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Background
From as early on as in utero development, the microbiome serves as an important 
mediating agent for human health [1, 2]. However, the mechanisms of its impact 
are not fully understood as the human microbiome is rather complex. Each person’s 
microbiota contains hundreds to thousands of bacterial and other species represented 
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by a population of trillions of cells; these populations are in constant flux and rely on a 
multitude of host factors including diet, geography, lifestyle, and medication use [3–5]. 
Microbiomes are not only unique from individual to individual, but also show high levels 
of internal variability across the landscape of the human body [6, 7]. One consequence of 
this is that different body habitats have their own unique implications on host health. For 
example, the state of the gut microbiome and its composition has been associated with 
Alzheimer’s disease [8], Parkinson’s disease [9], diabetes [10], chronic kidney disease 
[11], and inflammatory bowel diseases [12], amongst many others.

The task remains to elucidate the connection between the makeup and processes of 
the microbiome and host health outcomes. It is well known that the microbiome is a 
complex ecosystem of many different microbes potentially interacting with one another. 
Currently, the most common way of approaching this task is through the analysis of 
co-occurrence networks [13]. In these analyses, microbial networks are inferred from 
biological data using some quantification of association or connectivity (primarily 
correlation) and can provide insight of underlying biological processes. For example, in 
the case of microbiome analysis, a strong correlation between the abundance levels of 
two microbes may indicate that one of the microbes participates in the regulation of the 
other [14]. Further analysis of microbial networks could provide novel understandings 
in microbiota community structure, bacterial niche preferences and resiliency to 
perturbations, and the identities of key species in bacterial communities [15].

A key aspect in the construction of network representations is the choice of measure 
used to represent relationships between graph entities. As previously mentioned, 
correlation is the de facto measure used to quantify connections in microbial networks 
[16–18]. However, due to the properties of ecological environments and their 
characteristic interaction types, a simple correlation analysis may not always suffice. For 
example, in [19] it was concluded that correlation-based methods could consistently 
identify symmetric relationships, where microbes qualitatively affected each other 
in a similar way, but failed to provide meaningful conclusions when the relationship 
of interest was asymmetric in nature, e.g., microbe A increases in abundance while 
microbe B decreases. Weiss et  al. [20] came to similar conclusions–while correlation-
based methods are without a doubt useful and important tools in microbial analysis, 
they are not perfect and perform poorly when the monotonic assumption is violated. 
Given that the microbiome harbors potentially important instances of asymmetrical, 
non-linearly associated interactions, it is important that methodologies used in its 
analysis be sensitive to such cases. It should also be noted that non-linearity is not the 
only challenge pertaining to the study of the microbiome. As with data from other 
ecological environments, microbiome data suffers from the curse of dimensionality, 
sparsity, and compositionality amongst other complications [21]. If the microbiome is to 
be understood with enough depth to develop effective health interventions in the future, 
each of these complications must be addressed.

Entropy and mutual information

There is evidence that the use of information theoretics measures in studying 
biological data can provide an interesting and useful alternative to more traditional 
approaches [14, 22]. Information theory provides a framework of identifying general 
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dependencies between variables; this aspect of generality is particularly promising 
in the context of biological data where non-linear relationships have been observed 
experimentally [23, 24]. In this study, we use this framework to analyze pairwise 
relationships in simulated count data, as well as real-world data from a previously 
published study on C. diff infection.

Consider a pair of discrete random variables X and Y  with probability mass 
functions p(x) and p

(

y
)

 , respectively. The entropies (or uncertainties) of X and Y  can 
be expressed as:

Given a joint probability mass function, p
(

x, y
)

 , the joint entropy of the variables, 
H(X ,Y ) , can be expressed as:

The conditional entropies of each variable with respect to the other follows as:

The conditional entropy is the entropy of a random variable given knowledge of 
another. Given that X and Y  are independent, H(X |Y ) reduces to H(X) and likewise 
for H(Y |X) reducing to H(Y ).

Mutual information (MI) extends entropy to quantify how much information 
one variable contains about another. In other words, it measures the reduction in 
uncertainty of one variable given knowledge of another [22]. Mutual information 
can be calculated as a Kullback–Leibler (KL) divergence, representing the distance 
between a joint distribution, p
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 , and a product of marginal distributions, p(x)p
(

y
)

.

From the definition, one can show that I2(X;Y ) is symmetric, non-negative, and 
zero if and only if X and Y  are independent random variables (e.g., X and Y  contain no 
information on one another). A large mutual information implies a strong dependency 
between two random variables, with decreasing magnitude corresponding to decreasing 
dependency.
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Calculation of the mutual information is trivial when the distribution of a variable is 
known. However, when working with sampled data, it must be estimated empirically. 
Given sampled realizations of joint random variables (X ,Y ) ∼ PXY  , the naïve approach 
is to approximate the marginal probability distributions of X and Y  by imposing fixed, 
equidistant (or equiprobable) partitions on their respective sample spaces. Subsequently, 
by using the product of marginal partitions the joint probability density can be 
approximated. Given that (6) can be rearranged to give the following,

mutual information can be estimated. While computationally favorable, this approach 
results in unreliable estimates of probability distributions due to the fixing of partitions 
[25]. Algorithms presented in [25] and [26] are similar to the naïve approach but employ 
adaptive partitioning methods. Another class of entropy-related estimators rely on 
kernel density estimation (KDE) [27, 28]. In contrast with the partitioning approach 
where bins are restricted to rigid, non-overlapping intervals, KDE uses a generalized 
kernel function to model underlying distributions. This property produces “bins” that 
overlap and vary in shape and size. Kernel density estimation is a well-studied topic 
in mathematics; extensive work has been done from describing asymptotic behaviors 
[29] to determining optimal smoothing parameters [30]. K Nearest Neighbors (kNN) 
is another entropy estimation technique that focuses on the local distributions of 
samples rather than their distribution as a whole [31, 32]. In this class of method, each 
sample is assigned a probability based on the density of its k nearest neighbors. There 
are many techniques to define the surrounding density, and the reader is referred to 
[33–35] for further explanation of estimation procedures. Recently, machine learning-
based estimation techniques have received significant attention in regard to information 
theoretics. The motivation being that by using neural networks to implicitly model 
distributions and their entropy, more robust models that handle non-linearity can be 
created. The reader is referred to [36] for an extensive review of these types of methods 
along with their derivations, proofs and specific use cases.

In this study, we test the abilities of various measures of pairwise association to 
detect different ecological dependencies in simulated data. Loosely following the data 
simulation protocol in [20], we create synthetic OTU (operational taxonomic unit) 
count tables of various distributions and induce asymmetric pairwise dependencies 
that mimic some of those encountered in ecological settings–amensal, commensal, and 
exploitative relationships (Fig. 1). Given a pair (X, Y) of OTUs, amensal relationships are 
characterized by the presence of X depressing the abundance of Y, while Y has no effect 
on X. In contrast, commensal relationships occur when the presence of X increases the 
abundance of Y, with Y having no effect on X. Exploitative relationships are defined by 
the presence of X increasing the abundance of Y, while Y simultaneously reduces the 
abundance of X. While not the exhaustive set of all ecological relationships, the three 
dependencies represented in this study provide a useful framework for assessing the 
performance of different association measures in ecological settings.

In total, we apply seven different mutual information (MI) estimators to pairs within 
each relationship category: Mutual Information Neural Estimation (MINE) [37], 
an estimator proposed by Nguyen et  al. (NWJ) [38], Difference of Entropies (DoE) 

(7)I2(X;Y ) = H(X)+H(Y )−H(X ,Y ),
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[39], Maximal Information Coefficient (MIC) [40], the KSG estimator [33], Local 
Nonuniformity Correction (LNC) [34], and a naïve grid-based partitioning estimator 
(see Methods). These MI estimators are compared against the Pearson correlation and 
Spearman rank correlation coefficients. The performance of each metric in identifying 
associated pairs is assessed and presented in the following sections.

Figure 1 Each graph displays a pair of simulated OTUs (operational taxonomic units) 
under two scenarios: the pair is non-interacting/independent (blue) or the pair is subject 
to a specified ecological relationship (red). Density estimations for each OTU pair are 
shown along their respective axes

Results
Mutual information provides meaningful results on identifying associated pairs

Each mutual information estimator in this study has the property that its magnitude 
(or score) is proportional to the strength of the dependency it measures–i.e., a higher 
score corresponds to a stronger pairwise association. Therefore, the task of detecting 
relationships can be viewed as a classification problem where pairs with null relationships 
are assigned a score of low magnitude while pairs with dependent relationships are 
assigned a score of high magnitude. Here, we treat each metric as a binary classifier 
and assess its classification ability on single-actor (amensal, commensal) and dual-actor 
(exploitative) asymmetric relationships. Receiver operating characteristic (ROC) curves 
were constructed for each metric using an equal number of dependent relationship pairs 
and null relationship pairs. Table 1 shows the AUCs (and corresponding 95% confidence 
intervals) of all mutual information estimators when detecting each relationship type, 
based on count table data generated from various prior distributions.

Table 1 AUC results shown are for tools tested on TMM [41] normalized data (n = 50) 
across several prior distributional assumptions under exploitative, commensal, and 
amensal relationships. Best results for each prior distribution by relationship type are 
indicated by bolded font. Bootstrapping was used to produce 95% confidence intervals. 
It was ensured that a 1:1 parity existed between positive and negative (dependent and 
null) examples – in particular, each bootstrapped test consisted of 100 dependent and 

Fig. 1 Illustrative examples of the asymmetric ecological relationships explored in this study
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100 null pairs. For the KSG, LNC, and naïve partitioning methods, only the results from 
the best performing parameters are included, whereby performance was assessed by the 
average AUC across all distributions (best parameters are provided in parentheses).

Table 1 shows that the highest performance was observed in commensal interactions, 
with an average AUC of 0.905 across all methods and prior distributions. This was 
followed by exploitative interactions (average AUC of 0.782) and amensal interactions 
(average AUC of 0.748). For commensal interactions, AUCs ranged from 0.806 to 0.977, 
indicating robust discriminatory power across all distributions. This high performance 
is expected, as commensal relationships exhibit the least deviation from linearity among 
all tested relationships. Conversely, all methods showed a decline in performance 
for exploitative and amensal interactions. AUCs for exploitative relationships ranged 
from 0.606 to 0.941, while for amensal relationships, they ranged from 0.467 to 0.870, 
indicating a significant decrease in performance compared to commensal interactions.

When reviewing method-specific performances, the two machine learning estimators 
using KL-divergence in their formulation, MINE and NWJ, outperformed the other 
approaches. Across all prior distributions and relationship types, MINE achieved 
an average AUC of 0.870, while NWJ closely followed with 0.843. Following them in 
performance were LNC, KSG, DoE, MIC, and the partitioning approach with average 
AUCs of 0.836, 0.832, 0.797, 0.762, and 0.742, respectively, across all settings. For 
individual relationship types, MINE was the best approach for both exploitative and 
commensal interactions, achieving average AUCs of 0.864 and 0.946, respectively. NWJ 
was the best approach for amensal interactions with an average AUC of 0.852 across 

Table 1 Areas under the ROC curves (AUCs) for each metric under exploitative, commensal, and 
amensal relationships

Best results for each prior distribution by relationship type are indicated by bolded font

Log normal Exponential Negative 
binomial

Gamma Beta negative 
binomial

Avg

Exploitative MINE 0.941 ± 0.028 0.936 ± 0.025 0.731 ± 0.059 0.884 ± 0.041 0.826 ± 0.050 0.864

NWJ 0.925 ± 0.032 0.879 ± 0.040 0.745 ± 0.057 0.856 ± 0.044 0.738 ± 0.058 0.823

DOE 0.800 ± 0.050 0.772 ± 0.057 0.727 ± 0.062 0.691 ± 0.062 0.721 ± 0.060 0.742

MIC 0.823 ± 0.051 0.724 ± 0.059 0.663 ± 0.062 0.656 ± 0.062 0.606 ± 0.064 0.694

KSG (5) 0.917 ± 0.033 0.866 ± 0.041 0.699 ± 0.062 0.804 ± 0.051 0.700 ± 0.066 0.797

LNC (7) 0.901 ± 0.033 0.865 ± 0.042 0.723 ± 0.058 0.874 ± 0.040 0.700 ± 0.059 0.813

Partitioning (3) 0.781 ± 0.055 0.786 ± 0.053 0.677 ± 0.062 0.739 ± 0.058 0.720 ± 0.057 0.741

Commensal MINE 0.971 ± 0.017 0.966 ± 0.021 0.900 ± 0.038 0.974 ± 0.015 0.922 ± 0.031 0.946

NWJ 0.886 ± 0.044 0.879 ± 0.043 0.820 ± 0.056 0.913 ± 0.036 0.773 ± 0.056 0.854

DOE 0.921 ± 0.031 0.943 ± 0.024 0.925 ± 0.029 0.933 ± 0.027 0.933 ± 0.028 0.931

MIC 0.895 ± 0.035 0.871 ± 0.041 0.868 ± 0.039 0.861 ± 0.042 0.806 ± 0.051 0.860

KSG (9) 0.945 ± 0.024 0.959 ± 0.022 0.905 ± 0.034 0.927 ± 0.030 0.937 ± 0.025 0.935

LNC (9) 0.955 ± 0.025 0.977 ± 0.012 0.884 ± 0.036 0.919 ± 0.031 0.948 ± 0.022 0.937

Partitioning (5) 0.902 ± 0.035 0.897 ± 0.035 0.838 ± 0.049 0.894 ± 0.037 0.846 ± 0.046 0.875

Amensal MINE 0.833 ± 0.048 0.760 ± 0.054 0.800 ± 0.051 0.824 ± 0.046 0.831 ± 0.049 0.801

NWJ 0.842 ± 0.044 0.840 ± 0.047 0.854 ± 0.043 0.870 ± 0.044 0.854 ± 0.043 0.852

DOE 0.678 ± 0.060 0.732 ± 0.059 0.731 ± 0.058 0.679 ± 0.062 0.772 ± 0.054 0.718

MIC 0.798 ± 0.050 0.691 ± 0.064 0.723 ± 0.058 0.726 ± 0.057 0.717 ± 0.059 0.731

KSG (5) 0.815 ± 0.048 0.729 ± 0.059 0.726 ± 0.057 0.787 ± 0.050 0.770 ± 0.055 0.765

LNC (7) 0.763 ± 0.052 0.705 ± 0.061 0.820 ± 0.050 0.756 ± 0.056 0.749 ± 0.056 0.759

Partitioning (3) 0.467 ± 0.066 0.543 ± 0.070 0.708 ± 0.058 0.616 ± 0.062 0.719 ± 0.057 0.611



Page 7 of 21Francis and Sun  BMC Bioinformatics          (2024) 25:266  

all prior distributions. In contrast, DoE, MIC and the naïve partitioning were the worst 
performing methods, all yielding average AUCs below 0.8 across all relationship types. 
Outside of the commensal setting, DoE and MIC achieved AUCs above 0.8 only in the 
case of exploitative relationships with a log-normal prior, while the naïve partitioning 
approach did not surpass an AUC of 0.8 in any exploitative or amensal scenario. 
Furthermore, DoE registered sub-0.7 AUCs in three of the fifteen possible combinations 
of relationship types and prior count distributions, while MIC and naïve partitioning 
each produced four of such instances. This suggests that purely distributional or grid-
based mutual information estimators have limitations and may not be ideal in the 
context of studying ecological relationships.

It should be noted that results shown for the machine learning-based tools (MINE, 
NWJ, DoE) were based on scores generated by neural networks that were not tuned 
for hyperparameters, so their performance is likely sub-optimal. Because each unique 
interaction pair requires its own independent network, tuning for hyperparameters 
would result in a drastic increase of the already significant computational time 
and resources. However, despite the trade-offs between model optimization and 
performance, MINE and NWJ outperformed all other metrics in over half of distribution 
× relationship type settings, with 12 of the 15 best results coming from one of these two 
approaches. When DoE is included, the machine learning-based tools produced 13 of 
the 15 best results.

Mutual information estimators can reveal associations not detected by conventional 

correlation measures

In the following sections, we analyze the performance of each metric as a statistical 
test where the null hypothesis  (H0) is that a pair of variables is independent, and the 
alternative hypothesis  (H1) is that a pair of variables share a dependent relationship. 
This is done to enable the direct comparison amongst the MI estimators and with their 
traditional correlation counterparts. The significance of each pair’s interaction (i.e., its 
p-value) was determined empirically by permutation and subsequently corrected for 
multiple testing using the Benjamini–Hochberg procedure [42] (Methods).

Figure  2 displays the true positive rates (TPRs) of each metric when applied to 
simulated count tables; box and whiskers are constructed from 1,000 bootstrapped 
runs where true ecological relationships are tested against an equal number of null 
relationships. Immediately, it can be seen that all metrics are much more consistent 
at detecting commensal relationships than exploitative or amensal ones–in every 
case, commensal relationships were consistently assigned the highest TPRs regardless 
of prior distribution. For the correlation measures (Pearson’s correlation coefficient 
and Spearman’s rank correlation coefficient), amensal relationships were detected at a 
higher rate than exploitative ones, and for the MI estimators, exploitative relationships 
are generally better detected than amensal ones. It can also be observed that methods 
generally perform worse when analyzing data from discrete prior count distributions. 
This trend is broken in the case of the traditional correlation methods where an increase 
in performance for discrete distributions over continuous ones is observed (Fig.  2B, 
C). Interestingly, in the case of commensal relationships where conditions are closest 
to linearity, conventional correlation measures were only able to produce results on par 
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with the worst performing mutual information estimators (Fig.  2B). However, in the 
case of the most difficult to detect interactions, amensal relationships, the conventional 
measures, namely the Spearman rank correlation coefficient, produced the best results 
(Fig. 2C) although the TPRs are low for all methods tested.

Effects of normalization techniques and choice of multiple test correction on performance

When analyzing metagenomic data, choice of prior count distribution and normalization 
technique is imperative to the quality of results [43]. All data used for analyses up to 
this point have been TMM normalized and resulting p-values have been corrected 
using the Benjamini–Hochberg false discovery rate correction. While these approaches 
are common in the field, they are not unilaterally considered the “best” normalization 
method or the “best” way to perform multiple testing correction. To this end, we 
explored the effects of different combinations of normalization approaches and multiple 
testing correction methods on the task of interaction detection.

Figure  3 displays how TMM [41], RLE [44], and TSS (total sum scaling) 
normalizations impacted the ability of each method to (A) detect true pairwise 
interactions (TPR–true positive rate) and (B) avoid false detection of null ones (FDR–
false discovery rate) for exploitative relationships. The results suggest that underlying 
count distribution plays a much more significant role in the detection ability of each 
method than choice of normalization (Fig. 3A). All approaches (with the exception of 
MINE and NWJ) showed stability in TPR across the three normalization procedures–
the differences in performance seen in the figures can be primarily attributed to 
varying distributions. Figure  3B shows that the effect of normalization type and 

A

C

B

Fig. 2 The true positive rate (TPR) of different methods for detecting (A) exploitative, (B) commensal, and 
(C) amensal relationships based on different prior distributions. Results for log-normal, exponential, negative 
binomial, gamma, and beta negative binomial distributed data are distinguished by blue, light orange, green, 
dark orange, and pink boxplots respectively. TPR values are collected from 1,000 bootstrapped samples of 
true and null pairwise interactions. Results are separated on the x-axis by method. Boxplots were constructed 
using results from 1,000 bootstrapped iterations where the TPR was calculated after randomly sampling (with 
replacement) 100 true positive pairwise relationships and 100 null relationships. Results are shown for data 
that was TMM normalized and p-values that were corrected using the Benjamini–Hochberg procedure
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count distribution on the FDR of each method generally reflected those seen with the 
TPR. These results are also reflected in commensal and amensal relationship cases 
(Additional file 2: Figure S1, S2).

Addressing the multiple testing problem is an important step in supporting the 
statistical validity of any p-value. Due to its general acceptance as a standard, the bulk 
of this analysis has relied on the Benjamini–Hochberg procedure’s false discovery 
rate correction. However, there is no hard rule that requires this to be the correction 
method of choice. Figures 4 and 5 display the TPRs and FDRs, respectively, of each 
method for various significance thresholds in the context of exploitative relationships 
when using Benjamini–Hochberg procedure corrected p-values, Bonferroni corrected 
p-values, and q-values [62, 63]. Of the correction methods that produced viable 
results, the Benjamini–Hochberg procedure proved to be the more conservative 
approach (Fig. 4, blue). Replacing p-values with q-values consistently improved TPR 
albeit a small to moderate increase in the FDR; this held true for all metrics and for 
both empirical and parametric approaches of determining q-values (Fig.  5, green 
and red). On the other side of the spectrum, an overly conservative approach like 
the Bonferroni correction (Figs. 4, 5, orange) can lead to a complete loss of detection 
ability (TPR of 0.0 across all methods).

A B

Fig. 3 Effects of normalization and distribution for each method on (A) TPR and (B) FDR for exploitative 
relationships. Generally, normalization does not impact results as much as data distribution. Two of the 
machine learning methods (MINE and NWJ) are exceptions to this, as restricting their input to TSS normalized 
data renders them uninformative
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Data sparsity reduces performance, but the effects are mitigated by increasing sample size

A final analysis on simulated data was interested in the effect of zero-inflated counts on 
detection ability. It is well established that biological count data is often of this form–
approaches have been developed to address the issues sparsity introduces as they have 
been shown to have a profound impact on model performance [45–47]. We model 
zero-inflated data by subtracting the mean entry of each generated count table from 
itself, setting any negative values to zero. Here we return to treating the detection of 
pairwise relationships as a classification problem and assess the AUC of each metric 
as a binary classifier. As expected, performance drops for all tools when zeros are 
inflated (Table 2, top). However, increasing the number of samples used in estimation 

Fig. 4 True positive rates (TPRs) for varying significance thresholds using the Benjamini–Hochberg 
procedure (blue), Bonferroni (orange), empirical q-values (green), and parametric q-values (red). Both 
empirical and parametric q-value approaches produce a higher TPR for the same significance threshold than 
the Benjamini–Hochberg procedure
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(Table 2, bottom) restores the effectiveness of nearly every approach along with some 
gains in performance. When augmenting the sample size of zero inflated tables from 50 
to 200, MINE, NWJ, KSG, and naïve partitioning saw the largest increases in AUC at 
0.155, 0.147, 0.153, and 0.163, respectively, DoE and LNC saw more moderate increases 
in AUC at 0.112 and 0.130, respectively, and MIC saw the smallest increase in AUC at 
0.098 across prior distributions.

Table  2 AUC results for tools tested on zero inflated, TMM normalized data across 
several count prior distributions with n = 50 samples (top) and n = 200 samples (bottom) 
for the exploitative relationship. Similar results for the commensal and amensal cases are 
provided in Additional file 1: Tables S1 and S2.

Fig. 5 Respective false discovery rates for the data presented in Fig. 4. Both empirical (green) and parametric 
(dark orange) q-value approaches usually result in a slight increase in FDR for the same significance threshold 
than the Benjamini–Hochberg procedure (blue). The shaded blue regions in each plot correspond to FDR 
values at or below each significance threshold
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Application of mutual information estimators in the study of C. diff infection

To explore mutual information estimators in the real data setting, we applied several 
of the aforementioned metrics to a publicly available dataset originating from a study 
on the dynamics of the microbiome following treatment of recurrent C. diff infection 
(CDI) [48]. This dataset contains 16S rRNA profiles of the microbiomes of 38 CDI 
patients and their respective treatment donors. Sequencing data was retrieved from 
NCBI using the accession PRJEB19232 and processed to yield genus-level counts 
(Methods).

MINE, MIC, and KSG were chosen as representative MI estimators for further 
analysis due to their performances on simulated data. Using only CDI sample data 
as input, we restricted analyses to pairwise combinations amongst the 30 most 
abundant genera on average across those samples. Significance for each pair of genera 
was determined independently of other pairs using permutation (Additional file  3). 
Figure  6A shows the concurrence among the 20 most significant interaction pairs 
from each MI estimator for CDI patients. We observe that a large majority of each 
method’s top-ranking pairs are unique, with no pairs being shared amongst all three 
approaches. When compared against the correlation approaches, we find that MINE 
shares only 3 of its 20 highly ranked pairs with each of the Pearson and Spearman 
correlation coefficients while MIC (sharing 9/20 and 11/20 with Pearson’s and 
Spearman’s coefficients, respectively) and KSG (sharing 7/20 and 10/20 with Pearson’s 
and Spearman’s coefficients, respectively) displays much more overlap. Taking 
the top pairs from all three MI estimators, we see that their superset covers two-
thirds (19/28) of the pairs identified by either the Pearson or Spearman correlation 
coefficients (Figs. 6B, 7).

While these results speak to the utility MI estimators have in linear settings, we are 
primarily concerned with their application in non-linear settings. For this, we searched 
for instances where interaction pairs were highly ranked by MI estimators but deemed 

Table 2 AUCs for each metric under exploitative relationships with zero inflated counts

Best results for each prior distribution by relationship type are indicated by bolded font

Log normal Exponential Negative 
binomial

Gamma Beta negative 
binomial

n = 50 MINE 0.888 ± 0.041 0.866 ± 0.040 0.590 ± 0.063 0.743 ± 0.057 0.620 ± 0.066
NWJ 0.821 ± 0.051 0.784 ± 0.055 0.646 ± 0.062 0.744 ± 0.055 0.582 ± 0.067

DOE 0.459 ± 0.070 0.530 ± 0.070 0.531 ± 0.064 0.479 ± 0.068 0.486 ± 0.066

MIC 0.835 ± 0.046 0.817 ± 0.050 0.558 ± 0.068 0.660 ± 0.059 0.526 ± 0.068

KSG (3) 0.648 ± 0.063 0.692 ± 0.060 0.572 ± 0.070 0.658 ± 0.062 0.563 ± 0.066

LNC (7) 0.689 ± 0.063 0.668 ± 0.062 0.592 ± 0.064 0.668 ± 0.060 0.611 ± 0.066

Partitioning (5) 0.754 ± 0.057 0.671 ± 0.063 0.556 ± 0.067 0.662 ± 0.061 0.580 ± 0.071

n = 200 MINE 0.991 ± 0.006 0.989 ± 0.007 0.754 ± 0.056 0.938 ± 0.023 0.810 ± 0.050
NWJ 0.945 ± 0.027 0.961 ± 0.021 0.762 ± 0.058 0.908 ± 0.035 0.737 ± 0.060

DOE 0.708 ± 0.060 0.646 ± 0.066 0.552 ± 0.067 0.540 ± 0.069 0.599 ± 0.065

MIC 0.892 ± 0.038 0.920 ± 0.030 0.715 ± 0.058 0.805 ± 0.050 0.556 ± 0.066

KSG (9) 0.881 ± 0.039 0.881 ± 0.039 0.713 ± 0.059 0.737 ± 0.059 0.688 ± 0.059

LNC (7) 0.839 ± 0.044 0.902 ± 0.036 0.659 ± 0.063 0.770 ± 0.055 0.709 ± 0.062

Partitioning (5) 0.853 ± 0.045 0.905 ± 0.033 0.714 ± 0.059 0.885 ± 0.038 0.682 ± 0.062
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Fig. 6 Venn diagrams detailing overlap of significant relationships found in the CDI dataset (A) between 
MI estimators and (B) between MI estimators and correlation measures for the case group. Only the top 20 
most significant pairs of each metric are used in the construction of each diagram. (C, D, E) Scatter plots 
and accompanying density estimations for various relationships found by MI estimators. In each case, 
there is evidence of an exploitative interaction type, supported by the simultaneous shift of one genus to 
larger abundances (Enterobacter, Lactobacillus, Escherichia-Shigella) and the other to smaller abundances 
(Bacteroides, Bifidobacterium, Romboutsia) when comparing controls (blue) to cases (red). Abundance data is 
plotted after a log(x + 1) transform

Fig. 7 A Flowchart of the data simulation technique. (1) A d × d target covariance matrix σ with diagonal 
elements equal to one and off-diagonal elements equal to zero is generated. (2) Using the target covariance 
matrix, n d-dimensional multivariate normal vectors with mean zero and covariance matrix σ are drawn 
resulting in an n× d matrix. (3) Their values transformed into quantiles using the standard normal cumulative 
distribution function. (4) One of five marginal distributions are imparted on each of the d columns 
by applying the chosen distribution’s inverse cumulative distribution function. (5) Various interaction 
relationships (exploitative, commensal, and amensal) are introduced between random pairs of columns 
(representing microbes), producing a final table that simulates an ecological environment in the context of 
this study. B Description of each marginal distribution used in this study. The parameters of each distribution 
were randomly selected from ranges that resulted in each distribution having a comparable mean, µ , and 
standard deviation, σ
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insignificant by both correlation methods. Scatter plots and accompanying density 
estimation curves are presented for three of such cases (Fig. 6C-E), all of which can be 
described by the exploitative ecological relationship. For example, Fig. 6C displays the 
relationship between Bacteroides and Enterobacter. Multiple species of Bacteroides 
have been implicated in contributing to a healthy microbiome [49]. Specifically, 
bacteria from this genus have bile salt hydrolase, allowing them to hydrolyze bile 
acids (BAs) resulting in host benefits through BA signaling [50]. Proliferation of 
Enterobacteriaceae has been linked to increased gut inflammation [51] and more 
aggressive diagnoses of ulcerative colitis [52] as well as Crohn’s disease [53]. Past 
research has demonstrated that members of Enterobacteriaceae fare particularly 
well in microbiotas subject to BA dysmetabolism [54]. When examining the plot 
of CDI patient data alone, there is no obvious interaction taking place between the 
two genera. However, when control data is included in the plot, one can see a clear 
directional shift in the distributions of each genus. Reliance on correlation alone 
would result in this relationship not being detected (p-values of 0.5788 and 0.4431 for 
Pearson’s and Spearman’s correlations, respectively); however, all three MI estimators 
denoted this as a significant relationship (p-values of 0.01607, 0.01198, and 0.001996 
for MINE, MIC, and KSG, respectively.

Discussion
In this paper, we explored the use of mutual information in the detection of pairwise, 
asymmetrical ecological relationships. Several estimators were assessed in performance 
and compared against the Pearson correlation coefficient and the Spearman rank 
correlation coefficient; two measures often considered as gold standards in quantifying 
pairwise relationships.

The results suggest that for exploitative and commensal relationships, mutual 
information estimators work just as well or better than correlation measures in 
identifying pairwise dependencies–this conclusion held regardless of normalization 
approach or count distribution. The advantages of MI estimators, specifically the 
machine learning-based ones, were clear in the case of exploitative relationships. 
Correlation alone was insufficient in identifying exploitative relationships but showed 
some ability in identifying commensal and amensal interactions. This is unsurprising, 
as in the case of single-actor asymmetrical relationships, shifts from a baseline joint 
distribution to an ecologically adjusted joint distribution only occur along one axis. 
In the context of how we simulated data, this type of change is akin to imparting a 
monotonic function on the joint distribution of a pair of variables–a scenario in which a 
straightforward measure such as correlation is expected to produce satisfactory results. 
A potentially more rigorous ecological data simulation technique may very well produce 
different conclusions.

Entropy-based approaches may be very useful in the task of identifying dual-actor 
asymmetrical relationships. While they are not perfect identifiers for this class of 
relationships, entropy-based approaches regularly outperformed correlation approaches 
under similar simulated conditions and were the only methods able to identify the 
exploitative relationships presented in the CDI analysis. This phenomenon is likely due 
to the lack of assumptions made on the type of interaction by entropy-based methods 
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(with the exception of DoE)–both Pearson’s and Spearman’s correlation coefficients are 
designed to describe a monotonic relationship between two variables (specifically linear 
relationships in the case of the Pearson correlation coefficient). As demonstrated in the 
CDI analysis, pairwise relationships in ecological-type data can manifest themselves in 
nonmonotonic fashions. The reliance on classical correlation analysis as a “catch all” 
for every type of ecological relationships may inadvertently exclude very important/
interesting organizations of ecological communities. This is an area where entropy-
based methods may be of use in future studies.

Due to the realities of working with metagenomic or ecological data, it is often 
impossible to accurately identify a prior distribution of sampled data. DoE (Difference 
of Entropies) while having theoretical guarantees of estimation, consistently performed 
worse than the other machine learning methods. The best results for DoE were 
seen with Log-Normal data, this is expected given the assumption DoE makes that a 
variable’s conditional distribution shares the same form as its marginal. While this holds 
for Gaussian distributions, assuming it with other distributions results in ill-specified 
entropy equations that produce unreliable results. In comparison with other approaches, 
even without the additional computational stress of hyperparameter tuning, all machine 
learning methods required significantly longer runtimes to produce, in some cases, 
comparable results. If computational resources and time are not of concern, they could 
potentially provide much better results if optimized. MIC, KSG, and LNC were less 
powerful than the machine learning methods but showed a higher level of stability and 
consistency with the benefit of a much shorter runtime. One advantage of using MIC is 
its rigorous theoretical proofs [40] and interpretability. If interactions between groups of 
variables (rather than between pairs) were the focus of study, kNN based methods could 
provide a useful approach in quantifying those higher-order relationships as they are 
applicable to any number of dimensions [33, 34]. As network-based analyses of similar 
communities continue to grow in scale and importance, the ability to measure groupwise 
relationships will be a crucial task. Though outside the scope of this particular study, it is 
of great interest to benchmark mutual information approaches in the context of network 
analysis.

Conclusions
When studying ecological communities, it may be of great use to incorporate entropy-
based metrics alongside traditional correlation measures. While the traditional methods 
have provided great benefit in the study of these communities, we show in this set 
of analyses that in the case of asymmetrical relationships (particularly, exploitative 
relationships), alternative metrics of association can provide higher power. To that end, 
we encourage future studies to utilize an ensemble approach where multiple measures 
are used in a complementary fashion. This way, the shortcomings of each can be 
complemented by the strengths of the other.

Methods
Data simulation

Simulated data generation loosely follows the procedure outlined by Weiss et  al. [20]. 
First, a d × d target covariance matrixσ , representing the underlying correlations 
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of variables (e.g., microbes) in the count tables, is generated with diagonal elements 
equal to one and off-diagonal elements equal to zero. Using this covariance matrix, n 
d-dimensional multivariate normal vectors with mean zero and covariance matrix σ 
are drawn resulting in an n× d matrix. The cumulative distribution function (CDF) of 
the standard normal distribution is then used to transform each element of the matrix 
into quantiles. From here, one of five marginal distributions (log-normal, exponential, 
gamma, negative binomial, or beta negative binomial) are imparted on each of the d 
vectors by applying the chosen distribution’s inverse cumulative distribution function. 
The parameters of each distribution were randomly selected from ranges that resulted 
in each distribution having a comparable mean and standard deviation (Fig.  6B). 
Finally, random subsets of variable pairs are adjusted to reflect amensal, commensal, 
or exploitative relationships using the following non-linear heuristic. Given unadjusted 
vectors X = (x1, x2, . . . , xn) and Y =

(

y1, y2, . . . , yn
)

 , the pair ( xi, yi) are adjusted 
(depending on the modeled interaction) by

In the case of amensal relationships, yi is depressed by (9) and x is left unaltered. 
In the case of commensal relationships, yi is increased by (9) and x is left unaltered. 
Finally, for exploitative relationships yi is depressed by (9) and xi is increased by (8). By 
modeling pairwise interactions in this fashion, xi and yi are adjusted by a factor that: (i) 
is a function of the other, (ii) depends on the relative magnitudes between the two, and 
(iii) has non-linear components. We use the variable s as a way to control the strength of 
relationship between X and Y  and set s = 3 for the analyses performed as the adjustments 
at this level provided interactions with enough signal to be detected, but not enough to 
make detection of pairs trivial. It was ensured that each variable could only participate in 
one pairwise interaction. This was done to ensure that only pairwise relationships were 
present during analysis. We find that this heuristic provides a non-linear relationship 
between X and Y  without affecting their relative marginal distributions too much and 
works well for scope of this study. Zero-inflated count data was modeled by subtracting 
the mean entry of each adjusted count table from itself, then setting any negative values 
to zero. Prior to any analysis, count tables were subject to either TMM normalization 
[41], RLE normalization [44], or total sum scaling. Unless stated otherwise, count 
tables are designed to yield n = 50 samples of d = 1200 variables containing 100 unique 
examples of each ecological relationship.

CDI data processing

Sequencing data was retrieved from NCBI using the accession PRJEB19232 [48]. The 
software fastp with default parameters was used to perform an initial round of quality 
filtering [55]. Following this, reads were imported into QIIME 2 [56] where further 
quality filtering and denoising was performed using the “deblur denoise-16S” command 
with the parameter “–p-trim-length” set to 250. Resulting amplicon sequence variants 

(8)xi ± yi × s × ln

(

1+ e + e
xi

xi+yi

)

(9)yi ± xi × s × ln

(

1+ e + e
yi

xi+yi

)
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(ASVs) were then aligned to the SILVA 138–99 rRNA database [57] using the command 
“feature-classifier classify-consensus-vsearch” with default parameters. The resulting 
feature table was filtered to remove samples with less than 1000 counts and collapsed 
to the genus level. Furthermore, only genera present in at least 15% of samples were 
considered for further analysis.

MINE/NWJ

Without knowledge of underlying distributions, one cannot directly calculate mutual 
information using its KL-divergence representation (6). However, if a bound on the 
true value can be established, then optimization techniques can be used to arrive at an 
approximation. Mutual Information Neural Estimation (MINE) is an approach outlined 
by Belghazi et  al. (2018) that utilizes the Donsker-Varadhan (8) representation of KL 
divergence and estimates its lower bound by gradient descent over a neural network [37, 
58]. Let F  be the family of functions Tθ

(

x, y
)

 parameterized by a deep neural network 
with parameters θ ∈ � . Then the lower bound of KL-divergence can be estimated by the 
following:

Here, Tθ and T̃θ refer to the same, identical neural network. The only difference 
being that Tθ uses realizations of the joint (X ,Y ) as input, while T̃θ uses independent 
realizations of the marginals, X and Y  , as input. When mutual information is considered, 
P is replaced with PXY  and Q with PX ⊗ PY  . Nguyen, Wainwright, and Jordan (2010) 
opted for an f -divergence representation of KL divergence for estimating mutual 
information [38]. Their approach (henceforth referred to as NWJ) is very similar to the 
one detailed in Belghazi et  al. (2018), the only difference being an adjustment to the 
objective function (9).

In both cases, the estimators provide a lower bound for mutual information. The 
neural networks used for MINE and NWJ were built using the PyTorch library [59] and 
consisted of one hidden layer of 12 nodes, RELU activation function, and a learning rate 
of 1e-3.

DoE

McAllester and Stratos (2020) devised an approach that calculates mutual information 
using estimates of marginal and conditional entropies [39]. The Difference of Entropies 
(DoE) method uses neural networks to fit prior marginal and conditional distributions 
to sampled data. It then uses the fitted priors to directly calculate marginal and 
conditional entropies. Finally, it takes advantage of the fact that mutual information can 
be formulated by the difference of these quantities:

(8)DKL(P||Q) ≥ sup
(

EP[Tθ ]− logEQ

[

eT̃θ

])

(9)DKL(P||Q) ≥ sup
(

EP[Tθ ]− EQ

[

eT̃θ−1
])

(7)I2(X;Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X)
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By approaching the estimation task in this manner, DoE attempts to avoid a major 
limitation of lower-bound estimators in that they cannot reliably estimate large values 
of mutual information. PyTorch was used to build corresponding neural networks with 
architectures remaining identical to those used for MINE and NWJ.

MIC

The Maximal Information Coefficient (MIC) is a non-parametric, grid-based approach 
of quantifying the strength of association between a pair of variables [35]. MIC does 
not set restrictions on the type of association (linear/non-linear) and attempts to assign 
scores close in magnitude to different relationships with similar noise levels. MIC was 
calculated using the MICtools software [60] with default inputs.

KSG/LNC

KSG [34] and LNC [34] are two modifications of the kNN algorithm that address 
different aspects of the estimation procedure. All calculations were carried out using the 
accompanying software from [35] with k ranging from the default of 3 to 12.

Grid partitioning

The previously mentioned tools are compared against well-established measurements 
of association–the Pearson and Spearman rank correlation coefficients. Additionally, 
a simple grid based partitioning approach is also tested. Each variable is divided into 
equidistant bins and entropies are empirically calculated by counting.

ROC curves and the AUC 

The receiver operating characteristic (ROC) curve of a binary classifier is a plot of the 
classifier’s true positive rate (TPR) vs. its false positive rate (FPR) at various classification 
thresholds. The TPR is defined as the fraction of truly related pairs that are declared 
as related and the FPR is defined the fraction of non-related pairs that are declared 
as related. The area under the ROC curve (AUC) of a classifier provides a measure of 
its discrimination ability. An AUC close to 1 is indicative of high power (i.e., perfect 
discrimination between classes) while an AUC close to 0.5 is indicative of low power (i.e., 
random guessing). The Scikit-learn package in Python was used for all ROC and AUC 
calculations [61]. Confidence intervals were empirically estimated by bootstrapping 
(with replacement) each set of scores 5000 times, reconstructing ROC curves, and 
recalculating AUCs.

Hypothesis testing procedure

The performance of each method is assessed using a statistical test where the null 
hypothesis  (H0) is that a pair of variables is independent, and the alternative hypothesis 
 (H1) is that a pair of variables share a dependent relationship. Because of their differences 
in estimation techniques, different methods can assign a wide range of values to the 
same pairwise relationship. To address this, p-values for each interaction’s score were 
calculated independently of other scores using permutation. Multiple approaches were 
taken to address the multiple comparisons problem and consisted of the Bonferroni 
correction, the Benjamini–Hochberg false discovery rate correction [42], an empirical 
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q-value approach [62] and a parametric q-value approach suggested in [63]. Unless 
specified otherwise, a significance level of 0.05 after multiple test adjustment was used 
to declare relationships significant for consistency across all tests.
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