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Abstract 

In the past two decades, genomics has advanced significantly, with single-cell RNA-
sequencing (scRNA-seq) marking a pivotal milestone. ScRNA-seq provides unparalleled 
insights into cellular diversity and has spurred diverse studies across multiple condi-
tions and samples, resulting in an influx of complex multidimensional genomics data. 
This highlights the need for robust methodologies capable of handling the complexity 
and multidimensionality of such genomics data. Furthermore, single-cell data grap-
ples with sparsity due to issues like low capture efficiency and dropout effects. Tensor 
factorizations (TF) have emerged as powerful tools to unravel the complex patterns 
from multi-dimensional genomics data. Classic TF methods, based on maximum likeli-
hood estimation, struggle with zero-inflated count data, while the inherent stochas-
ticity in TFs further complicates result interpretation and reproducibility. Our paper 
introduces Zero Inflated Poisson Tensor Factorization (ZIPTF), a novel method for high-
dimensional zero-inflated count data factorization. We also present Consensus-ZIPTF 
(C-ZIPTF), merging ZIPTF with a consensus-based approach to address stochasticity. 
We evaluate our proposed methods on synthetic zero-inflated count data, simulated 
scRNA-seq data, and real multi-sample multi-condition scRNA-seq datasets. ZIPTF 
consistently outperforms baseline matrix and tensor factorization methods, display-
ing enhanced reconstruction accuracy for zero-inflated data. When dealing with high 
probabilities of excess zeros, ZIPTF achieves up to 2.4× better accuracy. Moreover, 
C-ZIPTF notably enhances the factorization’s consistency. When tested on synthetic 
and real scRNA-seq data, ZIPTF and C-ZIPTF consistently uncover known and biologi-
cally meaningful gene expression programs. Access our data and code at: https://​
github.​com/​klarm​an-​cell-​obser​vatory/​scBTF and https://​github.​com/​klarm​an-​cell-​
obser​vatory/​scbtf_​exper​iments.
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Introduction
Advancements in genomics have given rise to diverse methods for studying gene 
expression patterns, with single-cell RNA-sequencing (scRNA-seq) representing 
a pivotal milestone [1]. The advent of single-cell RNA sequencing has enabled the 
exploration of gene expression at the single-cell level, revealing cellular heterogeneity 
and capturing rare cell types [2]. Simultaneously, multi-sample and multi-condition 
single-cell studies have emerged, leveraging scRNA-seq to analyze multiple samples 
under differing conditions [3]. Applications of these datasets span disease comparisons, 
drug response studies, temporal cellular analyses, and more. These studies provide 
insights into the variability and robustness of molecular signatures and identify 
condition-specific patterns that transcend individual samples.

The upshot of these developments has been an unprecedented surge in 
multidimensional genomic data and an increasing demand for robust methodologies 
capable of navigating the complexity inherent in such data [4]. More recently, analysis 
methods that treat individual cells as statistically independent replicates have faced 
scrutiny as they overlook the correlation between cells originating from the same 
individual [5, 6]. An increasingly popular solution is the use of pseudobulk aggregates—
gene counts averaged across individual and cell type—as the basis of downstream 
analysis. Tensors, which are multi-way arrays that extend matrices to higher dimensions, 
provide a natural way to represent this data. Examining gene variations across multi-
condition samples and various cell types leads to a 3-way tensor (samples × cell types × 
genes). Tensor factorization methods have emerged as powerful tools offering unique 
capabilities to unravel complex patterns from such multi-dimensional data in an 
unsupervised manner [7–9]. While it is possible to use traditional matrix methods on 
pseudobulk data, this would require matricizing tensors, limiting the potential to exploit 
the intrinsic multi-way structure of the data [10]. Tensor factorization extends matrix 
factorization to higher dimensions while preserving intrinsic structure, enabling the 
discovery of complex interactions.

Alongside high-dimensionality, another significant challenge in single-cell genomics 
data is its sparsity. Single-cell data is sparse due to low capture efficiency during 
sequencing and “dropout events” in which lowly expressed genes remain undetected 
[4]. This sparsity, coupled with high-dimensional gene expression patterns across 
diverse cells, complicates analysis and interpretation of single-cell data. Classic tensor 
factorization methods using maximum likelihood estimation (MLE) can be unreliable 
when applied to sparse count data [11]. Bayesian Poisson Tensor Factorization 
(BPTF)—a higher-order extension of Poisson matrix factorization—overcomes the 
limitations of the MLE approach when dealing with high-dimensional count data. BPTF 
provides advantages such as the ability to incorporate prior knowledge, perform model 
selection, and quantify uncertainty in parameter estimates [12–14]. Highly-dispersed 
count data with excess number of zeros is common in various fields beyond genomics, 
including healthcare (e.g., hospital readmissions), social sciences (e.g., user behaviors), 
and insurance claims [15, 16]. The Zero-Inflated Poisson (ZIP) distribution is a better 
model for such data compared to the Poisson distribution [15, 17, 18], and has been 
successfully used in recommendation systems and other applications [16].
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In addition to modeling the distribution of data and noise appropriately, another issue 
to be addressed is the inherent randomness of tensor factorization algorithms.  This 
leads to varying results for multiple runs and negatively impacts the interpretability 
and reproducibility [10, 19]. In this paper, we propose a novel approach for stable 
tensor factorization which is robust for high-dimensional sparse count data with excess 
zeros (Section Materials and methods). We claim three main contributions:

•	 We propose a novel factorization approach for high-dimensional sparse count data with 
excess zeros, namely Zero Inflated Poisson Tensor Factorization (ZIPTF), which utilizes 
a Bayesian ZIP model (Section Materials and methods).

•	 To address the discussed randomness issue, we develop a meta-analysis method that 
generalizes consensus matrix factorization [20] and incorporates novel techniques to 
improve the stability and interpretability of the factorization results (Section  Generic 
consensus-based tensor factorization, Fig.  2). We specifically focus on its integration 
with ZIPTF, namely Consensus-ZIPTF (C-ZIPTF). Nonetheless, our method is 
generalizable to other factorization approaches.

•	 We provide an extensive evaluation on four different datasets: (1) synthetic zero-inflated 
count tensors with increasing probability � of excess zeros (Section  Synthetic tensor 
experiment); (2) synthetic multi-sample scRNA-seq data (Section  Synthetic single-cell 
RNA-Seq data analysis);  (3)  real multi-sample, multi-condition scRNA-seq dataset of 
immune cells stimulated with interferon beta (Section  Identification of cell type identity 
and perturbation-specific programs using C-ZIPTF in single-cell RNA-seq data); (4) real 
scRNA-seq data collected from patients with systemic lupus erythematosus (including 
those with managed and active flare) and healthy groups (Section   C-ZIPTF enables 
unsupervised discovery of disease subgroups and multicellular gene expression 
programs in the peripheral blood of patients with systemic lupus erythematosus).

We compare ZIPTF and C-ZIPTF against baseline matrix and tensor factorization 
approaches, as well as established scRNA-seq data analysis methods. Our results indicate 
that ZIPTF outperforms the baselines in terms of reconstruction accuracy for zero-
inflated data. Specifically, for � = 0.8 , ZIPTF achieves an average explained variance 
of 0.92, compared to a maximum of 0.38 achieved by the baseline models. Additionally, 
C-ZIPTF significantly improves the consistency and accuracy of the factorization results. 
Both ZIPTF and C-ZIPTF successfully capture biologically meaningful gene expression 
programs (GEPs) and result in factors with higher Pearson correlations to known GEPs. 
Finally, C-ZIPTF adeptly captures condition-specific GEPs, unveiling nuanced expression 
patterns that highlight intra-group heterogeneity, a facet often overlooked by supervised 
methods like Differential Gene Expression (DGE) Analysis.

Tensor preliminaries
This section presents the foundational concepts and notations for tensors, with most of the 
notation borrowed from [10]. We denote the (i1, i2, . . . , iN )-th entry of an N- way tensor 
X ∈ R

I1×I2×...×IN as Xi1i2...iN . The Frobenius norm of a tensor is similar to the matrix 
Frobenius norm:
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An N-way tensor Y is called a rank-1 tensor if it can be written as outer product of N 
vectors, i.e., Y = u(1) ⊗ u(2) ⊗ . . .⊗ u(N ) with Yi1i2...iN = u

(1)
i1
u
(2)
i2

. . .u
(N )
iN

 . A rank R ≥ 1 
approximation to the tensor X ∈ R

I1×I2×...×IN can be given as:

A(i)
= [a

(i)
1 . . . a

(i)
R ] ∈ R

Ii×R, 1 ≤ i ≤ N  is the latent  factor matrix along the i− th 
mode, and E ∈ R

I1×I2×...×IN.  The factorization given in Eq. (2) is often referred 
to as the CP (Candecomp/Parafac) decomposition. Figure  1 illustrates the CP 
decomposition of a 3-way tensor. The approximation can be concisely expressed as 
˜X = [[A(1),A(2), . . . ,A(N )

]]. In this paper, we impose a non-negativity constraint on 
factors to improve their interpretability. The primary method for solving Eq. (2) involves 
using the maximum likelihood estimation (MLE) approach, which entails minimizing 
the following error:

Iterative algorithms such as multiplicative updates, alternating least  squares, and gra-
dient descent are commonly utilized for Eq. (3) [10, 19, 21]. The MLE approach often 
assumes Gaussian noise [10, 19].

Materials and methods
Bayesian poisson tensor factorization

Traditional tensor factorization methods using MLE are unstable when applied to zero-
inflated count data [11]. Bayesian Poisson Tensor Factorization (BPTF) extends the Poisson 
Matrix Factorization method to higher dimensions and utilizes Bayesian inference to 
obtain a point estimate and offers benefits such as uncertainty quantification, realistic noise 
assumptions, and principled inclusion of prior information [12–14, 22]. This section presents 
a general framework for BPTF with Variational Inference  (VI)  for high-dimensional count 
data.

(1)�X �F =

√

√

√

√

I1
∑

i1=1

I2
∑

i2=1

. . .

IN
∑

iN=1

X 2
i1i2...iN

.

(2)X =
˜X + E where ˜X =

R
∑

r=1

a(1)r ⊗ a(2)r ⊗ · · · ⊗ a(N )
r ,

(3)min
A(1),A(2),...,A(N )

||X −
˜X ||F .

Fig. 1  Low rank R approximation to a 3-way tensor X  using CP decomposition
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Let X ∈ R
I1×I2×...×IN be the observed count data drawn from the Pois-

son distribution and with the CP decomposition as given in  Eq. (2).  Let 
I = i1i2 . . . iN ∈ I = {i1i2 . . . iN : 1 ≤ ij ≤ Ij , 1 ≤ j ≤ N } , then

BPTF uses Gamma priors to regularize the estimation of the latent factors [23–25]. 
The Gamma distribution, which is characterized by a shape parameter α > 0 and a rate 
parameter αβ > 0 , is employed as a sparsity-inducing prior [12, 13, 23]. Then for each 
a
(k)
jr  in Eq. (4), we have:

with the expectation E[a(k)jr ] =
1

β(k) and Var[a(k)jr ] =
1

αβ(k)2
 . The posterior distribution 

given by P(A(1),A(2), . . . ,A(N )
| X ,H) is intractable due to the inability to compute the 

evidence, given a model hyperparameter set H = {α,β(1),β(2), . . . ,β(N )
} [25]. BPTF uses 

VI and assumes a variational family of distributions 
QV = Q(A(1),A(2), . . . ,A(N )

;V (1), . . . ,V (N )) which is indexed by a set of variational 
parameters V (k), 1 ≤ k ≤ N  [25, 26]. We employ a fully-factorized mean-field 
approximation assuming that QV(A

(1),A(2), . . . ,A(N )) =
∏N

k=1QV(A
(k)

;V (k)), where 

Q(a
(k)
jr ;V

(k)
jr ) = Gamma(a

(k)
jr ; γ

(k)
jr , δ

(k)
jr ), 1 ≤ k ≤ N . The variational family Q used here 

is similar to the one employed in Bayesian Poisson Matrix Factorization [23, 27, 28]. 
BPTF fits variational parameters by minimizing the Kullback–Leibler (KL) divergence 
between the true posterior distribution and QV , which is equal to maximizing the 
evidence lower bound (ELBO) [12, 25, 26]:

where H(QV ) is the entropy for QV . Coordinate ascent algorithms are commonly used to 
maximize the ELBO by iteratively optimizing each variational parameter while fixing the 
others until convergence, monitored by the relative change in the ELBO [25, 26]. From 
Eq. (4), we have the total n =

∑

I∈I XI ≈ Poisson(�) where � =

∑

I∈I �I . We can use 
the Poisson-Multinomial connection to express X  given n as Multinomial(n,π) where 
(π)I =

�I
�

 , and update variational parameters using this auxiliary distribution [13, 23, 
25]:

(4)XI ≈ Poisson(�I ) where XI ≈
˜XI =

R
∑

r=1

a
(1)
i1r
a
(2)
i2r

. . . a
(N )
iN r ≈ �I .

(5)a
(k)
jr ≈ Gamma(α,αβ(k)), 1 ≤ k ≤ N ,

(6)ELBO(V ) = EQV

[

log
(

P(X ,A(1),A(2), . . . ,A(N )
|H)

)]

+H(QV ),

(7)
γ
(k)
jr =α +

∑

i1i2 . . . iN ∈ I
ik = j

Xi1i2...in

GQV

[
∏N

s=1 a
(s)
isr

]

∑R
t=1GQV

[
∏N

s=1 a
(s)
ist

]

,

(8)δ
(k)
jr =αβ(k)

+

∑

i1i2...iN ∈ I

EQV

[

∏

1≤s �=k≤N

a
(s)
isr

]

,
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where EQV [.] and GQV = exp
(

EQV

[

log(.)
])

 denote arithmetic and geometric expec-
tations. Since QV  is fully factorized, the expectations in Equations (7) and (8) can be 
expressed as a product of individual expectations [25]. Specifically, for a(s)isr ,

where � is the digamma function  (logarithmic derivative of the gamma function). An 
empirical Bayes approach can be used to update the hyperparameters β(k), 1 ≤ k ≤ N  , 
in conjunction with the variational parameters [23, 25]:

The variational inference algorithm for BPTF is fully specified by the set of update 
equations Equations (7), (8), and (10).

Zero‑inflated poisson tensor factorization (ZIPTF)

Poisson models may not always be sufficient to model count data with excess zeros, and 
zero-inflated models can often provide a better fit [16, 17]. The Zero-Inflated Poisson 
(ZIP) model assumes that the counts in the tensor X  can be modeled as a mixture of a 
point mass at zero and a Poisson distribution with parameter � . Let X  be a count data 
in RI1×I2×...×IN . We define the index set I  as the collection of all possible indices, i.e., 
I = {i1i2 . . . iN : 1 ≤ ij ≤ Ij , 1 ≤ j ≤ N }. We say X  has Zero-inflated Poisson (ZIP) 
distribution if for every I ∈ I :

where the outcome variable xI has non-negative integer values, �I is the expected 
Poisson count, and pI is the probability of extra zeros [17]. As an abbreviation, we write 
it as XI ∼ ZIP(�I , pI ). The ZIP can be considered as the product of a Poisson random 
variable YI ∼ Poisson(�I ) and an independent Bernoulli variable �I ∼ Bernoulli(pI ) [15]. 
The Bernoulli variable �I takes the value of 1 when XI is equal to 0, due to the Bernoulli 
component, and takes the value of 0 otherwise.

We consider the low rank R ≥ 1 decomposition of the zero-inflated count tensor X :

Hence, for I = i1i2 . . . iN , the reconstruction 
∑R

r=1 a
(1)
i1r
a
(2)
i2r

. . . a
(N )
iN r  can be interpreted 

as the mean of the distribution from which the observed count XI is assumed to be 
sampled. Then we have:

(9)EQV [a
(s)
isr
] =

γ
(s)
isr

δ
(s)
isr

and GQV [a
(s)
isr
] =

exp
(

�(γ
(s)
isr

)
)

δ
(s)
isr

,

(10)β(k)
=

(

Ik
∑

j=1

R
∑

r=1

EQV [a
(k)
jr ]

)

−1
.

(11)P(XI = xI ) = pI�xI=0 + (1− pI )
e−�

�
xI

xI !
,

(12)X ≈
˜X =

R
∑

r=1

a(1)r ⊗ a(2)r ⊗ · · · ⊗ a(N )
r .

(13)XI ∼ ZIP(�I =

R
∑

r=1

a
(1)
i1r
a
(2)
i2r

. . . a
(N )
iN r , pI ).
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Variational inference for ZIPTF

For given position I = i1i2 . . . iN , we consider the rank R decomposition in 
Eq. (13). In Bayesian Poisson factorizations, the Gamma distribution is uti-
lized as a prior to induce sparsity, and it is assumed that each latent factor matrix 
A(k)

= [a
(k)
1 . . . a

(k)
R ] ∈ R

Ik×R
+

, 1 ≤ k ≤ N  , follows a Gamma distribution [13, 23]. There-

fore, for each a(k)jr  in Eq. (13), we have:

where α(k) > 0 and β(k) > 0 represent the shape and rate parameters of the distribution, 

with the expectation E[a(k)jr ] =
α(k)

β(k) and Var[a(k)jr ] =
α(k)

β(k)2
 . Additionally, for ZIP models a 

latent variable ξ is introduced to capture the hidden state of the probability of extra zeros 
which specify � ∼ Bernoulli(pI ) [16, 25]. Let S(.) denote the logistic sigmoid function, 
given by S(x) = 1

1+e−x , then:

Let Z = {A(1),A(2), . . . ,A(N ),�}, consider the posterior distribution P(Z | X ,H), given a 
model hyperparameter set H = {α(1),β(1),α(2), . . . ,β(2), . . . ,α(N ),β(N ),µ, σ }.

Variational inference approximates the true posterior distribution using a 
family of probability distributions Q over hidden variables [25]. This family of 
distributions is characterized by free parameters, and the key assumption is that 
each latent variable is independently distributed given these parameters. We assume 
a variational family of distributions Q indexed by a set of variational parameters 
V = {γ (1), δ(1), γ (2), δ(2), . . . , γ (N ), δ(N ),µ, σ } where (γ (k), δ(k)) are variational shape and 
rate parameters of the Gamma distribution for the latent factor along the k− th mode, 
and (µ, σ) are the variational parameters for ζ . We use a fully factorized mean-field 
approximation [25] and the variational distribution factors as the following:

where a(k)jr ∼ Gamma(γ
(k)
jr , δ

(k)
jr ) and �I ∼ Bernoulli

(

S(ζ )
)

for ζ ∼ Normal(µ, σ) . The 
goal is to choose a member q∗ of the family of variational distributions which minimizes 
the KL divergence of the exact posterior from Q:

Upon examining the KL divergence, we encounter a significant challenge: it involves 
the true posterior distribution P(Z | X ,H) , which is not known. Nevertheless, we can 
rewrite the KL divergence as follows:

(14)a
(k)
jr ∼ Gamma(α(k),β(k)), 1 ≤ k ≤ N ,

(15)ξ = S(ζ ) where ζ ∼ Normal(µ, σ).

(16)Q(A(1),A(2), . . . ,A(N ),�) = Q(�;µ, σ)

N
∏

k=1

Q(A(k)
; γ (k), δ(k)),

(17)q∗(Z) = arg min
q(Z) ∈ Q

DKL

(

q(Z)
∥

∥ P(Z | X ,H)
)

.

(18)DKL

(

q
(

Z � P(Z | X ,H)
))

=

∫

q(Z) log

(

q(Z)

P(Z | X ,H)

)

dZ
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The second term in  Eq. (21) is called Evidence Lower Bound (ELBO). We know that the 
KL divergence is non-negative, therefore, 
log

(

P(X ,H)
)

≥ ELBO
(

q(Z)
)

=

∫

q(Z) log
(

P(Z,X ,H)
q(Z)

)

dZ.

The evidence lower bound serves as a transformative tool that converts intractable 
inference problems into optimization problems that can be tackled using gradient-based 
methods [25].

Coordinate ascent algorithms are frequently employed in maximizing the evidence 
lower bound [16, 25]. However, these algorithms require tedious gradient calculations and 
may not scale well for very large datasets [29, 30]. Closed-form coordinate-ascent updates 
are applicable to conditionally conjugate exponential family models, but they necessitate 
analytic computation of various expectations for each new model [29, 30].

Stochastic Variational Inference (SVI) [29] offers a more efficient algorithm by incor-
porating stochastic optimization [31]. This technique involves utilizing noisy estimates 
of the gradient of the objective function. To maximize the ELBO, we employ a stochastic 
optimization algorithm known as the Black Box Inference Algorithm [30]. This algorithm 
operates by stochastically optimizing the variational objective using Monte Carlo sam-
ples from the variational distribution to compute the noisy gradient (see Sect.  2, [30] 
for details). By doing so, it effectively alleviates the burden of analytic computations and 
provides a more efficient approach to ELBO maximization.

Generic consensus‑based tensor factorization

Selecting the number of components in tensor factorization is challenging [10, 21]. 
The dependence on initial guesses for latent factors can lead to substantially different 
factor sets across repeated runs, making it difficult to interpret the results [10, 19, 21]. 
Traditional approaches involves selecting the minimum R in Eq.  (12) that surpasses a 
predetermined threshold for the explained variance of the approximation, defined as 
follows:

(19)=

∫

q(Z) log

(

q(Z)P(X ,H)

P(Z,X ,H)

)

dZ

(20)= log
(

P(X ,H)
)

∫

q(Z)dZ −

∫

q(Z) log

(

P(Z,X ,H)

q(Z)

)

dZ

(21)= log
(

P(X ,H)
)

−

∫

q(Z) log

(

P(Z,X ,H)

q(Z)

)

dZ.

(22)ELBO
(

q(Z)
)

=

∫

q(Z) log
(

P(Z,X ,H)
)

dZ −

∫

q(Z) log
(

q(Z)
)

dZ

(23)= Eq(Z)

[

log
(

P(X ,Z,H)
)]

− Eq(Z)

[

log q(Z)
]

.
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As the rank R increases, explained variance also increases, owing to the increased 
flexibility to capture the intricacies of the original tensor X  . However, depending solely 
on explained variance for selecting the rank may not always yield the best outcomes. 
Higher ranks can lead to overfitting, capturing noise instead of meaningful data patterns, 
thus inflating explained variance. Additionally, the increased computational complexity 
of higher ranks may not justify the marginal improvement in explained variance. 
Moreover, interpreting factors from high-rank tensor decompositions becomes more 
challenging, potentially obscuring the underlying data structure. Our goal is not solely 
to improve the explained variance, but also to ensure the interpretability and stability of 
the factors. We explore additional metrics to assess the stability of factors, namely the 
cophenetic correlation and silhouette score; further details are provided below.

We generalize the consensus meta-analysis approach, which has been previously 
used for matrix factorization [20], and include novel techniques to enhance the 
stability. The overview of the proposed pipeline is depicted in Fig. 2. In the remainder 
of this section, we will refer to the steps 1©- 5© given in the figure.

Running a generic rank R factorization given  in  Eq.  (12) for   X ∈ R
I1×I2×...×IN 

with M different random seeds yields the sets of non-negative factor matrices 
{(A(1))m, (A

(2))m, . . . , (A
(N ))m}, 1 ≤ m ≤ M  (Step 1© ). For a chosen modality 

k (1 ≤ k ≤ N  ), we can aggregate and normalize the factor matrices from independent 
runs (Step 2©):

The cophenetic correlation coefficient, a commonly employed metric for selecting 
ranks in matrix factorizations [32], assumes a one-to-one mapping between features 
and factors, primarily based on maximum loadings and evaluating the level of stability 
of inferred latent signals across different runs. While this approach is valuable, it’s 
important to acknowledge that this assumption may encounter challenges in scenarios 
where a feature contributes significantly to multiple factors. Despite this limitation, the 

(24)explained variance = 1−
||X −

˜X ||F

||X ||F
.

(25)A(k)
=

[ (A(k))1

||(A(k))1||F

(A(k))2

||(A(k))2||F
. . .

(A(k))M

||(A(k))M ||F

]

∈ Ik × (R×M).

Fig. 2  Overview of the consensus meta-analysis approach discussed in Section  Generic consensus-based 
tensor factorization for the 3-way tensor X
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cophenetic correlation coefficient remains a valuable tool for rank selection in many 
cases.

Our method for selecting the rank and evaluating factorization stability involves 
clustering column factors of aggregated matrices and fixing the initial guess to 
ensure reliability. Initially, we perform K-means clustering [33] on the columns of the 
aggregated factor matrix A(k) with K = R (Step 3© ). The resulting cluster sets are given 
as C(k)

i = {columns of A(k) assigned to cluster i}, 1 ≤ i ≤ R. The Local Outlier Factor 
algorithm [34] is used to remove outliers by considering the local density deviation 
of a data point compared to its neighbors. We evaluate the goodness of the clustering 
with the silhouette coefficient [35], computed as (b-a)/max(a,b), where a is the average 
intra-cluster distance, and b is the average inter-cluster distance. The silhouette 
coefficient ranges from -1 to 1, with higher values indicating more coherence. After 
clustering, we obtain the consensus factors f (k)Ci

 , where 1 ≤ i ≤ R , by computing the 
median value of the factors in each cluster (Step 4© ) and form the consensus matrix:

We perform the decomposition using A(k)
C as the fixed initial guess for the k-th 

modality to obtain the final factor matrices (Step 5©).
Notice that if ZIPTF is employed as the factorization method in Step 1© described 

above, we refer to the resulting factorization as C-ZIPTF.
In summary, when selecting the rank R, we ensure that the explained variance 

surpasses a predefined threshold of 0.9. Additionally, we evaluate the cophenetic 
correlation across various ranks to validate our selection, aiming for a score higher 
than 0.9. Next, at the candidate rank, we assess the silhouette score to determine if the 
optimal number of clusters of latent factors from multiple runs of the factorization 
aligns with the chosen rank.

It is important to emphasize that achieving the mathematically “ideal” rank does not 
ensure optimal performance in capturing biologically relevant signals. To ensure that 
biological signals are adequately preserved, it is essential to complement mathematical 
optimization with domain knowledge, exploratory analysis, and validation against 
biological criteria.

When assessing the sensitivity of parameter R, it’s important to consider the implica-
tions from a biological standpoint. Opting for a rank that is too low may lead to loss of 
important biological information, while excessively high rank may result in overfitting. 
It’s crucial to recognize that factorizing at a given rank still captures the true signal but 
potentially at a different resolution. Lower ranks may capture higher-level shared signals, 
while higher ranks may reveal finer subgroups within these categories. For example, in 
a 2-way case with gene expression count data for different donors (donors × genes), fac-
torizing it with R = 1 would produce a gene latent factor based on average expression 
of genes. Increasing to higher ranks may reveal distinct groups, such as disease/healthy, 
while even higher ranks may uncover finer subgroups within these categories. At some 
point, we would start capturing donor-specific signals. In Section  Identification of cell 

(26)A(k)
C = [f

(k)
C1

f
(k)
C2

. . . f
(k)
CR

] ∈ R
Ik×R, 1 ≤ k ≤ N .
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type identity and perturbation-specific programs using C-ZIPTF in single-cell RNA-seq 
data, we examine biological signals obtained through factorization at different ranks.

Results
Here we present results showing the superior performance of C-ZIPTF across multiple 
evaluation metrics. We implemented C-ZIPTF in Python, using the probabilistic 
programming language Pyro [36]. Our presentation in Section  Bayesian poisson tensor 
factorization focused on Bayesian tensor factorization frameworks that utilize Poisson 
and Zero-Inflated Poisson based models. However, our implementation is designed to 
be more versatile and can accommodate different types of noise models. We conduct 
four different evaluations to assess the performance of our proposed method. First, we 
compare ZIPTF with alternative tensor factorization methods on simulated tensors with 
known factors and ZIP noise and evaluate the benefits of using a ZIP model and the 
inclusion of the consensus approach (Section  Synthetic tensor experiment).

After observing the superior performance of ZIPTF and C-ZIPT on zero-inflated 
simulated count tensors compared to traditional tensor factorization methods, we 
applied our approach to genomics datasets to evaluate its effectiveness in dimension 
reduction and capturing gene expression patterns as a factor analysis method. Factor 
analysis techniques like Independent Component Analysis, Linear Discriminant 
Analysis, Non-negative Matrix Factorization (NMF) [37], and Principal Component 
Analysis (PCA) [38] are frequently employed for dimensionality reduction tasks in 
genomic data analysis [39–42]. The algorithmic variability of the first three methods 
necessitates a consensus meta-analysis for robustness. Consensus NMF (CNMF) 
has emerged as the top-performing model across various simulation settings [20], 
outperforming PCA as well. Consequently, we conducted a comparative analysis that 
included both NMF and CNMF as matrix-based methods. Furthermore, we integrated 
deep learning-based Amortized Latent Dirichlet Allocation (LDA) into our comparison. 
LDA, an unsupervised learning technique, assumes a generative model, where latent 
topics generate collections of elements [43]. Amortized LDA is implemented using 
autoencoding variational Bayes in which a fully-connected neural network is used as the 
encoder. When applied to scRNA-seq data, topics correspond to gene modules, while 
each cell corresponds to a collection of Unique Molecular Identifier (UMI) counts.

In Section  Synthetic single-cell RNA-Seq data analysis, we evaluate the performance 
of our method on simulated multi-donor single-cell RNA sequencing data and compare 
it with other matrix and tensor factorization methods, as discussed above, at the task of 
recovering identity and activity gene expression programs (GEPs). In Section Identifica-
tion of cell type identity and perturbation-specific programs using C-ZIPTF in single-cell 
RNA-seq data, we demonstrate the ability of our method to capture biologically mean-
ingful gene expression programs by applying it to a real multi-sample multi-condition 
scRNA-seq dataset of immune cells stimulated with interferon beta. Finally, we apply 
C-ZIPTF to a real multi-sample scRNA-seq data obtained from patients with systemic 
lupus erythematosus (including those with managed and active flare) and healthy groups 
(Section  C-ZIPTF enables unsupervised discovery of disease subgroups and multicel-
lular gene expression programs in the peripheral blood of patients with systemic lupus 
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erythematosus). We showcase C-ZIPTF’s efficacy in capturing condition-specific GEPs, 
revealing nuanced patterns that highlight intra-group heterogeneity that are typically 
missed by traditional supervised methods such as differential gene expression (DGE) 
analysis.

Synthetic tensor experiment

To evaluate the performance of C-ZIPTF on synthetic data, we generate tensors using 
known factors and Poisson noise with varying degrees of zero inflation and measure the 
accuracy of different methods at recovering the original factors. To generate a tensor 
T ′

∈ R
I×J×K  , we first create three factor matrices A ∈ R

I×R
+

 , B ∈ R
J×R
+

 , and C ∈ R
K×R
+

 , 
with elements drawn from a Gamma distribution with shape α = 3 and rate β = 0.3 , 
where R is the desired true rank. We then construct a tensor T  by taking the sum of the 
outer product of the corresponding columns of the matrices, i.e., T = [[A,B,C]] . Finally, 
we generate the tensors T ′ by sampling from a ZIP distribution with mean T  and a given 
probability of extra zeros, denoted by � in Section 3.2.

Zero‑inflated Poisson model results in higher explained variance

For the first experiment, we ran ZIPTF without consensus aggregation to evaluate 
the advantages of using the ZIP model alone. In this comparative analysis, we initially 
compare our method with the traditional non-Bayesian tensor method, Non-Negative 
CP decomposition via Alternating-Least Squares  (NNCP-ALS) along with Sparse 
PARAFAC, which efficiently handles sparsity with L2 regularization [10, 11, 44]. 
Afterward, we transition to Bayesian methods, starting with the Bayesian Tensor 
Factorization using a Truncated Gaussian Model  (TGTF) [12]. Subsequently, we run 
Bayesian Tensor Factorization with Gamma Poisson model (GPTF) [13] which assumes 
Poisson distribution for the data and Gamma prior on the latent factors. We conducted 
20 trials, generating a new simulated tensor T ′ of shape 10× 20× 300 and rank 9 
each time and running each factorization method on the tensor for a fixed maximum 

Fig. 3  ZIPTF compared to alternative factorization methods on a synthetic tensor with known factors with 
predetermined rank and ZIP noise, and stability comparison between ZIPTF and C-ZIPTF: a we calculated 
the explained variance of ZIPTF and alternative methods for different levels of extra zeros, b cosine similarity 
between factors obtained on repeat runs for ZIPTF and C-ZIPTF, c cosine similarity between inferred factors 
and original factors for ZIPT and C-ZIPTF
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number of iterations ( max_iter = 1000 ). We evaluated the performance of the methods 
using the explained variance (24) of the approximation generated by each factorization. 
ZIPTF consistently outperformed all the methods included in the comparison Fig. 3a. 
At a zero probability of excess zeros, all four methods showed similar and nearly perfect 
explained variance. However, as the excess zero level increased, the performance of the 
other methods deteriorated rapidly. At the highest probability of excess zeros simulated, 
� = 0.8 , the average explained variance of the ZIPTF approximation was 0.974, with a 
95% confidence interval (CI) [0.962, 0.987], about 2.4× better than the second highest 
explained variance of 0.338, 95% CI [0.334, 0.342] achieved by the Gamma Poisson 
model. We also note that the difference in explained variance between NNCP-ALS 
and the Bayesian methods other than ZIPTF is minimal compared to the difference to 
ZIPTF. This indicates that the superiority of ZIPTF arises from using the appropriate 
noise model.

Consensus aggregation leads to more consistent factorization

After demonstrating ZIPTF’s superior performance in modeling zero-inflated count 
data, we examine the benefits of consensus aggregation. We generate tensors of shape 
40× 20× 2000 and rank 9 with known factors and Zero-Inflated Poisson noise as 
described above and evaluate the recovered factors by running ZIPTF with and without 
consensus aggregation. For this experiment, we fix the probability of excess zeros 
� = 0.6 . We compare the internal consistency of factors obtained from multiple runs 
of the decompositions. For our simulated tensor T ′, assume that we have two rank R 
approximations [[A, B, C]] and [[D, E, F]] corresponding to different randomly initialized 
runs. To measure the similarity between factorizations, we calculate:

We evaluate the similarity of factors recovered from 20 randomly initialized runs of both 
ZIPTF and C-ZIPTF using the cosine score given in Eq. (27). We observe that the factors 
recovered from C-ZIPTF are more consistent with one another compared to those 
recovered from ZIPTF, as shown in Fig.  3b. The consensus approach makes C-ZIPTF 
more robust, reducing the impact of the inherent stochasticity of the factorization 
process and resulting in a more stable set of factors.

Consensus aggregation leads to more accurate recovery of original factors

We assess the accuracy of both ZIPTF and C-ZIPTF in recovering the original factors 
used to create the tensor with � = 0.6 . We perform 20 randomly initialized runs of each 
method and compare the recovered factors to the original factors using the cosine score. 
Figure  3c demonstrates that C-ZIPTF outperforms ZIPTF in recovering the original 
factors.

Synthetic single‑cell RNA‑Seq data analysis

We test the performance of C-ZIPTF on simulated single-cell RNA sequencing data 
which is prone to zero inflation due to technical limitations that result in dropout events 

(27)

cosine score
(

[[A,B,C]], [[D,E, F ]]
)

=

1

R

R
∑

i=1

max
1≤j≤R

cos(ai, dj) cos(bi, ej) cos(ci, fj).
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[4]. We used the Splatter simulation framework [45] which was adapted to Python in a 
previous study [20] to generate the synthetic scRNA-seq dataset. The simulation frame-
work utilizes a Gamma-Poisson hierarchical model with hyperparameters estimated 
from real data. Technical dropouts are simulated by randomly replacing some of the 
simulated counts with zeros using a Bernoulli distribution. The complete details of the 
simulation framework and parameters used are provided in Section Implementation of 
ZIPTF and C-ZIPTF. The synthetic dataset consists of 3000 cells and 1000 genes from 
six donors, with five gene expression programs defining cell type identities and three 
gene expression programs defining donor-specific activity (Fig. 4a).

To apply C-ZIPTF to this data, we first construct the observed tensor by 
pseudobulking the cell-by-gene counts matrix. We cluster the cells to obtain tentative 
cell type groupings and generate pseudobulk counts by summing all the counts for each 
donor, cell type, and gene. This creates a tensor of shape D × C × G , where D, C, and G 
represent the number of donors, cell types, and genes, respectively. We then normalize 
the pseudobulk tensor to counts per million (CPM) and run C-ZIPTF on this tensor 
for a set of ranks ranging from 2 to 14, conducting 10 random initialized factorization 
at each rank. Since the simulated data has 5 identity GEPs and 3 activity GEPs we 
expect factorizations of rank 8 or more to be able to sufficiently represent the data. As 

Fig. 4  Recovering GEPs from synthetic single-cell RNA-seq data: a UMAP of cells simulated using the Splatter 
framework, colored by the dominant identity GEP expressed by each cell, b explained variance and gene 
mode cophenetic correlation of C-ZIPTF factorizations of the simulated data at different ranks, c Silhouette 
score and inertia of the K-means clustering of gene components resulting from 10 randomly initialized 
factorization at rank 8, d, e correlation between the ground truth identity (d) and activity (e) GEPs used in the 
simulation and the corresponding GEPs inferred by C-ZIPTF, f pairwise Pearson correlation between each of 
the eight latent factors in the gene mode obtained via C-ZIPTF factorization and the original GEPs, g, h the 
average Pearson correlation between the true GEPs used in the simulation and the inferred GEPs obtained 
from various factorization methods, results are presented for two different signal intensity levels (0.25 and 
0.75), which are indicated by the mean log2 fold change (log2FC) of simulated differentially expressed 
genes, (g) presents results from simulation done using Splatter, while (h) illustrates results from simulations 
conducted with scDesign3
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anticipated, at rank 8, the factorization exhibited an explained variance and cophenetic 
correlation greater than 0.98 (Fig. 4b). The silhouette score for the K-means clustering of 
gene latent factors from the 10 randomly initialized factorizations at rank 8 also reached 
its peak at 0.61 with 8 clusters (Fig. 4c). These results demonstrate the utility of explained 
variance, cophenetic correlation and silhouette score in estimating the rank of the data.

To evaluate the accuracy of the C-ZIPTF in recovering the eight true GEPs, we 
computed the Pearson correlation [46] between each of the eight latent factors in the 
gene mode obtained via factorization and the original GEPs (Fig. 4d and e). As seen in 
Fig. 4f, there is a clear one to one relationship between the ground truth GEPs and the 
gene factors from C-ZIPTF. The Pearson correlation between the aligned pairs of GEP 
and gene factor (diagonal entries in Fig.  4f ) was consistently high (mean = 0.98, SD 
= 0.02).

Next, we compared the performance of C-ZIPTF against various factorization 
methods, including ZIPTF, NMF, CNMF, Amortized LDA and NNCP-ALS, at the task 
of recovering the 8 GEPs embedded in the synthetic scRNA-seq dataset. For NMF and 
CNMF, the decomposition at rank 8 is performed with a maximum of 1000 iterations for 
convergence after normalizing the cell-by-gene count matrix to CPM. For the tensor-
based approaches, we again construct the observed tensor by pseudobulking the cell-
by-gene counts matrix as described above and apply tensor factorization methods with 
rank 8 and perform 1000 iterations for each method. For each method, we computed 
the Pearson correlation between each of the eight gene latent factors and the original 
GEPs. This correlation was used to establish a one-to-one alignment between the factors 
and the GEPs. We calculated the average Pearson correlation between each factor and 
its corresponding GEP as the overall accuracy score of the method. We ran ten trials 
of this analysis and report the results in Fig.  4g for two different levels of simulated 
intensity of activity GEPs (mean log2 fold change of differentially expressed (D.E.) genes 
(log2FC) ∈ {0.25, 0.5, 0.75} ). C-ZIPTF outperformed all the compared matrix and tensor 
factorization methods (Fig. 4g). At mean D.E. logFC of 0.75, C-ZIPTF generated factors 
with the highest average Pearson correlation to the simulated GEPs (mean Pearson 
r = 0.93 ; SD = 0.04 ). ZIPTF without consensus aggregation also performed better than 
the rest of the factorization methods (mean Pearson r = 0.85 ; SD = 0.04 ), indicating that 
both the use of the ZIP model and the consensus aggregation independently improve 
the accuracy of the method in recovering GEPs. The same pattern was observed at 
mean D.E. logFC of 0.25. C-ZIPTF recovered GEPs at a higher accuracy (mean Pearson 
r = 0.89 ; SD = 0.05 ) than all the other methods followed by ZIPTF (mean Pearson 
r = 0.83 ; SD = 0.05).

Finally, we evaluate the factorization methods on synthetic scRNA-seq data simulated 
using a different simulation framework, scDesign3 [47]. Importantly, instead of a ZIP 
distribution, scDesign3 was configured to use a Gaussian marginal distribution for 
genes to test the performance of C-ZIPTF under different underlying distributions. We 
simulate a dataset with six cell types and one condition effect with two discrete levels 
using a total of 8 GEPs. The final simulation resulted in a count matrix of 2,400 cells 
and 600 genes. We process this count matrix like above to generate a normalized matrix 
and a pseudobulk tensor and run the same set of factorization methods with rank 8. We 
again found that C-ZIPTF generated factors with the highest average Pearson correlation 
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to the simulated GEPs (mean Pearson r = 0.84; SD = 0.02 ) (Fig.  4h). However, the 
factors generated by ZIPTF were not significantly more accurate than those generated 
by NMF and NNCP-ALS. This was expected due to the Gaussian marginal distribution 
used in the data simulation, which lacks zero inflation. The performance benefits 
of ZIPTF are generally proportional to the level of zero inflation in the data, and the 
absence of zero inflation minimizes the advantage of using ZIPTF as seen in Fig.  3a. 
Despite this, it is notable that ZIPTF’s performance does not deteriorate below that 
of standard factorization methods even when zero inflation is absent. This result 
underscores that while ZIPTF doesn’t offer significant advantages without zero inflation, 
it remains a robust method that doesn’t lose ground compared to standard approaches 
in scenarios where zero inflation is not present. Notably, the advantages gained from 
applying consensus aggregation are still retained even when the underlying distribution 
is different as can be seen by the fact that C-ZIPTF still outperforms the other methods.

Identification of cell type identity and perturbation‑specific programs using C‑ZIPTF 

in single‑cell RNA‑seq data

We applied C-ZIPTF to a real-world single-cell RNA sequencing dataset of peripheral 
blood mononuclear cells (PBMCs) from patients with Lupus, reported in [48]. The 
dataset has been deposited in the Gene Expression Omnibus under the accession 
number GSE96583. As described in [48], the dataset contains 29,065 cells from eight 
patients, which are divided into stimulated and control groups, with the former being 
treated with interferon beta (IFN-β ), a cytokine that modulates the transcriptional 
profile of immune cells. As part of the preprocessing step, we filter out multiplets 
and cells without a cell type assignment. Additionally, we remove samples and cell 
types that constitute less than 2 percent of cells. After these filtering steps, the dataset 
contained 14 samples, 7 control and 7 stimulated, and 6 cell types: CD4 T cells, 
CD14+ monocytes, B cells, CD8 T cells, NK cells, and FCGR3A+ monocytes. In 
order to facilitate biological interpretability of factors and reduce noise in the tensor 
formed we removed genes that are either not provided with HGNC symbols [49], or 
had a total count of less than 50 across all cells. Finally, we create a pseudobulk tensor 

Fig. 5  Metrics used in selecting the optimal rank for running C-ZIPTF on real single-cell RNA sequencing 
dataset [48] of immune cells stimulated with interferon beta (IFN-β ): a explained variance and cophenetic 
correlation within a range of ranks from 2 to 14, b the K-means inertia and silhouette score were evaluated 
across varying numbers of clusters of gene latent factors, while keeping the rank fixed at 8
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by summing up the raw counts for each cell type, sample, and gene. The resulting 
pseudobulk data tensor has dimensions S × C × G (14 × 6 × 9,276), where S, C and 
G denote the number of samples, cell types and genes respectively. We normalize 
the tensor such that each sample-cell type pair has a total of 106 counts. We first 
determined the optimal rank for the data by running C-ZIPTF with a range of ranks 
from 2 to 14 and using 5 random initialization each time. Figure 5 illustrates several 
metrics that we examined to determine the best rank and cluster number, such as 
explained variance, gene cophenetic correlation, and silhouette score. We choose 
rank 8, given its high explained variance and strong cophenetic correlation ( > 0.9 ) 
as shown in Fig. 5a. We confirmed that the optimal number of clusters of gene latent 
factors obtained from multiple runs at rank 8 is indeed 8, reaching a peak for the 
silhouette score, as illustrated in Fig. 5b.

Fig. 6  The full set of factors recovered by running C-ZIPTF on real single-cell RNA sequencing dataset [48] of 
immune cells stimulated with interferon beta (IFN-β ): a rank= 2 , b rank=8. Each row represents a factor, and 
the first three columns display the three modes: sample, cell type, and gene. The y−axis in the sample and 
cell type modes represent the loading of the sample or cell type on that factor. The gene mode exhibits the 
top 20 genes associated with the factor. The last column provides the top 3 enriched terms obtained from a 
gene set enrichment analysis



Page 18 of 28Chafamo et al. BMC Bioinformatics          (2024) 25:323 

As discussed in Section  Generic consensus-based tensor factorization, differ-
ent ranks can capture meaningful structures in the data at different resolutions. For 
example, at lower ranks such as at rank 2, as shown in Fig. 6a, C-ZIPTF captures very 
high-level structures in the data, such as lymphoid (B cells, CD4+ T cells, CD8+ T 
cells and NK cells) versus myeloid (CD14+ monocytes and FCGR3A+ monocytes) 
lineage. While at rank 8, C-ZIPTF successfully identifies high-resolution structures, 
including finer cell type and condition-specific gene expression programs, Fig. 6b.

Notably, factor 4 represents an identity GEP that remains active in all B cells, 
irrespective of the condition. The genes exhibiting the highest loadings for this 
factor are well-established B cell markers, such as MS4A1, CD79A, and BANK1 [50]. 
Furthermore, we performed gene set enrichment analysis [51] of these factors using 
GSEApy [52] in Python. This analysis revealed enrichment pathways consistent with B 
cell characteristics, including B cell activation and the B cell receptor signaling pathway.

Conversely, factor 1 and factor 6 capture distinct gene expression programs that 
are specifically activated in IFN-β stimulated samples. Factor 1 captures a cross-cell-
type response to IFN-β stimulation, whereas factor 6 represents a monocyte-specific 
response. These findings align with previous studies that have reported a monocyte-
specific response to IFN-β stimulation [53]. Furthermore, gene set enrichment analysis 
revealed enrichment in pathways such as the cellular response to type I interferon and 
inflammatory response, among others. For a comprehensive list of factors identified by 
C-ZIPTF and their associated gene expression programs, please refer to Fig. 6b.

C‑ZIPTF enables unsupervised discovery of disease subgroups and multicellular 

gene expression programs in the peripheral blood of patients with systemic lupus 

erythematosus

In this section, we explore the ability of C-ZIPTF to uncover intra-group sample hetero-
geneity in an unsupervised manner. To this end, we apply C-ZIPTF to a single-cell RNA 
sequencing dataset presented in a comprehensive study [54], which utilized multiplexed 
scRNA-seq (mux-seq) to profile over 1.2 million PBMCs from patients with systemic 
lupus erythematosus (SLE) and healthy controls. Importantly, amongst the SLE patients, 
several had an active lupus flare while others had a managed lupus. This is an important 

a. b.

Fig. 7  Metrics used in selecting the optimal rank and number of clusters for running C-ZIPTF on real 
single-cell RNA sequencing dataset [54] of peripheral blood mononuclear cells from individuals with systemic 
lupus erythematosus and healthy groups
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source of intra-group heterogeneity as we expect both shared and subgroup-specific 
gene expression programs to drive the transcriptional profiles of the two subgroups 
within the SLE patients. For our purposes, we downsampled the dataset to a subset of 
8 SLE patients with flare, 8 SLE patients with managed disease, and 8 healthy controls. 
We also focused our analysis on essential immune cell types: CD4-positive alpha-beta T 
cells, CD8-positive alpha-beta T cells, classical monocytes, conventional dendritic cells, 
and NK cells, utilizing the cell type classifications provided in the original study.

After downsampling, we retained 85,636 cells which we then used to create a pseudob-
ulk tensor by summing raw counts for each sample, cell type, and gene. After removing 

Fig. 8  Cell type identity GEPs recovered by C-ZIPTF in the SLE dataset: a UMAP of immune cells in SLE 
dataset after downsampling, colored by cell type, b aggregated expression density of the top genes 
associated with each of the cell type identity factors, c 5 cell type identity factors recovered at rank 22 (each 
row represents a factor, and the first three columns display the three modes: sample, cell type, and gene, 
and the y−axis in the sample and cell type modes represent the loading of the sample or cell type on that 
factor. The gene mode exhibits the top 20 genes associated with the factor), d heatmap of normalized gene 
expression of the top genes associated with cell type identity factors in a randomly sampled set of single cells 
sorted by cell type and disease status
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genes that are not provided with HGNC symbols [49], as well as genes with a total count 
of less than 50, we ended up with a tensor of shape 24 × 5× 13, 525 (samples × cell types 
× genes). We normalize the tensor such that each sample-cell type pair has a total of 106 
counts. We then performed tensor factorization with C-ZIPTF for ranks ranging from 
2 to 30 with 30 random initializations each time. Figure  7 presents metrics employed 
in determining the optimal rank and number of clusters. We focused our downstream 
analysis on rank 22, which reaches the elbow point for explained variance (0.958) and 
peak for cophenetic correlation (0.953), Fig. 7a. We confirmed that with the rank set at 
22, the gene latent factors obtained from multiple runs show a high silhouette score with 
22 clusters, as depicted in Fig. 7b.

Once more, C-ZIPTF successfully identifies GEPs associated with cell type identities. 
Each of the 5 cell types included in the analysis had a corresponding factor capturing 
the GEP defining the cell type identity (Fig. 8b). The genes assigned to the factors after 
feature selection correspond to the established marker genes for each cell type [55]. To 
highlight a few, CD14, LYZ (classical monocytes), CD74, HLA-DRB (dendritic cells), 
GNLY, KLRF1 (NK cells), CD8A, GMZK (CD8-positive T cells) are established marker 
genes of the corresponding cell types. Additionally, in cases where the identity GEPs are 
shared among different cell types, we observe the factor loading distributed across the 
corresponding cell types. For example, factor 10 which mainly represents CD4-positive 
T cell identity has genes representing pan T cell identity (CD3D, CD3E), therefore the 

Fig. 9  Condition specific GEPs recovered by C-ZIPTF in the SLE dataset: a UMAP of immune cells in SLE 
dataset after downsampling, colored by condition, b sample mode loading for factors 11 and 21 grouped 
by disease status, c 3 condition specific factors highlighted for rank 22 (Each row represents a factor, and the 
first three columns display the three modes: sample, cell type, and gene. The y-axis in the sample and cell 
type modes represent the loading of the sample or cell type on that factor. The gene mode exhibits the top 
20 genes associated with the factor.), d heatmap of normalized gene expression of the top genes associated 
with the 3 condition specific factors in a randomly sampled set of single cells sorted by cell type and disease 
status
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loading for factor 10 is raised for CD8-positive T cells as well. Similarly, NK cells and 
CD8+ T cells share the cytotoxicity dimension of their identity GEPs (GZMA, GZMK) 
as reflected in the raised factor loading of the CD8-positive T cell identity program 
(factor 8) in NK cells (Fig.  8b-c). Moreover, as demonstrated in Fig.  8c, the genes 
associated with the identity factors are differentially expressed in the corresponding 
cell type cluster. The expression levels of the genes corresponding to factor 5 are high 
throughout the classical monocyte cluster and low elsewhere, and the same holds for 
the other identity factors. This is also reflected at the single-cell level as seen in Fig. 8d. 
The normalized expression of the top genes in each identity factor is predominantly 
expressed in the corresponding cell type and clearly has lower expression in single cells 
from other cell types.

Importantly, C-ZIPTF can also capture condition-specific GEPs and unravel nuanced 
expression patterns across immune cell types implicated in SLE pathogenesis in a man-
ner that underscores the heterogeneity among SLE patients. In Fig. 9, we highlight the 
factors 6, 11, and 21, wherein the loadings in the sample dimension exhibit significant 

Fig. 10  Condition specific GEPs recovered by C-ZIPTF compared to differential gene expression analysis: 
a top gene set enrichment analysis results for the 3 factors using Gene Ontology: Biological Process 
annotations, b results from a pseudobulk differential gene expression analysis are shown, with comparisons 
made between all SLE patients and healthy controls (on the left), and between patients with SLE flare and 
healthy controls (on the right)
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differences between SLE patients and healthy donors. Factor 11 captures a GEP that is 
overexpressed across both managed and flare SLE patients compared to healthy donors, 
Fig. 9b-c. Many of the genes corresponding to this factor such as IFI27, ISG15, IFITM3 
are parts of the type 1 interferon signaling pathway normally observed in viral infec-
tions (Fig.  10a). Previous studies utilizing bulk RNA sequencing have noted a similar 
increase in interferon-related GEPs in patients with SLE [56]. On the other hand, fac-
tors 6 and 21 capture GEPs that are uniquely upregulated in SLE patients with an active 
lupus flare. The factor loadings on the sample dimension for these two factors are signifi-
cantly higher in the donors with SLE flare than in healthy controls or donors with man-
aged SLE. Both factors are predominantly represented in lymphoid cell types (T and NK 
cells), although factor 6 also shows a lower but notable loading for myeloid lineage cell 
types. Important genes associated with factor 21 include HBA1, HBB, PIM1 which are 
implicated in biological processes such as Cellular Detoxification (Fig. 10a). Factor 6 on 
the other hand captures processes such as T Cell and Myeloid Cell Differentiation driven 
by genes including RORA, IKZF3, and PIK3R1 (Fig. 10a).

The ability of C-ZIPTF to recover these subgroups of SLE patients without any 
a priori information underscores the advantages of the unsupervised factorization 
approach utilized in C-ZIPTF over standard practices such as DGE analysis. We explore 
this advantage by running differential expression analysis on the CD4-positive T cells 
using muscat [5]. We run DGE analysis first by grouping all SLE patients together and 
comparing them with healthy controls and then selecting only the SLE patients with an 
active flare and comparing them with the healthy controls. As demonstrated in Fig. 10b, 
cell type-specific differential expression analysis of all SLE donors versus healthy controls 
captures fewer differentially expressed genes compared to the SLE patients with an 
active flare versus healthy controls in CD4-positive T cells. The number of differentially 
expressed genes (DEGs) with an adjusted p-value less than 0.05 and a log fold change 
greater than 0.5 was 55 when comparing all SLE patients against healthy donors and 
122 when comparing SLE patients with an active flare against healthy donors (Fig. 10b). 
This big difference underscores the obstacle sample heterogeneity poses to supervised 
methods of uncovering differential GEPs. Importantly, the condition specific factors 
recovered by C-ZIPTF expose both the shared (factor 11) and flare subgroup specific 
(factors 6 and 21) differential GEPs. Out of the top 20 genes associated with factor 11, 17 
are part of the 55 significant DEGs that resulted from comparing CD4-positive T cells 
from all SLE patients with healthy donors. On the other hand, out of the top 20 genes 
associated with factor 6 and 21, only 1 gene was part of that set of 55 DEGs but 10 and 11 
genes respectively were part of the set of 122 DEGs that resulted from comparing CD4-
positive T cells from SLE flare patients with healthy donors. If information on disease 
activity (flare versus managed) were not available for this dataset, differential expression 
analysis would miss a lot of critical differentially expressed genes that are specifically 
upregulated in patients with SLE flare. Therefore, in scenarios where the source of intra-
group heterogeneity is unknown, C-ZIPTF can highlight subgroups based on expression 
profiles and identify the GEPs driving heterogeneity that may be missed by supervised 
differential gene expression analysis.
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Computational efficiency

While Bayesian methods are known for their high computational demands, our strategy 
tackles these challenges by integrating Black Box Variational Inference [30] with tensor 
factorization. This fusion involves optimizing the variational objective stochastically, 
using Monte Carlo samples from the variational distribution to compute the noisy 
gradients efficiently. This approach significantly streamlines computations, enhancing 
the overall efficiency of Bayesian inference.

For runtime comparison, we assess three models: the MLE based NNCP-ALS, 
the Bayesian Poisson factorization model GPTF, and our proposed model ZIPTF. 
Further implementation details are provided in Section  Implementation of baseline 
methods. We employ the Black-Box Variational Inference algorithm for both Bayesian 
approaches, namely GPTF and ZIPTF. We generate tensors using known factors and 
Poisson noise with zero inflation. To generate T ′ of given size I × J × K  , a sequence 
of steps is followed. Initially T  is formulated as T =

∑R
i=1 ai ⊗ bi ⊗ ci such that 

A = [a1a2 . . . aR] ∈ R
I×R
+

, B = [b1b2 . . . bR] ∈ R
J×R
+

 , and C = [c1c2 . . . cR] ∈ R
K×R
+

 with 
elements drawn from a Gamma distribution with shape α = 1 and rate β = 0.3 , and rank 
R = 10. Following this, T ′ is generated by sampling from a ZIP distribution with mean T  
and a given probability of extra zeros � = 0.5.

We created 100 tensors of given sizes using the aforementioned steps. Each 
factorization algorithm was executed 20 times, and the running times were recorded. 
The average and standard deviation of the recorded running times were computed 
across all 20 executions for each algorithm applied to the 100 tensors of specified 
sizes. The findings are detailed in Table 1.

Discussion
Zero-inflated count data is a common phenomenon in a wide range of fields, including 
genomics, finance, risk management, healthcare, and social sciences. However, 
traditional tensor factorization methods have limited effectiveness when dealing with 
zero-inflated data, often yielding inaccurate and unstable results across runs with 
different initializations. To overcome these challenges, we propose ZIPTF, a Bayesian 
tensor factorization model that is specifically tailored to zero-inflated count data. 
Additionally, we introduce a generic meta-analysis framework for consensus-driven 
tensor factorization. By combining these two approaches, we develop a novel method 
called C-ZIPTF that achieves both high accuracy and stability, and outperforms state-
of-the-art baselines on synthetic and real data. Our proposed method provides a 
useful tool for researchers in various fields to gain deeper insights into their data.

Table 1  Average running time ± standard deviation (in seconds) from 20 runs of each algorithm on 
100 tensors of given sizes

Tensor size NNCP-ALS GPTF ZIPTF

10× 20× 30 0.595s± 0.008s 1.039s± 0.005s 1.685s± 0.014s

10× 20× 300 0.725s± 0.023s 1.551s± 0.011s 2.773s± 0.016s

10× 20× 3000 1.542s± 0.076s 3.426s± 0.019s 5.239s± 0.084s

10× 20× 30000 9.109s± 0.651s 19.640s± 0.255s 37.687s± 0.599s
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Another crucial aspect to highlight is the remarkable degree of versatility of the 
model. By combining the Black Box variational inference with tensor factorization, 
we’ve introduced a methodology that can be readily tailored to the specific data dis-
tribution within a tensor. While we initially applied zero-inflated Poisson for fac-
torizing scRNA-seq data, which is a suitable starting point considering the dropout 
challenges in such data [4], straightforward extensions of this approach would enable 
us to create more refined models, including the summation of Poisson distributions 
and various other mixture models.

This paper mainly focuses the model’s applications in the context of multi-sample/
multi-condition single-cell data. However, owing to the inherent multidimensional 
characteristics of multi-omics datasets, proposed models also well-suited for seamlessly 
integrating and collectively analyzing multi-omics data derived from diverse sources.

Another promising area where ZIPTF could be employed is the mutational 
signature analysis. This analysis enhances our understanding of tumorigenesis by 
identifying key mutational processes, which informs cancer classification, prognosis, 
and personalized treatment decisions based on genetic profiles [57, 58]. However, 
analyzing mutation data presents challenges, including sparsity among other factors. 
Addressing these challenges, zero-inflated models are commonly used [59]. For 
future research, applying techniques like ZIPTF to mutation data holds promise for 
improving mutational signature acquisition and analysis.

Limitations
The Bayesian approach for tensor factorizations offers several other advantages over 
maximum likelihood estimation-based methods for tensor factorization. These include 
the ability to incorporate prior knowledge, perform model selection, and quantify 
uncertainty in the parameter estimates. However, it is important to note that Bayesian 
methods can be computationally expensive and require careful specification of prior 
distributions, which may require expert knowledge. Moreover, the tensor methods 
discussed in this paper rely on a multilinear factorization form and may be inadequate 
for capturing more complex, nonlinear relations in the data. To overcome this limitation, 
one possible solution is to integrate a kernelized approach into the factorization. In 
future work, we plan to focus on the careful design of kernel functions that would enable 
us to effectively capture nonlinear patterns in the data.

In the context of applying the model to scRNA-seq data, ZIP models handle zero 
counts, but they do not inherently address the systematic patterns of the missing data 
that could be present in scRNA-seq due to factors beyond dropout events. When 
addressing the missing-not-at-random (MNAR) phenomenon in scRNA-seq data, it 
becomes essential to incorporate specific biological or technical covariates that might 
influence the missingness patterns [60]. In this context, enhancing Bayesian frameworks 
to integrate prior knowledge concerning the missing data mechanism can offer a more 
robust approach to model and imput MNAR patterns, resulting in enhanced analysis 
outcomes.
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Implementation of ZIPTF and C‑ZIPTF
We present a Python implementation of a versatile Bayesian Tensor Factorization 
method using Variational Inference. Our implementation leverages Pyro [36], a 
probabilistic programming framework built on PyTorch. The BayesianCP class inherits 
from torch.nn.Module and offers functionalities for model fitting and summarizing 
the posterior distribution of factor matrices. During model fitting, Stochastic 
Variational Inference (SVI) is employed with an Adam optimizer [29, 61]. The current 
implementation supports three models: Zero Inflated Poisson model (ZIPTF), a Gamma 
Poisson model (GPTF) [13], and a Truncated Gaussian model (TGTF) [12].

Implementation of baseline methods

As mentioned in Section  Implementation of ZIPTF and C-ZIPTF, we utilize the same 
implementation for other Bayesian tensor factorization approaches (Gamma Poisson 
Bayesian Tensor Factorization and Truncated Gaussian Bayesian Tensor Factorization) 
as we do for the ZIPTF method. You can find the code at the following URLs: https://​
github.​com/​klarm​an-​cell-​obser​vatory/​scBTF and https://​github.​com/​klarm​an-​cell-​
obser​vatory/​scbtf_​exper​iments. For the remaining baseline methods used in our 
comparisons we use the following implementations:

•	 Non-negative Matrix Factorization (NMF): We use the Python implementation 
available in the scikit-learn package, which can be found at the following URL: 
https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​decom​posit​ion.​non_​negat​
ive_​facto​rizat​ion.​html.

•	 Consensus Non-negative Matrix Factorization (cNMF): We employ the Python 
implementation as detailed in [20], which is accessible on GitHub at the following 
URL: https://​github.​com/​dylkot/​cNMF/​tree/​master.

•	 Non-negative CP via Alternating-Least Squares (NNCP-ALS): We utilize the Python 
implementation available within the Tensorly package, which can be accessed at this 
URL: http://​tenso​rly.​org/​stable/​modul​es/​gener​ated/​tenso​rly.​decom​posit​ion.​non_​
negat​ive_​paraf​ac_​hals.​html

Simulation details

We use a Python adaptation of the Splatter [45] statistical framework given in [20] to 
simulate single-cell RNA-Seq data. The core of the simulation is a Gamma-Poisson 
distribution used to generate a cell-by-gene count matrix. While the original Splatter 
framework supports the simulation of both expression outlier genes and technical 
dropout (random knockout of counts), the Python adaptation in [20] only keeps outlier 
expression simulation. Since our method is specifically adapted to handle dropout noise 
in single-cell data, we add back the modeling of dropout to the Python adaptation. 
Specifically, after sampling counts from a Poisson distribution, we simulate dropout 
noise by calculating the probability of a zero for each gene from its mean expression and 
using that to randomly replace some of the simulated counts with zeros employing a 
Bernoulli distribution as described in [45].

https://github.com/klarman-cell-observatory/scBTF
https://github.com/klarman-cell-observatory/scBTF
https://github.com/klarman-cell-observatory/scbtf_experiments
https://github.com/klarman-cell-observatory/scbtf_experiments
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.non_negative_factorization.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.non_negative_factorization.html
https://github.com/dylkot/cNMF/tree/master
http://tensorly.org/stable/modules/generated/tensorly.decomposition.non_negative_parafac_hals.html
http://tensorly.org/stable/modules/generated/tensorly.decomposition.non_negative_parafac_hals.html
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The distribution of expression values prior to incorporating differential expression 
was determined based on parameters estimated from a random sample of 8000 cells 
from an organoid dataset as described in [20]. Specifically, the library size of a cell is 
sampled from a Lognormal distribution derived from a Normal distribution with a mean 
of 7.64 and a standard deviation of 0.78. The mean expression of a gene is sampled from 
a Gamma distribution with a mean of 7.68 and a shape of 0.34. With the probability 
of 0.00286, a gene will be an outlier from this Gamma distribution and will instead be 
sampled from a Lognormal distribution derived from a Normal distribution with a mean 
of 6.15 and standard deviation of 0.49. Additionally, we set a 5% doublet rate. Doublets 
are formed by randomly sampling a pair of cells, combining their gene counts, and 
downsampling such that the total count equals the larger of the two.
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