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Abstract 

Background: Antioxidant proteins are involved in several biological processes 
and can protect DNA and cells from the damage of free radicals. These proteins 
regulate the body’s oxidative stress and perform a significant role in many antioxidant-
based drugs. The current invitro-based medications are costly, time-consuming, 
and unable to efficiently screen and identify the targeted motif of antioxidant proteins.

Methods: In this model, we proposed an accurate prediction method to discriminate 
antioxidant proteins namely StackedEnC-AOP. The training sequences are formulation 
encoded via incorporating a discrete wavelet transform (DWT) into the evolutionary 
matrix to decompose the PSSM-based images via two levels of DWT to form a Pseudo 
position-specific scoring matrix (PsePSSM-DWT) based embedded vector. Addition-
ally, the Evolutionary difference formula and composite physiochemical properties 
methods are also employed to collect the structural and sequential descriptors. Then 
the combined vector of sequential features, evolutionary descriptors, and physio-
chemical properties is produced to cover the flaws of individual encoding schemes. To 
reduce the computational cost of the combined features vector, the optimal features 
are chosen using Minimum redundancy and maximum relevance (mRMR). The optimal 
feature vector is trained using a stacking-based ensemble meta-model.

Results: Our developed StackedEnC-AOP method reported a prediction accuracy 
of 98.40% and an AUC of 0.99 via training sequences. To evaluate model validation, 
the StackedEnC-AOP training model using an independent set achieved an accuracy 
of 96.92% and an AUC of 0.98.

Conclusion: Our proposed StackedEnC-AOP strategy performed significantly better 
than current computational models with a ~ 5% and ~ 3% improved accuracy via train-
ing and independent sets, respectively. The efficacy and consistency of our proposed 
StackedEnC-AOP make it a valuable tool for data scientists and can execute a key role 
in research academia and drug design.
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Introduction
Oxidation is a chemical reaction available in various biological and non-biological 
processes. It uses several oxidizing agents to form electrons or hydrogen atoms from 
substances [1]. Free radicals, hazardous byproducts, and compounds with unpaired, 
unstable, and extremely reactive electrons are also produced during this process [2]. 
Whereas, these molecules act as oxidants by pairing or accepting the free-electrons 
from other molecules [3]. In contrast, a low level of free radicals is significant for several 
biological activities, including immunity, differentiation, cell death, protein phospho-
rylation, and transcription factor activation [4]. However, excessive concentrations have 
the potential to negatively impact cell functions. It caused several reactions with essen-
tial biological cellular components i.e., proteins, lipids, RNA/DNA, and carbohydrates. 
Reactive oxygen species (ROS) are produced of free radicals containing oxygen, that are 
essential for maintaining cell signaling, and homeostasis [5]. In healthy cells, the ROS 
ratio is typically low and involves many intricate metabolic procedures. ROS levels in 
cells are extremely raised and cause internal cell damage, when the organism is subjected 
to environmental stresses. The damage happened because of an excessive concentration 
known as oxidative stress. Oxidative stress is an oxidative imbalance stemming from the 
inability to purify their reactive products, which occurs by the production of ROS dur-
ing cellular metabolism [6]. Oxidative stress causes many harmful disorders in humans 
[7], including cardiac failures [8], Parkinson’s [9], Alzheimer’s [10], hypertension [11], 
and cancer [12]. To continuously monitor the ROC formation, cells have developed anti-
oxidant system-based procedures to effectively resist the damages that occur because 
of ROS [13]. By neutralizing free radicals, antioxidants can decrease the responses of 
oxygen-free radicals [14], which is essential for maintaining the body’s redox balance 
by preventing food deterioration and safeguarding against the aging process [15]. To 
demonstrate the potent antioxidant activities, several artificial antioxidants have been 
employed. However, due to numerous health risks, these are considered ineffective in 
some domains [16]. Antioxidant proteins are also essential for screening and develop-
ing antioxidant medications that are used to treat a variety of diseases and issues asso-
ciated with aging [17]. Additionally, it helps in repairing DNA damage caused by free 
radicals [18]. Antioxidant proteins have been successfully investigated using a variety 
of empirical techniques, including spectroscopic analysis [19, 20], electrochemical [21], 
electrophoresis [22], and chromatography [23]. However, due to their high processing 
time, high chance of experimental failures, and high costs when handling large amounts 
of data, these conventional biochemical processes are not considered suitable [24–26]. 
Recently, prediction of the bioinformatics data using machine learning and deep learn-
ing-based computational models have performed significantly due to their reliability, 
efficiency, and high training and validation performance [27]. The comprehensive litera-
ture review of the existing machine learning-based computational models are described 
as following.

In recent decades, with the huge expansion in genomics sequences, researchers have 
diverted their directions toward computational model-based alternatives for predicting 
different protein types. Numerous novel computational methods have been presented 
for predicting antioxidant proteins (AOPs) [28]. Feng et al. [29] developed an AOD data-
base for antioxidant proteins which is useful for researchers and performs a pivotal role 
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in identifying antioxidant proteins. Initially, Blanco et al. [30] presented a random forest-
based prediction model for AOPs. The protein samples were formulated using topologi-
cal index-based star graph networks. Later on, Feng et al. [31] proposed an amino acid 
residual frequency-based sequential model for AOPs. The best feature set was selected 
using a correlation filter-based method, and then the Naive Bayes model was trained by 
achieving an accuracy of 66.68% using the jackknife test. Again, Feng et al. [32] devel-
oped an AodPred webserver for identifying AOPs. The pseudo-g-gapped dipeptide-
based features were trained via the SVM model and achieved an accuracy of 74.79% 
using the jackknife test. Similarly, Zhang et al. [33] applied a gapped dipeptide and PSSM 
for encoding primary sequences. Information gain integrated with incremental selection 
was utilized to select the best features and trained using the RF model. On the other 
hand, Zhang et al. [34] used an ensemble approach for predicting AOPs. Various best 
features were chosen from the integrated vector of evolutionary, physiochemical, and 
structured properties-based methods. The proposed model attained an accuracy of 94% 
and a sensitivity of 95%. Additionally, Lei et al. [35] proposed the SeqSVM-based com-
putational model for AOPs. SeqSVM used eight different physiochemical properties to 
formulate sequences, and then MRMD was used for selecting optimal features. Further-
more, Li et al. [13] developed an SVM-based vote9 method for AOPs. Vote9 numerically 
formulated the amino acid samples using gapped dipeptide and cluster profile-based 
methods. The optimal set was chosen by applying the ANOVA-IFS. Likewise, Chao et al. 
presented the AOPs-SVM model using IFS & MRMD-based ensemble feature selection 
[36]. The selected descriptors were trained via the SVM model and achieved an accu-
racy of 94.2%. Butt et al. [37] employed the Chou’s pseudo amino acid composition and 
statistical movement features for AOPs. A tenfold CV based multilayer neural network 
was applied to evaluate the model. Ahmad et  al. [38] employed a K-space amino acid 
pair (KSAAP) with SFS-SVM-based model for predicting AOPs. Likewise, Thanh Lam 
et  al. [39] applied different sequential frequency residue-based feature encoding. The 
extracted vectors were trained using different machine-learning models and attained an 
accuracy of 84.6%. Tran et al. [40]; proposed the iAnt method for identifying AOPs using 
the ensemble training strategy of the CNN and RF training model. In the AOPM model, 
the 188D vector of physiochemical properties and KSAAP-based pairing sequential fea-
tures were trained using the RF model [41]. Recently, Meng presented the SVM-based 
training model called DP-AOP for predicting AOPs [42]. The protein samples were rep-
resented samples using secondary structure and evolutionary feature formulations. The 
optimal features were selected using dynamic programming, choosing from the ranked 
features  using MRMD. Apart from these, several other predictors, i.e., AoP-LSE [43], 
PredAoDP [44], AnOxPP [45], ANPrAod [46], and AnOxPePred [47] were also recently 
developed for predicting AOPs.

After thoroughly investigating all the aforementioned computational models, we 
observed that every model actively and significantly contributes to the prediction of 
AOPs. However, these approaches still have generalization and reliability issues.

• The current methods employed sequential formulation methods that mainly focus on 
calculating frequencies of amino acids based on the residue composition by ignoring 
the sequence order of amino acids.
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• Several methods presented conventional evolutionary information, which requires a 
significant processing time to search similarity matrix for every protein sequence in 
huge databases.

• Another problem is training with the imbalanced dataset, resulting in biased predic-
tive results towards the majority class by ignoring the minority class, increasing the 
risk of underfitting.

• The majority of existing methods were trained using conventional classifiers. How-
ever, stacked-ensemble training models have recently outperformed classical 
machine learning models.

Hence, in addressing such concerns, more improvement is needed in presenting alter-
nate computational models that can accurately discriminate AOPs and non-AOPs with 
high throughput.

In this paper, we developed a stacked-ensemble model, StackEnC-AOP, to predict 
antioxidant peptides (AOPs). The protein samples are numerically encoded via Evolu-
tionary difference formula features (EEDP) and composite physicochemical properties 
(CPP). Apart from these, we embedded the level-based discrete wavelet transformation 
approach into the pseudo-position-specific scoring matrix to generate the enhanced 
evolutionary features called PsePSSM-DWT. Moreover, the CPP, EEDP, and PsePSSM-
DWT vectors are fused to form the multi-informative vector. The minimum redundancy 
and maximum relevance (mRMR), a filter-based feature selection is then employed to 
gather optimal features by removing irrelevant and duplicated features. Finally, our pro-
posed training model is passed through two stages. Initially, four baseline classifiers, 
such as XGBoost (XGB), Decision Tree (DT), RF, and SVM are individually applied for 
model training. Subsequently, the predicted outcomes of the baseline classifiers are pro-
vided to the logistic regression (LR) to develop the stacked-ensemble model [48]. The 
developed StackEnC-AOP demonstrated remarkable and achieved improved predic-
tions using training and independent samples. The detailed architecture of our Stack-
EnC-AOP model is provided in Fig. 1.

Material and methods
Dataset

In deep learning and bioinformatics, choosing an appropriate training dataset is essen-
tial for developing an intelligent prediction model [32, 36, 44]. The choice of benchmark 
dataset has a major effect on the performance of a computational model. In this study, 
we used a training dataset, previously created by Feng et al. [31]. The dataset is prepared 
by following several steps such as: (a) the obtained protein samples have validated anti-
oxidant activities, (b) useless letters i.e., “B”, “U”, and “X” were removed from the pro-
tein samples, (c) to remove overfitting the homologous samples were eradicated via a 
CD-HIT tool by keeping the threshold of 0.60 [49]. Hence, a training dataset comprised 
1805 sequences containing 253 AOPs and 1552 non-AOPs. The same training sequences 
have been utilized for developing several AOP models i.e., as AodPred [32], ANPrAod 
[46], and PredAoDP [44]. Furthermore, to assess the reliability of the trained model, an 
independent set is also employed. The independent set includes unseen samples with 73 
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AOPs and 392 non-AOPs [34]. To ensure the generalization of the training model, none 
of the sequences from the training data were repeated in the independent dataset.

Feature encoding schemes

Pseudo position specific scoring matrix (Pse‑PSSM)

Position Specific Scoring Matrix (PSSM) information produces the evolutionary descrip-
tors of every peptide sequence [50]. The key issue of our proposed work is imbalanced 
training classes and high variation in the protein sequences created in model training 
[51]. Furthermore, the sequence ordering and correlation characteristics of the protein 
sequence cannot preserved by the traditional PSSM features [52]. As a result, PsePSSM 
using a variety of protein sequences creates a consistent vector length. PsePSSM uses 
the correlation of the amino acid residues separated by ‘d’ amino acids to compute the 
mean score of each residue amino acid in the PSSM matrix by determining the correla-
tion between residues separated by ‘d’ amino acids.

Fig. 1 The proposed architecture of the StackEnC-AOP model
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The PsePSSM feature space for a protein sequence can be represented as:

where  As =
L
∑

r=1

Ar,s
/

L (r = 1, 2, 3, ...20) , Aq  denotes the mean score of all amino acid 

residues. Which are mutated to s amino acid in peptide sample ‘A’.

where φlag
s  is the sequence ordering details of the peptide sample, q represents the amino 

acid, and lag is the contiguous distance.

Discrete wavelet transform (DWT)

Previously, Nanni et al. introduced DWT approach to represent the residue frequency 
and internally capture the intrinsic information from the protein-based images [53]. 
At first, the computed PSSM matrix of each protein sequence is then represented in 
the form of the image. Subsequently, the DWT-based image denoising and compres-
sion technique is employed to divide the PSSM images into different levels to discover 
their hidden patterns [54]. At each level, the PSSM images are divided into two sub-
wavelets such as approximation coefficients, and detailed coefficients [55]. Whereas, 
the low-frequency components can be represented via approximation coefficients, and 
high-frequency components are represented using the detailed coefficients. Whereas, 
it was observed from the previous methods that high-frequency components are less 
informative than low-frequency components. Therefore, in order to thoroughly assess 
each decompose each image into further levels to collect high discriminative intrinsic 
features.

Mathematically DWT can be formulated as:

where y(j) is the input signal, A(r, s) represents the transform coefficients, ψ(
j−s
r ) is the 

wavelet function, and r, s denotes the scaling and translation variables, respectively.
In this paper, we employed two-level DWT decomposition to collect noiseless and 

high discriminative features to propose a novel extraction method for anti-oxidant pro-
teins namely PsePSSM-DWT.

Evolutionary difference formula features (EEDP)

EEDP is an evolutionary feature engineering technique that was originally introduced 
for discriminating protein structure classes [56]. It measures the residue scores of the 
adjoining triads of amino acids to retrieve structure features of the protein sequences, 
particularly the protein sequences with low similarity [57]. As a result, for each protein 
sample, a feature set of 400D is extracted [58]. Firstly, the average evolutionary score is 
determined by the adjacent triads, as follows:

(1)APsePSSM = (A1,A2, ...A20,φ
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where Aj+1,n , Aj,t , and Aj−1,m are the components in MPSSM , meanb denotes the residue 
score among j + 1 and j , and meana denotes the residue score among j and j − 1 . The 
residue scoring matrix “AED” can be computed as below:

Finally, the EEDP space can be represented using the expression:

Composite physiochemical properties (CPP)

A peptide sequence is composed of twenty distinct amino acids (AAs), and each AA 
possesses specific biological and physicochemical attributes [59]. These physiochemi-
cal attributes play a pivotal role in understanding the structure and behavior of amino 
acids. The inclusion of physiochemical properties-based information performs directly 
or indirectly in predicting different protein function types and their activities [60]. Con-
sequently, we formed a CPP-based feature space that consists of eight different physi-
ochemical properties such as hydrophobic, acidic, aromatic, hydrophilic, aliphatic, tiny, 
small, and charge, as provided in Table S1 of supplementary materials. Finally, a feature 
vector of 57 * N dimensions is produced against each sample, and N denotes the total 
number of peptide sequences.

Syntactic minority over‑sampling technique

In the field of computational science, training a model using imbalanced classes poses a 
challenging task [61]. High variation in data samples of a binary class problem can affect 
the predictive outcomes of a model by ignoring or neglecting the instances of a minority 
class [62]. To handle such problems, various techniques, including rescaling data sam-
ples, learning-based approaches, and hybrid techniques have been applied [63]. These 
methods are further categorized based on under-sampling and over-sampling tech-
niques [64].

In this paper, we applied a SMOTE oversampling approach to address the instances of 
the minority class to develop a reliable predictive model [65]. SMOTE generates the syn-
thetic samples by computing differences between the minority samples and their closest 
neighbors [66]. In our case, the use of SMOTE not only addresses the samples of the 
minority training class but also enhances the prediction outcomes through an effective 
balancing of both classes. Smote can be numerically represented as follows.

(6)meana =
Aj−1,m + Aj,t

2
,meanb =

Aj,t + Aj+1,n

2
1 ≤ j ≤ L 1 ≤ m,t,n ≤ 20

(7)AEDj−1,j+1 = (meana −meanb)
2 =

(

ej−1,m + ej+1,n

2

)2

(8)rm,n =
1

L− 2

L
∑

j=2

AEDj−1,j+1, 1 ≤ m, n ≤ 20 1 ≤ m, n ≤ 20

(9)VecEEDP =
{

r1,1, .., r1,20, r2,1, ..., r2,20, .., rm,n..., r20,1, .., r20,20
}

(10)Xnew = Xi + (
∧
Xi −Xi)× β
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where Xi signifies the instances of the minority class. To create synthetic data 
∧
Xi  is a 

combination of Xi a random number ‘ β ’ ranging [0–1].

Feature selection

In computational model development, feature selection is a key step to remove the 
redundant and less informative features from the extracted vector that can significantly 
deteriorate the effectiveness of a training model, more specifically model stability. There-
fore, we utilized mRMR, a filter-based selection approach. mRMR computes the correla-
tion between two features using its mutual information. The best feature set is obtained 
by keeping the low redundancy between features and high relevancy with a strong rela-
tionship to the predicted classes [67]. The redundancy and relevancy (R) between two 
vectors can be calculated using the below formula:

where i and j are the two different features, p(i, j) represent the joint probabilistic density 
function, and p(i)& p(j) denotes the marginal probability densities. Let us suppose, that 
R is the extracted features, Ra represents the selected vector included of X features, and 
Rb denotes the chosen feature set vector comprised of n-features. The relevancy (Rel) 
among the features Q in R with target L can calculated as:

The redundancy Red among feature Q in Sb and total features R can be calculated as:

The Qk feature in Rb with minimum redundancy and maximum relevancy can be com-
puted as:

Stacked‑ensemble learning

In this study, we developed a stacking-based ensemble training model to effectively 
predict AOPs. In the literature, a variety of models using stacked-ensemble mod-
els have been applied to produce better prediction outcomes with low generalization 
errors than conventional models [68–73]. Recently, Stacked ensemble predictors have 
shown better results using different biological data, such as non-coding RNA [74], 
DNA-binding proteins [75], and therapeutic peptides [76]. The stacked-based learn-
ing integrates the predicted probability scores of several baseline classifiers to develop a 
consistent predictor [48]. Our proposed stacked-model primarily consists of two steps. 
Firstly, the baseline classifiers such as XGB [77], DT [78], SVM [79], and RF [80] are 
trained using the extracted training features. In this paper, we applied CPP, EEDP, and 

(11)R(i, j) =
∫∫

p(i, j) log
p(i, j)

p(i)p(j)
didj

(12)Rel = I(Q, L)

(13)Red =
1

X

∑

Qi∈R
I(Q,Qi)

(14)max
x∈Rb

[I(QK , L)−
1

X

∑

Qi∈R
I(Q,Qi)] k , 1, 2, , 3, . . .n
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PsePSSM-DWT-based methods to formulate AOP samples. The optimal feature space is 
trained using the baseline classifiers using the parameters mentioned in Table 1. The grid 
searching technique is applied for choosing these optimal hyperparameters. Moreover, 
the optimal features are selected from the fused vector of EECP + CPP + PsePSSM. On 
the other hand, to handle model overfitting, a five-fold cross-validation (CV) test with 
the stratified looping mechanism is employed. Secondly, the probability scores of the 
baseline models are provided for the logistic regression (LR) to build a meta-classifier. 
Usually, the probability outcomes are between (0–1), and the threshold = 0.5 is used for 
predicting the targeted class of an input sample, such as probability_score higher than 
0.5 will predict class A, and lower than 0.5 will predict class B. Finally, the development 
stacking-based ensemble model remarkably enhanced the predictive results of the pro-
posed model than single classification models.

Performance measurement parameters
In computational models, several evaluation metrics are utilized to measure the efficacy 
of prediction methods [81, 82]. While evaluating the training model, we generate the 
confusion matrix representing the prediction in the form of true-negative (TN), true-
positive (TP), false-positive (FP), and false-negative (FN). To measure the predictive 
power of the StackedEnC-AOP model, accuracy (ACC) is often considered the most sta-
ble parameter for evaluating the training models [83]. However, it may not be sufficient 

Table 1 Hyper parameters of baseline classifiers

Classifiers Parameter‑tuning Selected value

RF Random_state 42

No. of estimators 300

Max_depth 32

Max features Auto

min_samples_split 10

min_samples_leaf 4

bootstrap true

DT C 10

Gamma 0.01

Random_state 42

Kernel RBF

XGB Learning rate 0.001

reg_lambda 2

max depth 15

No. of estimators 300

Gamma 1

objective function binary-logistic

reg_alpha 1

booster gbtree

SVM Gamma 0.01

C 10

Kernel RBF

Random_state 42
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in certain situations to validate a generalized prediction model [84, 85]. In this study, we 
focused on additional performance evaluation metrics, including specificity (Sp), sensi-
tivity (Sn), Matthews’s correlation coefficient (MCC), and area under the curve (AUC), 
to thoroughly assess our proposed model.

Predicted result
This paper evaluates the prediction performance of the AOPs samples using the CV 
test in the individual baseline classifiers and stacked ensemble model. We computed 
the mean value of the CV test by repeating the stratified loop process 100 times [54, 
86]. Whereas, to obtain reliable predictive outcomes, the training data is distributed 
in each fold randomly. Firstly, the protein samples are formulated via CPP and EEDP-
based physiochemical characteristics and evolutionary-based features. Additionally, to 
achieve a high discriminative vector, the irrelevant and noisy features are irradiated from 
the PSSM profile matrix using the DWT transformation, which generates the embedded 
evolutionary vector. Furthermore, the multi-perspective feature vector is formed by fus-
ing the extracted features of CPP, PsePSSM-DWT, and EEDP. The computational cost 
of the multi-perspective feature vector is reduced by selecting the highly relevant fea-
ture set via mRMR feature selection. All the extracted vectors (individual, hybrid, and 
selected) are evaluated via the individual classifiers and the stacked ensemble model. In 
the below subsections, the detailed predictive results of training features and independ-
ent features are discussed, comprehensively.

Analysis of baseline classifiers via different training features

Table  2 presents the performance of individual feature sets using the proposed base-
line classifiers.  As mentioned earlier, we numerically encoded the protein sequences 
using three distinct extraction methods: CPP, PsePSSM-DWT, and EEDP. To address 
the class imbalance issue in our training set and to reduce the majority bias in predic-
tions, we employed SMOTE oversampling on the minority class. Next, we utilized SVM, 
RF, DT, and XGB classifiers to analyze the oversampled feature sets using the hyper-
parameter values listed in Table  1. Additionally, we provided the probability scores 
from these individual classifiers into a LR model to create a stacked ensemble model. 
Prior to oversampling, the extracted features were examined (details in supplemen-
tary information Table S1). However, due to class imbalance, significant variation was 

(15)Acc =
TP + TN

TP + FP + FN + TN

(16)Sp =
TN

TN + FP

(17)Sn =
TP

TP + FN

(18)MCC =
(TN × TP)− (FN × FP)

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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observed in the evaluation parameters. The Sn values were more prone to suffer than 
Sp values because the model prioritized the majority class (non-AOP) during training. 
This resulted in a bias towards correctly predicting non-AOPs at the expense of accu-
rately predicting AOPs. Furthermore, the predicted  MCC values were unsatisfactory. 
Therefore, to address the bias caused by the majority class, SMOTE oversampling was 
employed for the minority class. The EEDP feature set using the RF and SVM classi-
fiers achieved improved results than XGB and DT by reporting an ACC of 87.34%, and 
88.18%, respectively. On the other hand, the stacked-Meta classifier using EEDP features 
achieved a Sp of 91.20%, and ACC and AUC of 90.33%, and 0.93, respectively. Likewise, 
the stacked meta-model using the CPP feature set, obtained an ACC of 89.33%, and an 
AUC of 0.91. The embedded evolutionary features of PsePSSM-DWT achieved the Sn of 
92.05%, ACC of 91.45%, with SP, AUC, and MCC of 91.06%, 0.92, and 0.90, respectively. 
The stacking model via PsePSSM-DWT vector achieved better results with SP of 95.33%, 
Sn of 94.13%, ACC of 93.34%, and MCC and AUC of 0. 92, and 0.95, respectively. Instead 
of individual vectors, our applied baseline classifiers and meta-model are examined 
via different feature integration methods such as CPP + PsePSSM-DWT, PsePSSM-
DWT + EEDP, CPP + EEDP, and CPP + EEDP + PsePSSM-DWT. The predictive out-
comes of the hybrid encoding schemes via baseline classifiers and meta-model are listed 
in Table  3. After examining all the feature sets, our stacking-based meta-model using 
fused features of CPP + EEDP + PsePSSM-DWT yielded better performance rates, with 
a Sn of 98.64%, SP of 96.11%, ACC of 96.45%, and AUC of 0.98. After selecting features 
from the fused vector (CPP + PsePSSM-DWT + EEDP) using mRMR, the computational 
cost of the training model is reduced by choosing highly relevant features with low dupli-
cated features. Hence, the training vector is reduced to 195D from 682D. The selected 
features have efficiently proved their role by predicting the input protein towards pre-
dicted labels. The prediction rates of the optimal feature set using the baseline model 
and the proposed meta-model are listed in Table 4. The stacked meta-model has shown 
more reliability by demonstrating the Sp of 98.91%, ACC of 98.40, Sn, AUC, and MCC 

Table 2 Prediction results of the baseline models via oversampled training features

Method Model ACC Sp Sn MCC AUC 

CPP DT 81.83 79.57 83.90 0.62 0.81

XGB 82.71 81.18 89.12 0.71 0.85

RF 87.83 89.93 86.14 0.83 0.89

SVM 84.54 99.87 69.22 0.72 0.88

Stacked-ensemble 89.33 90.23 88.44 0.86 0.91

EEDP DT 77.99 72.15 83.92 0.56 0.82

XGB 81.30 75.43 87.17 0.63 0.89

RF 87.34 85.82 88.89 0.82 0.90

SVM 88.18 82.49 91.87 0.82 0.91

Stacked-ensemble 90.33 91.20 89.46 0.88 0.93

PsePSSM-DWT DT 73.04 56.96 89.38 0.48 0.81

XGB 88.96 85.13 92.80 0.84 0.91

RF 89.25 92.78 86.67 0.85 0.92

SVM 91.45 91.06 92.05 0.90 0.92

Stacked-ensemble 93.34 95.53 94.13 0.92 0.95
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of 97.29%, 0.99, and 0,96, respectively. In comparison with baseline models, the SVM 
and XGB yielded an ACC of 94.85%, and 93.49%, respectively. The extracted features are 
further visualized using the t-SNE approach to convert the high-dimension vector into 

Table 3 Prediction results of the baseline models using different hybrid vector schemes

Bold values indicate best evaluation results as compared to other classification models

Encoding vector Model ACC Sp Sn MCC AUC 

CPP + PsePSSM-DWT DT 82.69 85.11 80.25 0.80 0.91

XGB 91.04 88.54 92.65 0.90 0.94

RF 90.56 93.30 87.61 0.80 0.93

SVM 93.68 94.34 92.97 0.89 0.95

Stacked-ensemble 94.45 94.58 93.32 0.93 0.96

CPP + EEDP DT 85.28 82.72 88.83 0.75 0.89

XGB 89.71 89.16 90.31 0.85 0.94

RF 90.92 91.50 88.29 0.83 0.93

SVM 91.29 92.82 89.64 0.90 0.95

Stacked-ensemble 93.97 94.89 91.98 0.91 0.94

PsePSSM-DWT + EEDP DT 83.07 84.60 80.53 0.74 0.87

XGB 91.62 87.57 95.98 0.83 0.94

RF 90.79 92.88 89.61 0.86 0.93

SVM 92.29 93.20 91.31 0.91 0.94

Stacked-ensemble 94.11 95.20 93.98 0.92 0.96

EEDP + CPP + PsePSSM-DWT DT 86.75 89.16 85.35 0.82 0.92

XGB 90.68 89.78 92.65 0.85 0.96

RF 90.89 93.44 86.29 0.82 0.91

SVM 93.65 94.27 91.98 0.92 0.95

Stacked‑ensemble 96.45 96.11 98.64 0.94 0.98

Table 4 Prediction of mRMR-based selected training features

Bold values indicate best evaluation results as compared to other classification models

Method Classifiers ACC Sp Sn MCC AUC 

mRMR + hybrid features DT 88.93 91.63 86.29 0.86 0.94

XGB 93.49 95.93 91.16 0.91 0.96

RF 92.11 94.63 90.54 0.88 0.98

SVM 94.85 96.82 91.47 0.93 0.98

Stacked‑ensemble 98.40 98.91 97.29 0.96 0.99

Fig. 2 t-SNE visualization of training dataset A hybrid features, B mRMR based hybrid features
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2D space, as shown in Fig. 2. In Fig. 2A, the hybrid features show some degree of overlap 
between positive and negative samples, which is somewhat effective but does not accu-
rately classify the targeted classes (Fig. 3). However, in Fig. 2B, the data samples of both 
classes are clearly separable, demonstrating the effectiveness of mRMR-based optimal 
features in predicting between AOPs and non-AOPs compared to the hybrid features 
in Fig. 2A. Furthermore, the consistency of the training model is further assessed using 
Precision-recall (PR), and ROC analysis using all extracted spaces using fused vector and 
optimal vector as illustrated in Fig. 4.

Validation of StackEnC‑AOP Model via independent sequences

The consistency and generalization of our StackEnC-AOP model are further validated 
using an independent set. As per the description provided in the dataset section, the 
independent dataset consists of 392 non-AOPs and 73 AOPs sequences. The detailed 
predictive outcomes of the independent dataset using the baseline classifiers and stack-
ing-based ensemble model are listed in Table 5. Our proposed encoding scheme (hybrid 
features + mRMR) with stacking model yielded superior predictive rates of Sp of 97.44%, 
Sn of 95.79%, ACC of 96.92%, AUC and MCC of 0.98, and 0.94, respectively as provided 
in Fig.  5. Furthermore, to evaluate the instance-based investigation of the proposed 
model using the independent data, an AUC-ROC and PR-analysis are plotted as given 
in Fig. 4.

Visualization of StackedEnC‑AOP method via SHAP and LIME interpretation

The Shapley Additive Explanation Algorithm (SHAP) and Local Interpretable Model-
agnostic Explanations (LIME) interpolation are used in our StackedEnC-AOP model 
to evaluate and interpret the contribution of the extracted features [48, 77, 87]. These 
methods use machine learning models to evaluate the contribution of each extracted 
feature and display the high contributory features. SHAP is a global visualization 
method to analyze the contribution features via aggregating its shapely values [88]. 
In this study, we highlighted the top 10 highly contributory features from the mRMR 
based selected features based on their shapely values as displayed in Fig. 6. The SHAP 
value distribution of each feature is represented using a row. Data point colors show 
the importance of each feature, the blue indicates the low values and the red is higher 
values. Hence, the model output can be represented by displaying the impact of each 

Fig. 3 Performance of training dataset using A hybrid vectors, B mRMR selected features
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feature via these colored dots. The SHAP value < 0 predicts the negative class (non-
AOPs) and the value > 0 the positive class AOPs. Our predictive results highlight the 
importance of the selected features from the Hybrid vector in order to predict the 
targeted labels. On the other hand, the significance of instance-based prediction is 

Fig. 4 ROC Analysis of A hybrid training features, B selected training features, C independent samples 
precision-recall analysis of D hybrid training features, E selected training features, F independent samples

Table 5 Prediction results of the StackEnC-AOP method via independent set

Bold values indicate best evaluation results as compared to other classification models

Models ACC Sp Sn MCC AUC 

DT 84.51 81.92 87.82 0.69 0.91

XGB 92.17 94.59 91.59 0.90 0.94

RF 91.71 92.77 90.54 0.83 0.96

SVM 93.54 95.18 92.94 0.91 0.96

Stacked‑ensemble 96.92 97.44 95.79 0.94 0.98
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illustrated using the LIME analysis [89]. LIME uses the feature vector permuta-
tions to simplify models. A key concern of LIME analysis is to develop the similarity 
matrix by determining distances between query samples and perturbed samples. It 
is the interpretable insights into model predictions by illustrating the contributions 
of the feature enhancing model effectiveness. Lime analysis is also useful for model 
validation, debugging, and improving decision-making by providing how specific fea-
tures influence outcomes. In this study, we performed the LIME interpolation of the 

Fig. 5 Comparison of the baseline classifiers via Independent set

Fig. 6 SHAP interpolation of contributory features
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independent set as given in Fig. 7. LIME analysis predicts the input instance using its 
correlation with AOPs (red) and non-AOPs (blue).

Comparison with current methods using training and independent set

In Table 6 a detailed comparison of the StackEnC-AOP model is performed with existing 
studies using a training dataset as well as an independent set. Feng et al. used a correla-
tion filter-based feature space by applying sequential encoding to formulate the train-
ing sequences [31]. The naïve Bayes model was trained using the extracted vector and 
yielded an ACC of 66.88%, Sn of 72.04%, Sp of 66.05%, and AUC of 0.85, respectively. 

Fig. 7 LIME analysis of StackEnC-AOP model

Table 6 Comparison of StackEnC-AOP method with existing state of the art models

Bold values indicate best evaluation results as compared to other classification models

Dataset Method ACC Sp Sn MCC AUC 

Training data Feng et al. [31] 66.88 66.05 72.04 – 0.85

AodPred [32] 74.79 74.48 75.09 – –

UniDL4BioPep [90] 80.40 79.90 81 0.61 0.87

AoP-LSE [43] 82.40 84.90 67.40 0.43 –

Ao et al. [80] 83.91 96.30 66.50 – –

Thanh-Lam et al. [39] 84.50 85.10 81.50 – –

ANPrAod [46] 87.53 98.33 92.92 – –

DP-AOP [42] 91.07 85.80 96.40 0.82 –

AOPM [41] 92 94.20 87.30 0.81 0.97

PredAoDP [44] 93.18 96.77 71.65 0.71 0.84

StackEnC‑AOP 98.40 98.91 97.29 0.96 0.99

Independent data iAnt [40] 95.20 94.90 97.30 0.85 0.98

Zhang et al.[34] 86.3 86.0 87.8 0.61 0.94

Thanh-Lam et al. [39] 94.2 94.1 94.6 0.81 0.98

Ahmad et al. [38] 93.71 88.15 94.14 0.92 –

StackEnC‑AOP 96.92 97.44 95.79 0.94 0.98
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Likewise, the AodPred model applying the SVM training model and pseudo-gapped 
dipeptide vector achieved an ACC, Sp, and Sn 74.79%, 74.48%, and 75.09%, respec-
tively [32]. In the UniDL4BioPep predictor, the bioactivities of eighteen different peptide 
classes are predicted using the pre-trained biological language model [90]. In the case of 
antioxidant sequences, the embedded features of the UniDL4BioPep model obtained an 
acc of 80.40%, with a Sn value of 81%, and Sp of 79.90%. The AoP-LSE model obtained a 
Sp of 84.90% and ACC of 82.40% by applying the KSAAP encoding and neural network-
based deep latent features [43]. Ao et al., model formulated the protein samples using 
a hybrid space of embedding-evolutionary, physiochemical properties, and sequential 
encoding methods. The optimal features are chosen from the extracted vector by apply-
ing three feature selection approaches [80]. The proposed model obtained an ACC of 
83.91%, Sn of 66.50, and SP of 96.30%. Furthermore, Lam et al. attained an accuracy of 
84.50% by applying different sequential frequency residue-based feature encoding [39]. 
Recently, using the DP-AOP training model, the dynamic programming-based second-
ary structure and evolutionary features reported an ACC of 91.07%, Sn of 96.40%, and 
Sp of 85.80% [42]. In the AOPM model, the multi-perspective vector was trained using 
the RF classifier and reported a Sp, Sn, ACC, and AUC of 94.20%, 87.30%, 92%, and 0.97, 
respectively [41]. Likewise, the ANPrAod method obtained a Sp of 98.33%, Sn of 92.92%, 
and an ACC of 87.53% via reduced amino acid features and with ANOVA-based feature 
selection [46]. In contrast, the PredAoDP model trained the SVM model using diverse 
variants of evolutionary descriptors and reported a Sp, ACC, and Sn of 96.77%, 93.18%, 
and 71.65%, respectively [44]. Finally, our developed StackEnC-AOP model performed 
better, achieving a Sp of 98.91%, ACC of 98.40%, Sn of 97.29%, AUC of 0.99, and an 
MCC of 0.96, respectively, as listed in Table 6.

Discussion
Antioxidant proteins are small fragments or molecules that defend against the disease 
initiated due free radicals. Keeping the importance of AOPs in biological processes, 
many in-vitro and computational methods have been proposed to provide alterna-
tives. Nevertheless, existing models have several issues. Our proposed StackEnC-AOP 
model uses the local evolutionary features, by representing each protein in the form of 
a 2D image and then decomposing each image into several levels. Our applied two-level 
DWT-based decomposition has provided improved performance rates by capturing the 
intrinsic and hidden local features that are difficult to access using traditional sequen-
tial encoding methods. In addition to the evolutionary features, EEDP and CPP-based 
improved sequential and physiochemical structure-based encoding methods are applied 
to form a hybrid vector. The hybrid feature strategy has significantly performed well and 
achieved the predictive ACC of 96.4%. Our compact hybrid feature vector performed 
better by compensating for the limitations of the individual feature vector. To reduce 
the executing time of the training model, the 195 mRMR-based selected features further 
enhanced the training accuracy to 98.40%, and AUC to 0.99.

To compare the predictive outcomes of our StackEnC-AOP with existing state-of-
the-art predictors, as illustrated in Table 6. To the best of our knowledge, ten predictors 
have been developed using the same training samples. We categorized these methods 
as sequence-based, evolutionary-based, and deep features-based. In sequence-based 
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encoding methods, the models presented by Feng et al. [31], AodPred [32], Thanh-Lam 
et al. [39], ANPrAod [46], and AOPM [41] employed traditional machine learning classi-
fiers and achieved predictive accuracies of 66.88%, 74.79%, 84.50%, and 92%, respectively. 
However, these sequence encoding methods only focus on the frequencies of the amino 
acid sequences without keeping the sequence order information. Similarly, in evolution-
ary-based methods, the models proposed by Ao et al. [80], DP-AOP [42], and PredAoDP 
[44] achieved accuracies of 83.91%, 91.07%, and 93.18%, respectively. In the DP-AOP 
training model, the executing cost was effectively reduced by selecting 17 optimal fea-
tures. In the AoP-LSE model, the deep latent features were employed [43]. However, the 
deep training model features achieved an ordinary accuracy of 82.40%. Recently, in the 
UniDL4BioPep predictor, a protein language model-based embedding features obtained 
an ACC of 80.40% [90]. In contrast, our StackEnC-AOP model achieved a higher predic-
tive accuracy of 98.40%, and an AUC of 0.99, which is approximately 5% higher accuracy 
than existing predictors. On the other hand, the generalization power of our StackEnC-
AOP model is validated using independent samples by achieving an ACC of 96.92% and 
an AUC of 0.98. Which is higher than the recent four predictors such as Zhang et al.[34], 
Ahmad et al. [38], Thanh-Lam et al. [39], and iAnt [40]. Hence, the remarkable predic-
tive results of the StackEnC-AOP are due to the incorporation of novel PsePSSM-DWT 
encoding and leveraging the powerful training abilities of the stacked-ensemble model. 
The PsePSSM-DWT based transformed local evolutionary features not only cover the 
sequence ordering issue of the existing traditional encoding schemes using PsePSSM 
matrix but also represent the PSSM matrix of each sequence in the form of an image 
using DWT, and its two-level decomposition leads to capturing hidden informative 
features that are easily accessible using sequential encoding methods. Finally, in com-
parison with traditional classifiers, the proposed stacked ensemble model provides more 
flexibility in selecting baseline models, and its generalization capabilities, leading to 
achieve robust and reliable predictions.

Conclusion
In this paper, we introduced a StackEnC-AOP training model to effectively identify 
antioxidant sequences using the stacking ensemble strategy. The accurate prediction of 
AOPs holds paramount significance in drug development and the pharmaceutical indus-
try due to their key roles in treating various diseases. Addressing the flaws of existing 
feature encoding schemes, we applied a compact multi-perspective vector of the novel 
evolutionary, sequential, and structured features to handle the drawbacks of individual 
feature encoding methods. Whereas, the inclusion of the novel two-level decomposi-
tion of the evolutionary features-based images using PsePSSM-DWT performed effec-
tively to highlight the intrinsic hidden information. Moreover, to develop a bias-free 
model, we oversampled the low instances class of the training dataset using the SMOTE 
technique. At last, the training cost of the proposed model is minimized by choosing 
optimal features using mRMR-based selection. Our developed StackEnC-AOP method 
reported the higher prediction accuracies of 98.40%, and 96.92% for training and inde-
pendent sequences, respectively. Moreover, the remarkable performance of our training 
model using the unseen independent sequences validated the generalization power and 
potential biases. The consistent improvement of our stacking ensemble-based model 
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compared to existing computational models has a substantial impact on the drug devel-
opment pipeline. Pharmaceutical industries can enhance their ability to identify, design, 
and develop new antioxidant-based drugs more effectively.
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