6):630–49.

 23. Wozniak A. Using video-oriented instructions to speed up sequence comparison. Bioinformatics. 1997;13(2):145–50.
 24. Gálvez S, Agostini F, Caselli J, Hernandez P, Dorado G. BLVector: Fast BLAST-like algorithm for manycore CPU with

vectorization. Front Genet. 2021;12:618659. https:// doi. org/ 10. 3389/ fgene. 2021. 618659.
 25. Rognes T. Faster Smith–Waterman database searches with inter-sequence SIMD parallelisation. BMC Bioinform.

2011;12(1):1–11.
 26. Liu D, Steinegger M. Block aligner: an adaptive SIMD-accelerated aligner for sequences and position-specific scoring

matrices. Bioinformatics. 2023;39:487.
 27. Eddy SR. Accelerated profile hmm searches. PLoS Comput Biol. 2011;7(10):1–16. https:// doi. org/ 10. 1371/ journ al.

pcbi. 10021 95.
 28. Steinegger M, Meier M, Mirdita M, Vöhringer H, Haunsberger SJ, Söding J. HH-suite3 for fast remote homology

detection and deep protein annotation. BMC Bioinform. 2019;20(1):1–15.
 29. Li J-k, Zhang L, Xiao M. The high performance computing applications for bioinformatics research. In: Proceedings

of the 6th international conference on bioinformatics and biomedical science. 2017. pp. 70–75.
 30. Hasan L, Al-Ars Z. An overview of hardware-based acceleration of biological sequence alignment. In: Computational

biology and applied bioinformatics. InTech; 2011. https:// doi. org/ 10. 5772/ 23044 .
 31. Eddy SR. A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS

Comput Biol. 2008;4(5):1000069.
 32. Durbin R, Eddy SR, Krogh A, Mitchison G. Biological sequence analysis: probabilistic models of proteins and nucleic

acids. Cambridge University Press; 1998. https:// doi. org/ 10. 1017/ cbo97 80511 790492 .
 33. Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE.

1989;77(2):257–86.
 34. Frith MC, Hamada M, Horton P. Parameters for accurate genome alignment. BMC Bioinform. 2010;11:1–14.
 35. Smith TF, Waterman MS, et al. Identification of common molecular subsequences. J Mol Biol. 1981;147(1):195–7.
 36. Eddy SR. Accelerated profile hmm searches. PLoS Comput Biol. 2011;7(10):1002195.
 37. Farrar M. Striped Smith–Waterman speeds database searches six times over other SIMD implementations. Bioinfor-

matics. 2006;23(2):156–61. https:// doi. org/ 10. 1093/ bioin forma tics/ btl582.
 38. Horn DR, Houston M, Hanrahan P. ClawHMMER: a streaming HMMER-search implementatio. In: SC ’05: Proceedings

of the 2005 ACM/IEEE conference on supercomputing. 2005. pp. 11–11. https:// doi. org/ 10. 1109/ SC. 2005. 18
 39. Jiang H, Ganesan N. CUDAMPF: a multi-tiered parallel framework for accelerating protein sequence search in

HMMER on CUDA-enabled GPU. BMC Bioinform. 2016;17:106. https:// doi. org/ 10. 1186/ s12859- 016- 0946-4.
 40. Derrien S, Quinton P. Parallelizing HMMER for hardware acceleration on FPGAs. In: 2007 IEEE International Confer-

ence on Application-specific Systems, Architectures and Processors (ASAP). 2007. pp. 10–17. https:// doi. org/ 10.
1109/ ASAP. 2007. 44299 51

 41. Rucci E, Garcia C, Botella G, De Giusti A, Naiouf M, Prieto-Matias M. OSWALD: OpenCL Smith–Waterman on Alteras
FPGA for large protein databases. Int J High Perform Comput Appl. 2016;32:337–50. https:// doi. org/ 10. 1177/ 10943
42016 654215.

 42. Rucci E, Garcia C, Botella G, De Giusti A, Naiouf M, Prieto Matias M. SWIFOLD: Smith–Waterman implementa-
tion on FPGA with OpenCL for long DNA sequences. BMC Syst Biol. 2018;12:43–53. https:// doi. org/ 10. 1186/
s12918- 018- 0614-6.

 43. Li I, Shum W, Truong K. 160-fold acceleration of the smith-waterman algorithm using a field programmable gate
array (FPGA). BMC Bioinform. 2007;8:185. https:// doi. org/ 10. 1186/ 1471- 2105-8- 185.

 44. Derrien S, Quinton P. Hardware acceleration of HMMER on FPGAs. J Signal Process Syst. 2010;58(1):53–67. https:// doi.
org/ 10. 1007/ s11265- 008- 0262-y.

 45. Ren S, Sima V-M, Al-Ars Z. FPGA acceleration of the pair-HMMs forward algorithm for DNA sequence analysis. In:
2015 IEEE international conference on bioinformatics and biomedicine (BIBM). 2015. pp. 1465–1470. https:// doi. org/
10. 1109/ BIBM. 2015. 73598 92

 46. Maddimsetty R, Buhler J, Chamberlain R, Franklin M, Harris B. Accelerator design for protein sequence hmm search.
In: Proceedings of the 20th annual international conference on supercomputing, ICS 2006. Proceedings of the
international conference on supercomputing. 2006. pp. 288–296. https:// doi. org/ 10. 1145/ 11834 01. 11834 42 . 20th
Annual International Conference on Supercomputing, ICS 2006 ; Conference date: 28-06-2006 Through 01-07-2006

 47. Oliver T, Yeow LY, Schmidt B. Integrating FPGA acceleration into HMMer. Parallel Comput. 2008;34(11):681–91.
https:// doi. org/ 10. 1016/j. parco. 2008. 08. 003.

 48. Abbas N, Derrien S, Rajopadhye S, Quinton P. Accelerating HMMER on FPGA using parallel prefixes and reductions.
In: 2010 International Conference on Field-Programmable Technology. 2010. pp. 37–44. https:// doi. org/ 10. 1109/ FPT.
2010. 56817 55

 49. Nowak F, Bromberger M, Schindewolf M, Karl W. Multi-parallel prefiltering on the convey HC-1 for supporting
homology detection. In: Proceedings of the 20th European MPI Users Group Meeting. 2013. pp. 169–174. https://
doi. org/ 10. 1145/ 24885 51. 24885 87

 50. Remmert M, Biegert A, Hauser A, Söding J. HHblits: lightning-fast iterative protein sequence searching by HMM-
HMM alignment. Nat Methods. 2011;9(2):173–5. https:// doi. org/ 10. 1038/ nmeth. 1818.

 51. Lee HS, Jeon JW. Comparison between HLS and HDL image processing in FPGAs. In: 2020 IEEE International Confer-
ence on Consumer Electronics—Asia (ICCE-Asia). 2020. pp. 1–2. https:// doi. org/ 10. 1109/ ICCE- Asia4 9877. 2020. 92768
03

 52. Griffiths-Jones S. Rfam: an RNA family database. Nucleic Acids Res. 2003;31(1):439–41. https:// doi. org/ 10. 1093/ nar/
gkg006.

 53. EddyRivasLab Github Issue 161: multithreads running problem. https:// github. com/ EddyR ivasL ab/ hmmer/ issues/
161. Accessed: 2023-09-18

 54. Arndt W. Modifying HMMER3 to run efficiently on the Cori supercomputer using OpenMP tasking. In: 2018 IEEE
international parallel and distributed processing symposium workshops (IPDPSW). IEEE; 2018. pp. 239–246.

https://doi.org/10.3389/fgene.2021.618659
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.5772/23044
https://doi.org/10.1017/cbo9780511790492
https://doi.org/10.1093/bioinformatics/btl582
https://doi.org/10.1109/SC.2005.18
https://doi.org/10.1186/s12859-016-0946-4
https://doi.org/10.1109/ASAP.2007.4429951
https://doi.org/10.1109/ASAP.2007.4429951
https://doi.org/10.1177/1094342016654215
https://doi.org/10.1177/1094342016654215
https://doi.org/10.1186/s12918-018-0614-6
https://doi.org/10.1186/s12918-018-0614-6
https://doi.org/10.1186/1471-2105-8-185
https://doi.org/10.1007/s11265-008-0262-y
https://doi.org/10.1007/s11265-008-0262-y
https://doi.org/10.1109/BIBM.2015.7359892
https://doi.org/10.1109/BIBM.2015.7359892
https://doi.org/10.1145/1183401.1183442
https://doi.org/10.1016/j.parco.2008.08.003
https://doi.org/10.1109/FPT.2010.5681755
https://doi.org/10.1109/FPT.2010.5681755
https://doi.org/10.1145/2488551.2488587
https://doi.org/10.1145/2488551.2488587
https://doi.org/10.1038/nmeth.1818
https://doi.org/10.1109/ICCE-Asia49877.2020.9276803
https://doi.org/10.1109/ICCE-Asia49877.2020.9276803
https://doi.org/10.1093/nar/gkg006
https://doi.org/10.1093/nar/gkg006
https://github.com/EddyRivasLab/hmmer/issues/161
https://github.com/EddyRivasLab/hmmer/issues/161

Page 18 of 18Anderson and Wheeler BMC Bioinformatics (2024) 25:247

 55. Jacob AC, Lancaster JM, Buhler JD, Chamberlain RD. Preliminary results in accelerating profile HMM search on
FPGAs. In: 2007 IEEE International Parallel and Distributed Processing Symposium. 2007. pp. 1–8. https:// doi. org/ 10.
1109/ IPDPS. 2007. 370447

 56. Walters JP, Meng X, Chaudhary V, Oliver T, Yeow LY, Schmidt B, Nathan D, Landman J. MPI-HMMER-boost: Distributed
FPGA acceleration. J VLSI Signal Process Syst Signal Image Video Technol. 2007;48(3):223–38. https:// doi. org/ 10.
1007/ s11265- 007- 0062-9.

 57. Benkrid K, Velentzas P, Kasap S. A high performance reconfigurable core for motif searching using profile hmm. In:
2008 NASA/ESA Conference on Adaptive Hardware and Systems. 2008. pp 285–292. https:// doi. org/ 10. 1109/ AHS.
2008. 16

 58. Oliver T, Yeow LY, Schmidt B. Integrating FPGA acceleration into HMMer. Parallel Comput. 2008;34(11):681–91.
https:// doi. org/ 10. 1016/j. parco. 2008. 08. 003.

 59. Isa MNM, Benkrid K, Clayton T. A novel efficient FPGA architecture for HMMER acceleration. In: 2012 international
conference on reconfigurable computing and FPGAs. IEEE. 2012. https:// doi. org/ 10. 1109/ recon fig. 2012. 64167 23

 60. Abbas N, Derrien S, Rajopadhye S, Quinton P, Cornu A, Lavenier D. Combining execution pipelines to improve
parallel implementation of HMMER on FPGA. Microprocess Microsyst. 2015;39(7):457–70. https:// doi. org/ 10. 1016/j.
micpro. 2015. 06. 006.

 61. Jiang H, Ganesan N. CUDAMPF: a multi-tiered parallel framework for accelerating protein sequence search in
HMMER on CUDA-enabled GPU. BMC Bioinform. 2016. https:// doi. org/ 10. 1186/ s12859- 016- 0946-4.

 62. Intel. https:// www. intel. com/ conte nt/ www/ us/ en/ produ cts/ sku/ 37111/ intel- xeon- proce ssor- x5570- 8m- cache-2-
93- ghz-6- 40- gts- intel- qpi/ speci ficat ions. html

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/IPDPS.2007.370447
https://doi.org/10.1109/IPDPS.2007.370447
https://doi.org/10.1007/s11265-007-0062-9
https://doi.org/10.1007/s11265-007-0062-9
https://doi.org/10.1109/AHS.2008.16
https://doi.org/10.1109/AHS.2008.16
https://doi.org/10.1016/j.parco.2008.08.003
https://doi.org/10.1109/reconfig.2012.6416723
https://doi.org/10.1016/j.micpro.2015.06.006
https://doi.org/10.1016/j.micpro.2015.06.006
https://doi.org/10.1186/s12859-016-0946-4
https://www.intel.com/content/www/us/en/products/sku/37111/intel-xeon-processor-x5570-8m-cache-2-93-ghz-6-40-gts-intel-qpi/specifications.html
https://www.intel.com/content/www/us/en/products/sku/37111/intel-xeon-processor-x5570-8m-cache-2-93-ghz-6-40-gts-intel-qpi/specifications.html

	An FPGA-based hardware accelerator supporting sensitive sequence homology filtering with profile hidden Markov models
	Abstract
	Background:
	Results:
	Conclusions:

	Introduction
	Profile HMMs and the HMMER pipeline
	Hardware acceleration

	Methods
	Profile HMM scores
	SSV processor design
	Hardware cell processing elements
	Hit reporting
	Accelerator synthesis and driver

	Results
	Conclusion
	Acknowledgements
	References

