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Introduction
After assembling the genome of an organism, it is standard practice to annotate the con-
tents of that genome by comparing it to a library of known sequences. When the organ-
ism is evolutionarily distant from other sequenced genomes, as is common in the context 
of environmental metagenomic samples, high quality annotation depends on maximiz-
ing sensitivity in that comparative analysis. To date, high sensitivity in sequence com-
parison is achieved through sequence alignment, in which the letters of two sequences 
are arranged to identify regions of similarity. In the context of sequence alignment, mod-
els of mutational probability are used to compute a measure of the significance of the 
resulting alignment. Here, we focus on alignment methods for sequences that are highly 
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divergent; see Sahlin et al. [1] for a review of methods for rapidly matching nearly identi-
cal sequences (as in the context of read mapping [2–4]).

Sequence alignment has been the target of intense design advances for algorithmic 
and statistical inference methods over several decades, resulting in sensitive and remark-
ably fast approaches for sequence annotation. For many years, the dominant tool in the 
space of high-volume sequence alignment was BLAST [5], with support from carefully-
designed scoring models like position specific scoring matrices  [6, 7]. In the decades 
since the introduction of BLAST, advances in sensitivity have come primarily in the 
form of position specific scoring matrices [8–10] and eventually profile hidden Markov 
models (pHMMs) [11]. Thanks to robust strategies for training and scoring [12, 13] and 
their representation of position-specific probabilities of observing letters, insertions, and 
deletions, pHMMs have remained the state-of-art for sensitive sequence annotation [14, 
15].

Orthogonal to this development of sensitive models has been an ever-present push 
for greater speed, motivated by the exponential growth of modern sequence databases. 
These speed gains are generally achieved by either (i) filtering candidate alignment data 
with less computationally expensive algorithms, or (ii) devising faster implementations 
of the basic algorithms. The most popular alignment-based annotation tools achieve 
their speed by the first strategy, avoiding data analysis through various fast methods for 
predicting whether a sequence has the potential to produce a high score when exposed 
to a relatively expensive alignment algorithm  [5, 16–20]. These approaches typically 
depend on indexing either the target sequences, query sequences, or both, and using the 
resulting indices to identify promising “seeds” for more intensive processing.

Any work-avoidance strategy runs the risk of lost sensitivity due to avoiding candi-
dates containing true positive matches. In sequence alignment, index-based seed find-
ing methods address these sensitivity/speed trade-offs through careful selection of data 
structures and parameterization. While recent advances retain BLAST-like sensitivity 
with 30–100× speed gains [21], the sensitivity of full-featured pHMMs is still unrivaled.

The alternative acceleration strategy (apply the same core algorithm, but faster) typi-
cally depends on some form of hardware acceleration. One such strategy leverages the 
SIMD (Single instruction, multiple data) vector instructions available on all modern 
CPUs [22]. SIMD sequence alignment implementations [23–26] have achieved impres-
sive speed gains. This technique serves as a core part of the acceleration strategy used in 
popular profile alignment tools [21, 27, 28].

Hardware acceleration for sequence alignment has also been developed in the con-
text of specialized hardware such as Graphics Processing Units (GPUs  [29]) and field 
programmable gate arrays (FPGAs  [30]). Here, we introduce an FPGA-base hardware 
accelerator that speeds up the key bottleneck stage of the HMMER pipeline by as much 
as 60x. Before presenting detailed methods and results, we first provide a brief introduc-
tion to the relevant aspects of HMMER, followed by a light introduction to hardware 
acceleration.

Profile HMMs and the HMMER pipeline

A profile HMM is a generative model of a family of sequences, with model parameters 
learned from multiple members of that family. Figure 1A shows the Plan-7 architecture 
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used in HMMER3 [31]. The architecture includes a core model made up of match states 
(which emit letters with position-specific probability at conserved positions in the fam-
ily), insert states (which emit letters inserted between conserved positions), delete states 
(which silently bypass conserved positions), and position-specific transitions between 
these states, along with a few additional states and associated transitions that model let-
ters not related to the core family—see  [32] for further detail. The high sensitivity of 
pHMMs is due to (i) these position-specific probabilities, and (ii) application of the For-
ward algorithm  [33] for computing support for the relationship between query HMM 
and target sequence.

Computation of a sequence alignment amounts to discovering a path through a QxT 
2-dimensional matrix, where Q and T are the lengths of the query model and target 
sequence respectively. In the context of pHMMs, the Viterbi algorithm identifies a most-
probable path through that matrix, and computes support for the relationship between 
Q and T from the single corresponding alignment. This is functionally equivalent  [34] 
to the Smith-Waterman algorithm [35] that is approximated by BLAST and other faster 
tools mentioned above. Meanwhile, the Forward algorithm computes the sum of the 
probabilities of all possible paths (all alignments), and uses this as the basis for measur-
ing support for relatedness. The run time complexity of both algorithms is �(QT ) , but 
Forward is much slower than Viterbi due to increased constant factors [36].

HMMER3  [36] produced a >100× speedup over the prior release, despite utilizing 
the relatively slow Forward algorithm, thanks to development of a pipeline consisting of 

Fig. 1 The standard and SSV state models for HMMER3 pHMMs. In A, the core model utilized by HMMER3 
Viterbi and Forward algorithm consists of states for observed positions in the modeled family (M), states 
for insertions relative to those positions (I), and silent states corresponding to the loss or deletion of 
those positions (D). The Jump state (J) enables a match between the target genome sequence and two 
disconnected (or even repeated) regions of the aligned model. The other states (S,N,B,E,C, and T) and 
path-skipping edges (blue/red) are required for proper scoring statistics [31]. B shows the reduced model 
utilized by the SSV algorithm implemented in HMMER3 and HAVAC, in which I, D, and J states are removed; 
this reduces data dependencies between cells of the Dynamic Programming matrix, and corresponds to 
alignments between query and target that contain only consecutive aligned positions
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faster pHMM alignment filters that approximate the Forward score (Fig. 2). The key idea 
is that the Forward algorithm is only applied to a small number of candidate sequence 
matches that are allowed to pass these earlier, faster filters. Specifically: query/target 
pairs are aligned using a SIMD vectorized implementation  [23, 25, 37] of the Viterbi 
algorithm, using reduced precision 16-bit integers in place of floating-point scores; this 
Viterbi stage approximates the score that will be achieved when running Forward, and is 
by default parameterized such that ∼ 1/1000 random sequences are expected to pass the 
filter. This Viterbi filter is, in turn, preceded by an even simpler filter that compares the 
query to the target using a scoring scheme with further reduced precision (8-bit integers) 
and a variant of the model that does not allow for gaps (insertions or deletions). In the 
context of nucleotide alignment, the HMMER search tool nhmmer [15] calls this stage 
the Single Segment ungapped Viterbi (SSV) algorithm (see Fig. 1B). SSV produces a very 
rough approximation of the score that will be produced when computing the full For-
ward alignment, and is parameterized such that ∼1/50 random sequences are expected 
to pass the filter. The SSV and Viterbi approximations are not particularly accurate, but 
are close enough to be generally useful; empirical evidence [36] suggests that nearly all 
matches that are reported by an unfiltered Forward implementation will also survive the 
Viterbi filter at p ≤ 0.001 and the SSV filter at p ≤ 0.02 [36].

Algorithm  1 describes the basic SSV algorithm, which computes the maximum 
ungapped score for matching a sequence to a query pHMM. HMMER3 parallelizes its 
SSV implementation using 16-way striped SIMD vector instructions  [37]. The score 
returned from this algorithm can be compared against a threshold score (by default, the 
score required to produce a P-value of 0.02) to determine whether the given sequence is 
a sufficiently good match to warrant more robust calculation. Table 1 shows the average 
percentage of random sequences that will be processed by each stage in the pipeline and 
the total runtime spent in each stage in a typical use case. Even though SSV is the fast-
est stage in the pipeline, it still accounts for the majority of the runtime because every 

Fig. 2 HMMER Pipeline. The major stages of the HMMER pipeline. The Ungapped Viterbi, Gapped Viterbi, 
and Forward stages of the pipeline function as filters, reducing the number of queries that are passed onto 
subsequent stages

Table 1 The major stages of the HMMER3 pipeline, the percentage of random sequences that will 
be processed by a given pipeline stage, and the approximate percentage of total runtime required 
by each stage in a typical search

Pipeline stage Ungapped Viterbi 
(%)

Gapped Viterbi 
(%)

Forward filter (%) Align 
& post-
process (%)

% random
Ssequences processed

100 2 0.1 0.001

Total % Runtime 70 3 20 7
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sequence must be evaluated by SSV, while only the best matching 2% of sequences are 
evaluated by Viterbi, and so on.

Algorithm 1 The Single Segment Ungapped Viterbi Algorithm

Hardware acceleration

An alternative approach to improving the runtime performance of the sequence homol-
ogy search algorithms has been to employ hardware acceleration. ClawHMMER  [38] 
was the first work to accelerate the pHMM Viterbi algorithm using Graphics Process-
ing Units (GPUs). CUDAMPF  [39] later used GPUs to accelerate ungapped Viterbi, 
gapped Viterbi, and Forward/Backward in HMMER. Other works have shown that Field 
Programmable Gate Arrays (FPGAs) can be used to further improve the pararallel per-
formance of dynamic programming-based sequence alignment algorithms, including 
numerous FPGA hardware accelerators for the Smith-Waterman algorithm  [40–43]. 
FPGAs are hardware devices that can be configured by Hardware Description Lan-
guage (HDL) code to implement arbitrary digital logic circuits. Unlilke CPUs and GPUs, 
FPGAs have no prestructured computational architecture and can be optimized for a 
specific computational task. For example, an FPGA can be used to implement a chain 
of Processing Elements (PEs) that feed their outputs directly into the inputs of the next 
PE in the chain. These structures are called pipelines. Systolic arrays are a special type of 
pipeline with regular structure that synchronize data passing through the PEs in a con-
trolled manner, similarly to their biological namesake. Systolic arrays tightly couple the 
control logic to the data being processed in order to compute small sections of a larger 
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computational process on a regular basis. Both pipelines and systolic arrays can be used 
to efficiently pass data along in a highly parallel computational environment.

In serial implementations of sequence alignment, as in Smith-Waterman or in Viterbi 
and Forward with the standard pHMM model (Fig. 1A), it is common to perform cal-
culations in row-major order, so that all calculations on one row are performed before 
moving on to the next row. Straightforward parallel implementations in which a batch 
of cells on one row are computed concurrently suffer from a data dependency pattern in 
which each cell depends on the previous cell in the row as well; multiple cells cannot be 
computed concurrently without either speculative calculation techniques as in  [44] or 
parallelizing computation along the dynamic programming matrix’s anti-diagonal [45].

An additional dependency challenge is presented by the existence of the pHMM 
J state, which may increase search sensitivity by allowing multiple passes through the 
core model. The inclusion of the J state results in a data dependency between each cell 
in the DP matrix and every cell corresponding to the previous sequence character, and 
as a result the maximum score from a given row must be identified before any cells in 
the subsequent row can be computed. Maddimsetty et al. [46] implement a two-pass hit 
detection algorithm by appending a duplicate copy of the model to the end of the model 
in lieu of the J state. This effectively allows two separate homologous areas to accumu-
late score as if there is a single-use J state loop. Oliver et al. [47] implements Viterbi on 
the full HMMER model including the J state, opting to parallelize over multiple discrete 
sequence/model pairs instead of along a single DP matrix anti-diagonal.

Abbas et al. [48] implemented a single accelerator that runs both a Multiple-Segment 
Ungapped Viterbi (MSV) filter and Viterbi on the same hardware. The MSV filter is simi-
lar to SSV, but it retains the HMMER pHMM J state. Abbas et al. implement the MSV 
filter with a max-reduction tree across a static number of cells from previous model 
states, allowing the accelerator to approximate the J state in a reasonable amount of par-
allelizable work, at the cost of a potential drop in sensitivity. Nowak et al. [49] developed 
an FPGA implementation of profile-based SSV modeled on the HHBlits [50] implemen-
tation. Their FPGA was limited to profile blocks of at most 220 positions, provided 128-
way parallelism, and achieved a 1.91× speed improvement compared to the HHBlits 
function.

Here, we introduce a new hardware accelerator that implements SSV as a standalone 
nucleotide sequence homology filter, demonstrating vastly greater speed than similar 
previous accelerators. The Hardware Accelerated single-segment Viterbi Additional 
Coprocessor (HAVAC), is designed to exist as a standalone nucleotide sequence homol-
ogy filter that can in principle be incorporated into a pHMM alignment pipeline in which 
SSV filter is run on the FPGA accelerator while downstream Viterbi and Forward align-
ment algorithms can be run simultaneously on the host CPU. In the standard implemen-
tation, SSV returns a maximum score that is later compared against a threshold score to 
determine if there was a matching region in the overall sequence. As alternative, HAVAC 
utilizes the parallel nature of reconfigurable hardware to check every cell’s score against 
a threshold, and generate hit reports that detail the sequence and model positions of 
any hits. This extra information can be useful for downstream applications to determine 
areas of likely homology. The relative computational simplicity of the SSV model allows 
for better parallel performance than its more intricate counterparts. We also present 
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a method for scaling a profile HMM’s emission scores to leverage an 8-bit full adder’s 
carry bit to check if a model’s state score passes a significance threshold without requir-
ing an 8-bit comparator. HAVAC returns the (i, j) pairs of DP matrix cells that pass the 
given threshold to allow later stages in a sequence homology search pipeline to localize 
search around areas of likely homology. HAVAC supports fasta-formatted sequence files 
and HMMER3-formatted model files. HAVAC is open-source licensed under BSD-3 and 
is available at https://github.com/TravisWheelerLab/HAVAC.

Methods
The HAVAC hardware accelerator was implemented on a Xilinx Alveo U50 FPGA accel-
erator card. The Alveo U50 is a PCI-e card that is simple to install and is modestly priced 
($2,965 at time of writing). The Alveo U50 contains a custom-built Ultrascale+ FPGA 
with approximately 874K lookup tables (LUTs) and supports two 4GiB banks of High 
Bandwidth Memory (HBM). The HAVAC hardware design was implemented using Vitis 
High-Level Synthesis (HLS), a tool for synthesizing designs from compliant C/C++ 
codebases along with FPGA-specific #pragma instructions. Vitis HLS can allow for sig-
nificantly faster development compared to traditional hardware description languages 
(HDLs), at a small cost to implemented resource utilization and performance [51]. The 
HAVAC host (CPU) driver code was implemented in C++ using the Xilinx Runtime 
Library (XRT).

Profile HMM scores

As in the nhmmer SSV filter, HAVAC computes the scores of the Dynamic Program-
ming (DP) matrix using 8-bit integer emission scores. For a given pHMM, a threshold 
score t is generated representing the minimum score required for a target database 
sequence to pass the requested P-value target (default: P ≤ 0.02 ) using the pHMM’s pre-
computed gumbel distribution parameters  [31] with adjustments to account for SSV’s 
removed state transitions. HAVAC uses the threshold to generate a scaling factor τ on 
the pHMM’s emission scores. The purpose of τ is to reproject the emission scores such 
that an accumulated score passes the query-specific threshold if and only if the score 
reaches 256.

The purpose of using τ to re-project the emission scores is twofold. The primary reason 
is to simplify the hardware accelerator’s cell Processing Elements (PEs). By enforcing a 
threshold score of 256, the cell PEs can check their score against the threshold by using 
an 8-bit full adder’s carry bit, eschewing the need for a full 8-bit comparator to check for 
hits. As a result, cell PEs require fewer resources to implement, which allows more PEs 
to fit into the hardware to improve parallelism. As an added bonus, using τ to reproject 
the emission scores allows for better use of the 8-bit integer space, allowing for slightly 
more precision in the emission scores when compressed down to 8-bit integers.

The HMMER3 pHMM format stores emission scores as negative log-likelihood values, 
and these scores must be converted to bits before being projected using τ . To convert a 
negative log-likelihood score s to a τ-reprojected score s′ in bits, the score is represented 
as a single-precision floating-point value and extracted from negative log-likelihood 

τ = 256/t
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space, divided by the background distribution of equal probability for each of 4 nucleo-
tides, converted to bits, and then multiplied by τ.

The above equation involves performing exp() and log() function calls on each emission 
score, which are slow on modern hardware. We eliminate the need to perform these 
expensive functions by simplifying as follows.

In the resulting equation, the terms 2τ and τ log2(e) can be computed as constants over 
all match states of the model; this means that all match states can be computed with 
a single multiplication and subtraction. Each re-projected emission score s ′ is then 
rounded to the nearest integer, and cast to signed 8-bit integers. Each individual pHMM 
in the input.hmm file is projected in this way using the same P-value and the data are 
appended together and written to the FPGA’s HBM memory banks.

SSV processor design

Define M(i, j) as the score of the maximum scoring ungapped Viterbi alignment ending 
at the ith letter of the sequence and the jth position of the pHMM. For a sequence of 
length L and a pHMM of length K, this requires computation of LK cells. The HAVAC 
kernel on the FPGA is comprised mainly of a systolic array of n cell PEs that each indi-
vidually compute a single cell of the DP matrix each cycle. If L > n , then the sequence 
is procedurally broken into length-n segments. Each cell PE in the systolic array uses a 
different letter from the sequence to find the match score for the current pHMM posi-
tion and adds it to the score computed by the previous cell PE on the previous cycle. 
Initially, the systolic array computes the cells M(1, 1) to M(n, 1) in the DP matrix. The 
model position is then incremented and the systolic array computes M(1, 2) to M(n, 2), 
and so on until a full pass through the pHMM has been completed. Figure 3 shows how 
the sequence is broken down into segments of length n, and how the SSV processor 
computes rows of length n down the DP matrix. If L > n , then a new segment of the 
sequence is loaded into the cell PEs and another pass through the pHMM begins. These 
passes through the pHMM compute columns of width n through the DP matrix until the 
entire matrix has been calculated. Sequences that are not a multiple of N in length are 
padded with random data to reach that target; SSV matches to these random sequences 
will be rare, and are easily filtered out by host-side driver.

When the processor is running, n-length sequence segments are read asynchronously 
from memory and inserted into a hardware FIFO until the entire sequence is consumed. 
Similarly, the pHMM is read asynchronously from memory in full for each sequence 
segment, and inserted into its own FIFO. When the processor begins to compute a pass 
through a sequence segment, a full segment is consumed from the sequence FIFO to 
set each cell’s sequence symbol. Once the sequence is loaded into the cell PEs, the full 
pHMM is consumed from the FIFO, one model position at a time. Figure  4 shows a 

s′ = log2(e−s/(1/4)) ∗ τ

s′ = log2(4e−s) ∗ τ

s′ = (log2(4)− s ∗ log2(e)) ∗ τ

s′ = 2τ − sτ log2(e)
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Fig. 3 SSV dynamic programming matrix. The Dynamic Programming matrix for the SSV model. Here, 
the sequence is comprised of 3 segments of length N = 4 . The light colored row shows the cells being 
computed this cycle. The fuchsia arrows indicate the data from the cells M(i − 1, j − 1) . The blue arrows 
indicate the cells that will use the data generated this cycle to compute M(i + 1, j + 1)

Fig. 4 HAVAC hardware design overview Diagram of the overall design of the HAVAC hardware accelerator. 
Sequence length and model length are provided as inputs. The hardware then asynchronously loads length n 
segments of the sequence from HBM. For each of those segments, the model is loaded from HBM. These data 
are fed to the SSV processor, which calculates the cells of the DP matrix. The score queue module facilitates 
the transfer of scores from the last column of one sequence segment pass to the first of the next. The vector 
of bits representing any threshold hits are passed to the hit reporter module, which checks for any hits, 
determines the model and sequence positions of the hits, and writes the hits to HBM
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simplified view into the overall HAVAC hardware accelerator. Figure 5 shows the systolic 
array of cell PEs that compute the cells of the DP matrix.

For any given sequence segment, the leftmost cell of the systolic array of cell PEs 
requires input scores from the previous sequence segment column (except the first seg-
ment, which requires inputs of 0 for each cell in the first column of the matrix). Like-
wise, the scores generated by the rightmost cells in the segment column must be used 
as inputs for the next segment column of the matrix. A score queue module that imple-
ments a hardware FIFO structure is used to enqueue the outputs of the rightmost cell 
in a segment column, and dequeue scores as needed by the next segment column. The 
score queue module uses a series of 36kb block RAM elements to implement the hard-
ware FIFO. Since hardware block RAMs have a definitive capacity, the score queue 
module acts as a limiting factor on the total length of phmm vectors that HAVAC can 
support. HAVAC supports a maximum of 1,048,576 (1024*1024) model positions for a 
single SSV query. This is large enough to hold the entirety of the Rfam database of RNA 
families [52](4108 models) twice over.

Hardware cell processing elements

The HAVAC cell PE is designed to minimize the resources required to calculate the 
score at a given cell. The cell’s sequence symbol c is used as the select on the current 
pHMM vector P(j) to obtain the cell’s signed 8-bit pHMM emission score. This value is 
then summed with the score computed by the previous cell PE on the previous cycle, 
M(i − 1, j − 1) , to obtain an unsigned 8-bit intermediate sum value T(i,  j) and a carry 
bit from the 8-bit full adder. This carry bit is then used along with the sign bit from the 
emission score to determine if the threshold has been passed and if the final cell’s result, 
M(i,  j), should be reset back to zero. There are two situations where the result of the 
summation should be discarded: if a negative match score was added to M(i − 1, j − 1) 
(the carry bit was clear), or if a positive emission score was added to M(i − 1, j − 1) (the 
carry bit was set). In the first case the result underflowed the unsigned 8-bit result, and 

Fig. 5 Systolic array of N cell PEs. Each cell PE receives the score that was computed in the previous PE on 
the previous cycle. All cells use the same pHMM vector on a given cycle, and advance to the next vector on 
the subsequent cycle. Each cell uses a different symbol from inside the contiguous sequence segment to 
select the correct emission score for the PE’s corresponding DP matrix cell
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in the latter case the result overflowed the maximum representable score of 256. In this 
second case, the given cell has passed the score threshold and should be reported. Fig-
ure 6 shows the logic that implements a cell PE.

Hit reporting

HAVAC reports any cell that passes the 256 threshold as an (i,  j) position pair in the 
sequence and pHMM. HAVAC finds these (i, j) pairs by taking the threshold bit from all 
N cell PEs and systematically partitioning the threshold hit bits to find and report any 
that were set for a given cycle. These bits represent the cells i‘ < i < i‘+ N  where i‘ is 
the first position of the N-length current segment of sequence. First, all N threshold hit 
bits are bitwise-or reduced; if the result is 1, the threshold hit bits contain at least 1 cell 
that passed the threshold. In this case, the threshold hit bits are enqueued to a hardware 
FIFO along with the current pHMM position and the current sequence segment index. 
Then, in concurrently running processes, the threshold hit bits are partitioned into 16 
contiguous bit ranges. HAVAC iteratively bitwise-or reduces each of these 16 bit ranges 
to determine if a hit was in any of the ranges. If a bit range contained a hit, the bit range 
is enqueued to a subsequent hardware FIFO along with the rest of the position metadata 
and the index of the bit range. This process continues, further dividing the threshold hit 
bits until it represents a single bit. At this point, the hit’s position in the sequence can 
be identified as the index of that bit plus i‘. The hits are then written to the FPGA HBM 
memory where they can be read by the host to extract the (i, j) pairs after the HAVAC 
hardware accelerator finishes.

Because the hit report partitioning runs concurrently to the main systolic array, and 
the hardware does not know a priori how many hit reports will be written for an invo-
cation of the hardware accelerator, an extra terminator bit t is included along with the 

T (i, j) = M(i − 1, j − 1)+ P(j, c)

M(i, j) =

{

0, if T (i, j) < 0 or T (i, j) > 256

T (i, j), otherwise

Fig. 6 Logic Diagram of the Cell PE. The pHMM vector’s four 8-bit scores corresponding to each nucleotide 
are de-multiplexed by the sequence symbol, and then added to the score from the previous cell PE. Simple 
bitwise operations then determine if an overflow or underflow occurred, and reset the score or report a hit 
accordingly
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threshold hit ranges and positional data and is normally cleared. On the final cycle of 
the matrix computation (the final pHMM position of the final sequence segment index), 
the full threshold hit bit range is enqueued to the partitioning system even if it does not 
contain any hits, along with a set terminator bit. Each subsequent partitioning tier then 
passes along a threshold bit range with a set terminator on the final (16th) section of the 
bit range, and then deactivates. Once all hit reports are written to memory and the final 
partitioning tier deactivates, the number of hits is written to memory and the hardware 
accelerator completes its operation.

Accelerator synthesis and driver

Synthesis of the HAVAC hardware accelerator design was performed inside the Xilinx 
Vitis HLS tool. Implementation was performed by the v++ compiler tool. The Alveo 
U50 card contains 8GiB of HBM, split between 32 256MiB banks. Of the 8GiB of HBM 
available, 4GiB (16 banks) is used to store sequence data. All sequence characters are 
represented with 2-bit encoding (ambiguity characters are replaced by random letters, 
which may result in rare cases of falsely passing the filter; these are quickly filtered out by 
the downstream driver). HAVAC supports target sequences up to an aggregated length 
of 16Gbp. 512MiB (2 banks) is allocated for the profile HMM match scores. 3.5GiB (14 
banks) is allocated for reporting the 8 byte (i, j) pairs for hits. Therefore, a maximum of 
469,762,048 hits can be reported for any query. HAVAC was implemented with 12,288 
cell PEs at a clock speed of 144.5 MHz. The number of cell PEs was chosen as a multi-
ple of 4096 to allow the sequence data to better align to the hardware’s 4KiB memory 
boundary, while maximizing the number of PEs that could be successfully be synthe-
sized and implemented (by the HLS tool and v++ compiler). The clock speed was deter-
mined automatically by the v++ compiler as the maximum clock speed that could be 
successfully implemented.

The HAVAC driver software library allows for simple control over the hardware accel-
erator. Input data is provided to the driver as a fasta file and a HMMER3 model file and is 
then preprocessed and loaded onto the board’s HBM memory banks. The SSV computa-
tion can then be performed either synchronously or asynchronously. Once the hardware 
accelerator has finished, hit data can be read from the device as global sequence and 
model positions. Using these global positions, the HAVAC driver references the fasta 
and model files to locate which sequence and model the hits resides in, and the local 
positions in the sequence or model the hit refers to. These sequence and model posi-
tions can then be used by other algorithms in a sequence alignment pipeline as positions 
of potential homology. Because of the nature of HAVAC being a dedicated co-proces-
sor, SSV calculation may be performed concurrently to these other algorithms, further 
reducing the processing time for large queries that can be broken down into smaller 
batches.

With enough memory to store 16Gbp of sequence and 13 million positions of pHMM 
data, HAVAC has far more memory than would be required for any single sequence or 
pHMM. The HAVAC driver concatenates all sequences in a fasta file and all models in 
an hmm file before transferring the data to the accelerator for processing. Thus, HAVAC 
searches the sequences and models in an all-to-all manner. The only limit to the number 
of sequences or pHMMS that HAVAC can process in a single invocation is the size of 
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the memory allocated to each on the device. Once the hits are reported to the host, a fast 
SSV validity check is performed with the CPU to eliminate any hits that may have been 
generated by crossing the boundary between any two sequences or models.

Results
We performed benchmarking experiments on a compute system with two Intel Xeon 
X5570 CPUs @ 2.96GHz, each with 4 cores, and 114 GB of memory, with test data was 
stored on an Intel 240GB SSD.1 Tests were performed by searching human chromosome 
22 against query databases generated from subsets of the Rfam family model database. 
Query datasets were generated by selecting models from Rfam, in order of ascend-
ing accession ID, up to a specified number of model positions. For example, for the 
total model database length threshold around 10,000, Rfam families RF00001 through 
RF00065 were used, with a sum of model lengths equal to 10,122; meanwhile the set of 
Rfam families RF00001 through RF00163 produce a subset with a total model length of 
20,039.

The HAVAC hardware accelerator was implemented on a Xilinx Alveo U50 Data 
Center accelerator card. FPGA routing and implementation typically uses only a frac-
tion of the full board capacity—HAVAC’s final hardware implementation utilized 48.94% 
of the device’s hardware lookup tables (LUTs), 21.53% hardware register, and 35.94% 
Block RAMs. HAVAC’s runtime was timed as 4 discrete sections; (i) software data allo-
cation and configuring the FPGA with the Xilinx hardware device binary (.xclbin) file, 
(ii) file I/O for the sequence and pHMM files, data preprocessing, and loading these data 
onto the device’s HBM banks, (iii) runtime of the HAVAC SSV kernel, and (iv) reading 
the generated hits from the device memory and resolving the global (i, j) pairs to local 
sequence and model positions. It is common to describe the performance of dynamic 
programming algorithms in terms of billions of cells updated per second (GCUPS). 
HAVAC’s performance was measured to be 1739 GCUPS using the runtime of the ker-
nel from step (iii). This performance represents a realization of 98% of the theoretical 
maximum speed achievable with 12,288 cell PEs processing a cell every cycle at 144.5 
MHz. In comparison, HMMER3 contains a highly optimized CPU implementation of 
MSV that utilizes 16-way striped SIMD parallelization reported to reach 12 GCUPS on 
a single thread running on a 2.66 GHz Intel Gainestown X5550 CPU [27]. The nhmmer 
SSV matrix calculation on our tests system averaged 7.6 GCUPS when single-threaded, 
and 18.9 GCUPS with four threads. We tested nhmmer with 8 and 16 threads, but saw 
performance that was nearly identical to 4 threads; this is consistent with reports that 
HMMER3 becomes I/O bound at low thread count and does not benefit from additional 
threads past this point [53, 54]. The HAVAC kernel represents a 227× matrix calculation 
speedup over nhmmer with one thread and a 92× speedup over nhmmer with 4 threads. 
Table 2 shows the performance in terms of GCUPS for HAVAC and previous publica-
tions of Viterbi-family algorithms implemented on FPGAs and GPUs.

1 This a fairly old CPU. When we tested on a newer Xeon E5-2695v4 14 core system (192 GB RAM, all data on a local 
spinning disk), nmhmmer was 2–4× slower; and when we tested on an AMD EPYC 7642 48-core system (512 GB RAM, 
all data on local NVMe disk), nhmmer was 30% slower than the Xeon X5570 with 1 threads, and 25% faster with 8 
threads.
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HAVAC’s performance was also measured as a complete SSV filter including all steps 
from initial FPGA configuration to resolution of hit positions. These times were com-
pared to nhmmer’s SSV filter using 1, 2, and 4 threads with the subsequent stages of the 
HMMER pipeline disabled. At small query sizes, the hardware configuration and PCI-e 
data transfer times dominate run time, resulting in poorer performance than nhmmer. 
HAVAC and nhmmer with a single thread had similar runtime with a query length of 
1000 model positions (representing 6 models), and nhmmer with 4 threads was simi-
lar with a query length of 3000 model nodes (representing 16 models). As the size of 
the DP matrix grows, the hardware kernel’s performance becomes the dominating factor 
– when querying the entire Rfam database (4108 models) against human chromosome 
22, HAVAC is 65× faster than nhmmer with 1 thread. Figure 7 compares the runtime 
performance of HAVAC and the nhmmer SSV filter across various lengths of model 
databases.

Power utilization of the HAVAC hardware accelerator was approximated using the 
Xilinx Board Utility (xbutil) tool. Voltage and Amperage values were reported for the 
PCI-express interface and on-board power rails. These mV and mA values were multi-
plied to find the watts used, and them summed to total energy use estimate of 29 watts, 
31% of the 95 watts of the Thermal Design Power (TDP) of the Intel Xeon X5570 in our 
test system [62]. This TDP represents the average energy usage when all cores are under 
full load.

Conclusion
In this work, we have described a new implementation of HMMER’s SSV filter algorithm 
on reconfigurable hardware with excellent runtime characteristics. The limited data cell 
dependencies of SSV allow design of cell PEs that consume very limited resources. Con-
sidering that SSV represents ∼ 70% of nhmmer’s runtime, a 31× speedup over the cur-
rent SSV implementation would result in a ∼ 3.5× improvement on the pipeline overall 
when given 4 threads.

At 50% LUT and 22% register utilization, HAVAC could likely be reimplemented 
to increase the number of cell PEs in the design. Attempts were made to increase the 

Table 2 Fastest reported FPGA and GPU accelerator speeds for Viterbi-family algorithms on 
biological data from the literature

Implementation Algorithm Year GCUPS (Maximum reported) Device used

Jacob et al. [55] Viterbi 2007 10.6 (best case est.) Virtex-II 6000

Walters et al. [56] Viterbi 2007 0.7 Spartan-3 XC3S1500

Benkrid et al. [57] Viterbi 2008 9 Virtex-II Pro 2VP100

Oliver et al. [58] Viterbi 2008 2.1 Spartan-3 XC3S1500

Md Isa et al. [59] Viterbi 2012 11.8 Virtex 5 XC5VLX110

Abbas et al. [60] MSV 2015 81 (two) Stratix-III 260

Viterbi 2015 3.6

MSV + Viterbi 2015 45.7

Jiang and Ganesan [61] SSV (GPU) 2016 440 Tesla K40

MSV (GPU) 2016 277

Viterbi (GPU) 2016 14.3

HAVAC SSV 2023 1739
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number of cell PEs from 12,288 to 16,384, but the Xilinx v++ implementation stage 
was unable to generate the design. This is not unreasonable—as utilization grows, 
FPGA implementation becomes significantly more difficult as signals must be routed 
around increasingly more congested sections of the design, and may not be able to 
reach their destination in a reasonable amount of time. Smaller increases to the num-
ber of cell PEs are likely possible, although such changes would require modifications 
to the hit report partitioning system, and may further reduce the maximum imple-
mentable clock speed. Importantly, the Alveo U50 represents the lower end of the 
Xilinx data center accelerator cards, and a mid-range of FPGA accelerators in general, 
and it is reasonable to expect even faster HAVAC implementations on more powerful 
hardware.

It is important to remember that the SSV algorithm is a fast approximation of the 
Viterbi algorithm, but has limited sensitivity by itself. HAVAC efficiently filters to find 
areas of potential homology between sequences and probabilistic models, but is not 
an effective tool without a downstream pipeline of more accurate algorithms. As such, 
HAVAC is only an effective tool in conjunction with the rest of a bioinformatics pipeline. 
Future work would necessarily involve combining HAVAC with CPU-based downstream 
Viterbi or Forward algorithms to make a tool that would be applicable to the overall task 
of genome annotation.
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