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Background
Metabolomics is the systematic quantitative and qualitative study of small molecules (or 
mass spectral features) in biological systems. Brownstein et al. [1] expanded upon this 
field with their ancient residue metabolomics-based method. Albeit the mass spectral 
features in this study were not derived from biological systems, they were residues left 
behind from biological processes, i.e., originating from plants including several Nico-
tiana species that were smoked by Indigenous Peoples. Before the Brownstein et  al. 
[1] study, ancient residue analysis relied on the biomarker approached. However, the 
biomarker approach failed to distinguish between related species, leaving open ques-
tions about the relationship between plants and people. For ancient residue metabo-
lomics, significant mass spectral features (i.e., singular peaks of small molecules above a 
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specified noise threshold) are of interest, which can improve the resolution of determin-
ing which plants species had been smoked in a particular artifact [1].

In ancient residue metabolomics, data from hyphenated chromatography instruments 
(such as gas chromatography- or liquid chromatography-mass spectrometer) are pro-
cessed and aligned in MZmine 2 [2], Progenesis QI (Waters Corporation, Milford, MA, 
USA), or other “omics” software. Afterwards, these data are exported from the “omics” 
software and then processed manually (standard method) as described in Brownstein 
et  al. [1] to determine which plant species may have been used in an ancient artifact. 
Because this step requires a manual process, it can introduce errors and is time con-
suming. Various metabolomics data analysis and interpretation platforms exist including 
MetaboAnalyst 5.0 [3] and XCMS Online [4]; however, these platforms are limited in 
their ability to process datasets from ancient residue metabolomics studies. Therefore, 
we introduce a novel, automated approach (new method) for determining the composi-
tion of organic residues in modern smoking artifacts utilizing techniques and ideas from 
the field of natural language processing (NLP).

Results and discussion
We used Python scripts because of the availability of data analysis, deep learning, and 
machine learning libraries. We also developed a script that automates the standard 
method described in Brownstein et al. [1], as well as utilized recent advances in NLP to 
better predict which plant species had been smoked in a particular artifact. All scripts 
and datasets are freely available on GitHub: https://​github.​com/​tungp​rime/​NLP_​and_​
compo​sition_​of_​artif​act_​resid​ues. Term frequency-inverse document frequency (TF-
IDF) has been previously used in imaging mass spectrometry for the co-localization 
of ions [5], as well as to score mass spectral feature outputs against theoretical spec-
trums [6]. These use cases exemplify that TF-IDF can be implemented as a method to 
determine similarities between mass spectrums, or in our study, samples. As shown in 
Table 1, the new method predicted that blind clay pipe 1 (BCP1) was most likely smoked 
with Nta (0.0370). Table 2 summarizes the model predictions of four separate methods, 
and the key provides the expected results. While the standard method only predicted 
four out of eight (50.0%) of the samples correctly, the new method performed slightly 
better, i.e., it classified five out of eight (62.5%) of the samples correctly (Table 2). This 
is a 12.5% improvement in accuracy. A second method, where tf was replaced with 
1 + log(tf ), classified 62.5% of the samples correctly; however, the similarity scores for 
this method (aside from BCP7) were lower than the new method (Table  2). Testing a 
third method, as well as a pointwise mutual information (PMI) method revealed that 
only three out of eight (37.5%) and four out of eight (50.0%) samples were correctly clas-
sified, respectively.

Table 1  Similarity scores for blind clay pipe 1 (BCP1) smoked with an unknown plant sample

Clay pipes experimentally smoked with a single, known plant species or AmSp were individually compared to BCP1. Only 
the top five scores were included in the table. Nta is the most likely candidate smoked in BCP1. Nat, Nicotiana attenuata; Ngl, 
Nicotiana glauca; Nob, Nicotiana obtusifolia; Nta, Nicotiana tabacum; and AmSp, American Spirit

Nta Ngl Nat AmSp Nob

Similarity scores 0.0370 0.0288 0.0233 0.0186 0.0168

https://github.com/tungprime/NLP_and_composition_of_artifact_residues
https://github.com/tungprime/NLP_and_composition_of_artifact_residues


Page 3 of 8Nguyen and Brownstein ﻿BMC Bioinformatics          (2024) 25:311 	

Contamination is a significant concern for ancient residue metabolomics [7–10]. For 
instance, residues from commercial tobacco smoke may contaminate the surface of 
artifacts at excavation sites or on display at a museum. Thus, we included AmSp in our 
study as a contaminant control. With the contaminant control, we were still able to accu-
rately determine the composition of BCP1 (Table 1) and the other blind clay pipes. Uti-
lizing contaminant controls improves confidence in determining if a particular artifact 
had been smoked with an endemic tobacco. Furthermore, our new method will enable 
researchers to confidently determine if the caffeine present in/on an artifact resulted 
from ancient cacao or holly brewing practices instead of modern contaminants from caf-
feinated beverages such as coffee [8, 9].

It was also revealed that none of the methods could accurately predict BCP8, which 
had a mixture of Auv and Nta (Table 2). The new and standard methods partially pre-
dicted the composition of BCP8. Though the standard method performed slightly bet-
ter because it ranked Auv higher than Cse (Table 2). Nonetheless, the experimental clay 
pipes compared to BCP8 had all been smoked with only one plant species. It is possible 
that training the new method with experimental clay pipes smoked with complex mix-
tures may improve the likelihood of predicting if an artifact had been smoked with more 
than one plant species. A similarly score equal to one, or experimental clay pipes sharing 
all the mass spectra features found in an ancient artifact using the standard Venn dia-
gram method is difficult to achieve [1, 10]. This is due to several factors including envi-
ronmental contaminants, diagenesis, and differences between modern and ancient plant 
varieties. Like the blind clay pipes, compound degradation and smoking characteristics 
(i.e., duration of smoking, packing density) may also play a contributing factor in differ-
ences between experimental clay pipes and ancient artifacts. Ideally, researchers would 
need to “brew” or “smoke” pre-contact plant materials used by Indigenous Peoples. To 
achieve this, researchers would need to not only analyze the metabolite composition of 

Table 2  Prediction of plant species in each blind clay pipe (BCP)

Clay pipes experimentally smoked with a single, known plant species or AmSp were compared individually to each blind 
clay pipe (BCP) to determine which plant species had been smoked in a BCP. The expected results are the plant species 
listed under the column labeled “Key”. The second method is where tf was replaced with 1 + log(tf ), and the third method 
is where idf = 1. Alu, Artemisia ludoviciana; Auv, Arctostaphylos uva-ursi; Cse, Cornus sericea; Lin, Lobelia inflata; Nat, Nicotiana 
attenuata; Ngl, Nicotiana glauca; Nob, Nicotiana obtusifolia; Nqu, Nicotiana quadrivalvis; Nta, Nicotiana tabacum; and AmSp, 
American Spirit

Blind clay 
pipe (BCP)

Standard method 
(number of mass 
spectral features 
shared with the 
experimental clay 
pipe)

Key New method 
(similarity score)

Second method 
(similarity score)

Third method 
(similarity score)

BCP1 Auv (3) Nta Nta (0.0370) Nta (0.0301) Nta (0.0539)

BCP2 Nat (6) and Nqu (6) Nqu Nqu (0.1102) Nqu (0.1066) Nqu (0.1400)

BCP3 Nob (10) Nob Nob (0.1132) Nob (0.1107) Ngl (0.1499)

BCP4 Nat (4) Alu Nta (0.0928) Nta (0.0875) Nta (0.1336)

BCP5 Ngl (6) Ngl Ngl (0.0874) Ngl (0.0799) Ngl (0.1103)

BCP6 Lin (10) Lin Ngl (0.0844) Ngl (0.0749) Ngl (0.1452)

BCP7 Auv (16) Auv Auv (0.0792) Auv (0.0800) Cse (0.1128)

BCP8 Auv (10) and Cse (5) Auv and 
Nta mix-
ture

Cse (0.0853) and 
Auv (0.0662)

Cse (0.0778) and 
Auv (0.0643)

Cse (0.1336) and Auv 
(0.0951)
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ancient herbarium specimens, but also review ethnobotanical literature. Ethnobotanical 
accounts often include information on which plant tissues were used, as well as Indig-
enous Peoples’ harvesting, processing, and curing techniques. This knowledge has the 
potential to improve comparison values and reduce variability in datasets.

Conclusions
Deep and machine learning have been vital tools for solving problems in biology where 
traditional methods seem inadequate or are time-consuming. Utilizing NLP-based 
methods, such as our new method, will aid researchers in their quest to determine which 
plants had been used in ancient smoking pipes, brewing vessels, and other artifacts. Fur-
thermore, we believe our method is robust enough to be implemented in other challeng-
ing problems in the field of metabolomics, particularly when distinguishing relationships 
between biological samples. Incorporating “biological” replicates is often not feasible in 
ancient residue metabolomics and other metabolomics studies; however, this method is 
robust in its ability to identify similarities between samples that have a limited number 
of replicates. Instead of solely relying on Venn diagrams (such as the standard method 
described in Brownstein et  al. [1]), this new method can be used in concert with the 
standard method to improve confidence in characterizing unknown samples. Thus, this 
work opens new opportunities for interpreting atypical metabolomics datasets, as well 
as predicting the chemical composition and identity of samples with unknown histories.

Materials and methods
Mathematical model

A novel functionality of our approach is to introduce a new and automated method to 
compare the mass spectral feature similarities between experimental and ancient artifact 
samples. As with this study and other ancient residue metabolomics studies, datasets 
containing replicates is often not feasible [1]. This limits our ability to apply multivari-
ate statistical methods. Thus, we developed an algorithm inspired by advances in NLP 
[11–14]. Here, we use the following analogy:

That is, if words between documents can tell us which documents are similar, mass 
spectral features between samples can tell us which samples are more likely to be 
similar. The standard technique in NLP is to first transform the original data into the 
term frequency-inverse document frequency (TF-IDF) matrix [13]. This transfor-
mation helps to resolve the fact that some words (or mass spectral features) appear 
more often than others. More precisely, the importance of a term (or mass spectral 
feature) is not solely determined by its frequency (or abundance) in a text (or sam-
ple) but also how rare this term (or quantifiable intensity of a particular mass spec-
tral feature) is in other texts in the corpus (or collection of all samples). We note that 
Brownstein et al. [1] previously used a method more qualitative in nature. As with 
comparing words between documents to identify commonalities, we can identify 
which samples are likely to be similar based on their shared mass spectral features. 
In other words, analyzing the common mass spectral features can allow for inferring 

Words ←→ Mass Spectral Feature Abundances
Documents ←→ Samples.
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which experimental artifact (or experimental clay pipe) matches with which ancient 
artifact (or blind clay pipe). Let us recall these terminologies mathematically. Term 
frequency refers to the frequency (or abundance) of a word (or mass spectral fea-
ture) in a particular document (or sample).

The inverse of the document frequency which measures the informativeness/prev-
alence/abundance of term, t (or mass spectral features).

N is the number of documents (or samples) and df(w) is the number of documents 
(or samples) containing word, w (or mass spectral feature). We remark that the 
above formula for IDF is based on what Sklearn library (scikit-learn.org/stable/mod-
ules/generated/sklearn.feature_extraction.text.TfidfTransformer) uses for its imple-
mentation; therefore, it is slightly different from the standard textbook definition. 
Specifically, some authors use the following convention for idf (w).

We believe that due to the popularity and simplicity of Sklearn, its use, shown 
herein, can be applied to similar problems in the field. We also would like to remark 
that we applied other weighting methods available in Sklearn, but the  method above 
performed the best. We refer to our GitHub repository for the performance com-
parison of these weighting schemes. Finally, once tf (w, d) and idf (w) are computed, 
the TF-IDF score is calculated by the following formula:

In our context, the TF-IDF score describes the relevance of a mass spectral fea-
ture in a sample, as well as the relevance of that feature in different samples. Once 
the TF-IDF is computed, we can then use cosine similarity to compare two differ-
ent documents (or samples). Recall that for two vectors v,w their cosine similarity is 
defined to be cosine of the angle θ between them.

Here, 〈v,w〉 is the inner product of v,w and ‖v‖, ‖w‖ is the Euclidean norm of v,w . 
We note that the similarity score (or frequency/abundance of a mass spectral feature 
shared between samples) ranges from -1 meaning exactly opposite to 1 meaning the 
same, with 0 indicating orthogonality, while in-between values indicate intermediate 
similarity or dissimilarity.

tf (w, d) =
count of w in d

number of words in d

idf (w) = log

(

N

df (w)

)

+ 1

idf (w) = log

(

N

df (w)+ 1

)

tf − idf (w, d) = tf (w, d) ∗ idf (w).

similarity = cos (θ) =
�v,w�

�v��w�
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Preparation of samples

Seeds of Artemisia ludoviciana (Strictly Medicinal, Williams, OR, USA), Lobelia inflata 
(Strictly Medicinal, Williams, OR, USA), Nicotiana attenuata (USDA Agricultural 
Research Services [ARS] National Plant Germplasm System; Accession Number: PI 
555476), Nicotiana glauca (USDA ARS National Plant Germplasm System; Accession 
Number: PI 555686), Nicotiana obtusifolia (USDA ARS National Plant Germplasm Sys-
tem; Accession Number: PI 555573), Nicotiana quadrivalvis (USDA ARS National Plant 
Germplasm System; Accession Number: PI 555485), Nicotiana rustica (USDA ARS 
National Plant Germplasm System; Accession Number: PI 555554), Nicotiana tabacum 
(Strictly Medicinal, Williams, OR, USA), Salvia sonomensis (USDA ARS National Plant 
Germplasm System; Accession Number: PI 45388), and Verbascum thapsus (Compan-
ion Plants, Athens, OH, USA) were sown on Sunshine Mix LC1 soil (sphagnum peat 
moss and perlite; Sun Gro Horticulture Inc., Agawarm, MA, USA). For 60  days, the 
plants were grown with the following greenhouse conditions—average temperatures of 
24/17 °C (day/night), and a photoperiod of 16/8 h (day/night) under 1000 W metal-hal-
ide lights to supplement natural daylight. Lights were set to come on when the outside 
light intensity fell below 200 μmol m−2 s−1. During the day, the light intensity averaged 
350–400 μmol m−2 s−1 in the greenhouse. The plants were fertilized twice a week with 
Peters 20–20–20 (N–P–K; JR Peters Inc., Allentown, PA, USA) containing iron chelate, 
magnesium sulfate, and trace elements.

Arctostaphylos uva-ursi (collected: April 2015; voucher ID: 393408), Cornus sericea 
(collected: September 2016; voucher ID: 393409), and Rhus glabra (collected: September 
2016; voucher ID: 393395) were collected on the Washington State University, Pullman 
campus. Taxus brevifolia (collected: October 2016; voucher ID: 393425) was collected in 
the Iller Creek Conservation Area, WA, USA.

After Korey Brownstein confirmed the identity of the fourteen (14) different plants, A. 
ludoviciana Nutt. (Alu) leaves, A. uva-ursi (L.) Spreng. (Auv) leaves, C. sericea L. (Cse) 
bark, L. inflata L. (Lin) leaves, N. attenuata Torr. ex S. Watson (Nat) leaves, N. glauca 
Graham (Ngl) leaves, N. obtusifolia M. Martens & Galeotti (Nob) leaves, N. quadrivalvis 
Pursh (Nqu) leaves, N. rustica L. (Nru) leaves, N. tabacum L. (Nta) leaves, R. glabra L. 
(Rgl) autumn leaves, S. sonomensis Greene (Sso) leaves, T. brevifolia Nutt. (Tbr) needles, 
and V. thapsus L. (Vth) leaves were collected, freeze-dried for 3 days, and crushed for 
experimental smoking. Voucher specimens from the same plants were also collected by 
Korey Brownstein and filed in the Marion Ownbey Herbarium, Washington State Uni-
versity, Pullman, WA, USA (herbaria.wsu.edu/web/default.aspx). These specimens can 
be found by performing a “Collector’s Name” search, i.e., Korey Brownstein, in the fol-
lowing database: intermountainbiota.org/portal/collections/harvestparams.php.

American Spirit (AmSp) tobacco (Santa Fe Natural Tobacco Company, Oxford, NC, 
USA) was purchased from a local grocery store in Pullman, Washington, USA. The plant 
materials (n = 5 for each species) and AmSp (n = 5) were smoked in clay pipes follow-
ing the experimental conditions detailed in Brownstein et  al. [1]. The experimentally 
smoked clay pipes were then completely submerged in acetonitrile:2-propanol:water 
[3:2:2] and sonicated for 10  min. Five non-smoked blank clay pipes were extracted as 
controls using the same extraction methods as the experimentally smoked clay pipes. 
To prepare the experimental clay pipes for liquid chromatography-mass spectrometry 
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(LC–MS) analysis, 3.0 mL from each of the five replicates were combined into a single 
tube. Only experimental clay pipes subjected to the same conditions or smoked with the 
same plant species were combined (i.e., non-smoked blank clay pipes were combined, 
experimental clay pipes smoked with AmSp were combined, experimental clay pipes 
smoked with Alu were combined, and so forth for the other plant species). The 15.0 mL 
pooled experimental clay pipe samples were freeze-dried for 3  days and resuspended 
with 5.0 mL of 0.10% formic acid/water:acetonitrile [1:1]. Afterwards, the resuspended 
samples were filtered into glass vials using a 0.20 μm filter.

The blind clay pipes (n = 8) were smoked and broken in fragments with a mallet to 
emulate artifacts found in the field. These fragments were completely submerged in 
acetonitrile:2-propanol:water [3:2:2] and sonicated for 10 min. Afterwards, the extracts 
were freeze-dried for 3  days and resuspended with 1.0  mL of 0.10% formic acid/
water:acetonitrile [1:1]. The resuspended samples were then filtered through a 0.20 μm 
filter into a glass vial. To limit biases, the authors did not know which plant species had 
been smoked in which blind clay pipe. After the experimental clay pipes, non-smoked 
blank clay pipes, and eight (8) blind clay pipes were analyzed by LC–MS and processed 
in MZmine 2 following the parameters described in Brownstein et al. [1], the data were 
exported into .csv files. Mass spectral features with peak heights less than 2.0E3 had 
their abundance values set to zero. The .csv files were arranged in the following format: 
mass spectral features were in rows; each mass spectral features’ unique identifier (ID) 
number, m/z value, and retention time value (in min) were in the first, second, and third 
columns, respectively; and mass spectral feature abundance values were listed under 
each sample in the remaining seventeen (17) columns. To eliminate solvent contami-
nant noise, mass spectral features present in the blank clay pipes were removed from the 
experimental clay pipes and blind clay pipes before processing the datasets in our algo-
rithm. Python libraries, such as Sklearn and Pandas, were then used to apply the TF-IDF 
computation scores to these datasets. The extracted experimental clay pipes and blind 
clay pipes were allowed to air-dry on the lab bench. All solvents used for extraction and 
analysis were of mass spectrometry grade.
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