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Abstract 

Background:  Effective identification of differentially expressed genes (DEGs) has been 
challenging for single-cell RNA sequencing (scRNA-seq) profiles. Many existing algo-
rithms have high false positive rates (FPRs) and often fail to identify weak biological 
signals.

Results:  We present a novel method for identifying DEGs in scRNA-seq data called 
RankCompV3. It is based on the comparison of relative expression orderings (REOs) 
of gene pairs which are determined by comparing the expression levels of a pair 
of genes in a set of single-cell profiles. The numbers of genes with consistently higher 
or lower expression levels than the gene of interest are counted in two groups in com-
parison, respectively, and the result is tabulated in a 3 × 3 contingency table which 
is tested by McCullagh’s method to determine if the gene is dysregulated. In both sim-
ulated and real scRNA-seq data, RankCompV3 tightly controlled the FPR and demon-
strated high accuracy, outperforming 11 other common single-cell DEG detection 
algorithms. Analysis with either regular single-cell or synthetic pseudo-bulk profiles 
produced highly concordant DEGs with the ground-truth. In addition, RankCompV3 
demonstrates higher sensitivity to weak biological signals than other methods. The 
algorithm was implemented using Julia and can be called in R. The source code is avail-
able at https://​github.​com/​pathi​nt/​RankC​ompV3.​jl.

Conclusions:  The REOs-based algorithm is a valuable tool for analyzing single-cell 
RNA profiles and identifying DEGs with high accuracy and sensitivity.

Key points 

•	 RankCompV3 is  a  method for  identifying differentially expressed genes (DEGs) 
in either bulk or single-cell RNA transcriptomics. It is based on the counts of rela-
tive expression orderings (REOs) of gene pairs in the two groups. The contingency 
tables are tested using McCullagh’s method.
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•	 RankCompV3 has comparable or better performance than that of other conven-
tional methods. It has been shown to be effective in identifying DEGs in both sin-
gle-cell and pseudo-bulk profiles.

•	 Pseudo-bulk method is  implemented in RankCompV3, which allows the method 
to  achieve higher computational efficiency and  improves the  concordance 
with the bulk ground-truth.

•	 RankCompV3 is effective in  identifying functionally relevant DEGs in weak-signal 
datasets. The method is not biased towards highly expressed genes.

Keywords:  Single-cell RNA sequencing, Differential expression analysis, Differentially 
expressed genes, Relative expression orderings

Background
High-throughput transcriptomic sequencing (RNA-seq) is a powerful tool for com-
prehensive expression profiling, which is essential for understanding biological and 
medical problems. A key step in RNA-seq analysis is the detection of differentially 
expressed genes (DEGs) [1, 2]. However, the use of RNA-seq data often involves joint 
analysis of data across multiple platforms, which can introduce batch effects [3], sys-
tematic differences between samples that are not due to biological variation. Many 
batch effect adjustment methods have been proposed, such as SVA [4] for microar-
ray data and svaseq [5] for RNA-seq data. However, normalization of different batch 
datasets can also distort true biological signals [6], especially when the samples are 
not evenly distributed between different batches. It can distort true biological signals 
and lead to high false positive rates (FPRs) for DEGs. Therefore, it is important to 
carefully consider the normalization step when analyzing RNA-seq data.

The relative expression orderings (REOs) of gene pairs within a profile are often 
stable in samples of the same phenotype, but differ significantly in different pheno-
types. This can be used to construct biomarkers and identify DEGs. Our lab previ-
ously developed two versions of an algorithm based on REOs, RankComp [7] and 
RankCompV2 [8]. We successfully applied these algorithms to microarray, RNA-
seq, methylation, and proteomic data [7, 9–14]. RankComp can be used to identify 
DEGs at the population and individual levels, and it is insensitive to batch effects and 
normalization.

Previous versions of the algorithm used Fisher’s exact test to calculate the significance 
level of a 2 × 2 contingency table. The two rows of the table represent two groups in 
comparison, such as control and treatment groups, and the two columns represent the 
two REO outcomes: whether the expression level of the paired gene is higher or lower 
than that of the current gene. The test evaluates whether there is a significant correlation 
between the treatment conditions or phenotypes and the distribution of REO outcomes 
in the two groups.

RankCompV2 evaluates the stability of DEGs by including background genes updat-
ing cycles to filter out unstable DEGs. This improvement addresses the problem that 
upregulation or downregulation of a gene may be incorrectly indicated by its paired 
gene if the paired gene is dysregulated. However, both RankComp and RankCompV2 
neglect the matched pair relationship of REOs in the two compared groups. As a 
result, REOs that are consistent in both groups are also included in the construction 
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of contingency tables. This negligence may lead to non-differential genes being identi-
fied as DEGs, resulting in high FPRs.

McNemar’s test is a statistical test that takes into account the matched experiment 
design in the test of 2 × 2 contingency tables. McNemar–Bowker’s test extends this to 
the general situation with more than 2 categories. However, both of these tests do not 
take into account the ordered relationship of the three possible outcomes of REOs.

Another limitation of the previous two versions of RankComp is that the contin-
gency tables do not consider the contribution of gene pairs with approximately equal 
expression levels (non-stable REOs based on the binomial distribution) in one group 
but stable REOs in the other group.

In RankCompV3, we count the frequency of all possible 9 REO outcomes in a 
matched pairs design. McCullagh’s test [15], which is designed for the matched 
designs with ordered categories, is applied to test the 3 × 3 contingency tables.

We implemented RankCompV3 and tested it on single-cell RNA-seq (scRNA-
seq) data. Many methods have been developed for differential expression analysis of 
scRNA-seq data. Some were specifically developed for scRNA-seq, such as MAST 
[16], DEsingle [17], Wilcoxon signed-rank test [18], Monocle2 [19], SigEMD [20], and 
scDD [21]. Others were originally developed for microarray and bulk RNA-seq data, 
such as limma [22, 23], edgeR [24], and DESeq2 [25], but have been found to per-
form well in scRNA-seq data using the pseudo-bulk analysis scheme [26]. However, 
the consistency of these algorithms is not high, and many algorithms have problems 
with insufficient sensitivity and high FPRs. Additionally, it has been found that algo-
rithms specifically developed for scRNA-seq data do not necessarily perform better 
than those designed for bulk profiles [27–29].

We evaluated the performance of RankCompV3 on scRNA-seq datasets by com-
paring it with several common DEG identification algorithms using both simulated 
multimodal single-cell datasets and real datasets. Our analysis results showed that 
RankCompV3 performed well on these datasets and was sensitive to weak biological 
signals. Additionally, we obtained concordant DEGs between the analysis comparing 
the single-cell profiles directly and the pseudo-bulk analysis, in which single-cell pro-
files were aggregated randomly into pseudo-bulk profiles [26].

Methods and materials
The RankCompV3 algorithm

The RankCompV3 method for identifying DEGs in either bulk or scRNA-seq data 
consists of the following steps:

1.	 Identification of significantly stable REOs For each gene pair (a, b), the observed REO 
outcome is either a > b or a < b in a single-cell profile or a bulk profile, depending on 
which gene has the higher expression level. If the two genes have the equal expres-
sion levels within the measurement uncertainty, the REO is randomly assigned to 
either a > b or a < b with equal probability.
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	 The binomial distribution model is then used to test if the observed REOs are stable 
across all the profiles in each group, respectively. The null hypothesis is that the two 
genes have the same expression levels. This means that the probability of observing 
each REO outcome (a > b or a < b) is equal, p0 = 0.5. The P value is the probability of 
observing the major REO outcome in m or more profiles out of a total of n profiles by 
chance (where ‘major’ means m > n/2) in one group, P = 1−

∑m
i=0

(

n
i

)

pi
0
(1− p0)

n−i . 
If the P value is less than the preset threshold, e.g., α = 0.01, the major REO outcome 
is considered to be significantly stable, a > b or a < b. Otherwise, it is considered that 
the REO is not stable, denoted as a ~ b.

2.	 Construction of contingency tables of stable REOs For each gene, the contingency 
tables of REO counts are constructed. The contingency tables summarize the com-
parison results of the gene with reference genes in two groups, e.g., control and treat-
ment groups (Table 1). The diagonal elements of the contingency tables are the num-
bers of REOs which are consistent in the two groups, while the off-diagonal elements 
are the numbers of inconsistent REOs in the two groups. Lower triangular elements 
support that a is down-regulated in the treatment group compared with the control 
group, while the upper triangular elements support that a is up-regulated.

3.	 Significance test of contingency tables McCullagh’s method is applied to test the sig-
nificance of the contingency tables. The method applies a logistic model for matched 
comparisons with ordered categorical data. The null hypothesis H0 is that the dis-
tribution of the REO outcomes has no association with the grouping and the con-
tingency table should be symmetric. The Benjamini–Hochberg (BH) method is used 
to adjust P values for multiple comparisons. If the adjusted P value < 0.05, the null 
hypothesis H0 is rejected, and the gene is considered as a candidate DEG.

4.	 Iteration Initially, each gene is compared with a list of housekeeping genes to con-
struct the contingency tables. If such gene list is not provided, all the genes are used 
as the reference genes. After the first cycle, all non-differentially expressed genes 
from the previous cycle are used as the reference list to construct new contingency 
tables. The cycle ends when the list of candidate DEGs does not change any more.

The overall workflow of the RankCompV3 method is shown in Fig. 1.

Table 1  3 × 3 contingency table of REO counts for one gene (a)

The table shows the number of REOs for gene a that form either a significantly stable REO or a nonstable REO with a 
reference gene b in the two groups, e.g., control and treatment. The row and column headers indicate the different types of 
REOs. Each cell sums the number of REOs forming 9 possible paired outcomes in the two groups

Control Treat

a < b a ~ b a > b

a < b n11 n12 n13

a ~ b n21 n22 n23

a > b n31 n32 n33
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Other DEG identification methods

We compared the performance of RankCompV3 with the performance of 11 other 
methods, including 7 independent methods, limma, DESeq2, edgeR, DEsingle, 
SigEMD, Monocle2 and scDD, and 4 methods implemented in the Seurat package, 
Wilcoxon rank sum test (“wilcox”), likelihood-ratio test (“bimod”), logistic regression 
(“LR”) and MAST. The methods were compared using a simulated scRNA-seq dataset 
and real scRNA-seq datasets.

Performance evaluation

The performance of RankCompV3 was evaluated using the following metrics: true 
positive rate (TPR), true negative rate (TNR), false positive rate (FPR), false negative 
rate (FNR), precision, accuracy, AUC (area under the receiver operating characteris-
tic curve) [30] and AUCC (area under the concordance curve) [26]. ROC curve and 
AUC calculation were performed with the R package of pROC. AUCC is a more strin-
gent metric than AUC that is used to evaluate the concordance between single-cell or 
pseudo-bulk DEGs and bulk ground truth.

Benchmark dataset

We used the ‘gold standard’ scRNA-seq dataset collected in Squair et al.’s study [26] to 
compare the performance of our method and to the benchmark results in that study. 
The dataset was compiled from four studies [26, 31–34] in which matched bulk and 
scRNA-seq were carried out on the same population of purified cells under the same 
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Fig. 1  Flowchart of the RankCompV3 method. The RankCompV3 method is a three-step process for 
identifying differentially expressed genes (DEGs) in RNA transcriptomics. The first step is to calculate 
the relative expression orderings (REOs) of gene pairs in the two groups. The second step is to test the 
contingency tables of REOs using McCullagh’s method. The third step is to filter the DEGs using a significance 
threshold
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conditions, where the bulk results were considered as the ‘ground-truth’, as detailed in 
Supplementary file 2: Table S1.

Simulation dataset

The simulation dataset was generated using the scDD package (“simulateSet” function). 
The synthetic dataset scDatEx provided by the author was taken as the starting point. 
The package models single-cell expression profiles of cells under two conditions using 
Bayesian mixture models to accommodate the main characteristics of scRNA-seq data, 
including heterogeneity, multimodality, and sparsity (a large number of 0 counts).

The profiles were generated for 75 cells and 20,000 genes under each condition, includ-
ing 2000 DEGs and 18,000 non-DEGs. The 2000 DEGs were equally distributed among 
four modes: DE (differential expression of unimodal genes): The expression levels of 
these genes are different between the two conditions, and the genes are unimodal (i.e., 
they belong to a single cluster); DP (differential proportion for multimodal genes): The 
expression levels of these genes are different between the two conditions, but the genes 
are multimodal (i.e., they belong to multiple clusters); DM (differential modality genes): 
The expression levels of these genes are different between the two conditions, and the 
genes change modality (i.e., they move from one cluster to another); DB (both differen-
tial modality and different component genes): The expression levels of these genes are 
different between the two conditions, and the genes change modality and also change 
the cluster they belong to. Among the 18,000 non-DEGs, one half are EE (equivalent 
expression for unimodal) genes and the other half are EP (equivalent proportion for 
multimodal) genes.

All simulation parameters were set to default values, and the resulting data were 
rounded to the nearest integers. The specific types and distributions of the simulated 
data are shown in Supplementary file 1: Fig. S1.

Real datasets

We used public datasets downloaded from the Gene Expression Omnibus Database 
(GEO, http://​www.​ncbi.​nlm.​nih.​gov/​geo/). The datasets included bulk RNA sequencing 
(RNA-seq) dataset (GSE82158) and single-cell RNA sequencing (scRNA-seq) datasets 
(GSE54695, GSE29087 and GSE59114) measured on different platforms.

Negative test dataset

We used 80-cell profiles from the GSE54695 dataset provided by Grün et al. [35] as a 
negative test dataset to evaluate FPR. The profiles were obtained by lysing frozen mouse 
embryonic stem cells (mESCs) under the same culture conditions and measured with 
the CEL-seq technique. According to Wang et al.’s study [36], the top 7277 genes were 
retained for analysis with the highest number of nonzero expression in all cells. We ran-
domly divided 80 profiles into two subsets with 40 in each. Since all the profiles were 
generated under the same condition, there should be no DEGs between the two subsets. 
The randomized experiments were repeated 10 times and the average FPR was calcu-
lated [37].

http://www.ncbi.nlm.nih.gov/geo/
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Positive test dataset

The positive test dataset (GSE29087) of scRNA-seq were provided by Islam et al. [38], 
consisting of 22,936 genes from 48 mouse ES cells and 44 mouse embryonic fibro-
blasts. We used the top 1000 DEGs as the gold standard DEGs between the two cell 
types, which were verified by the real-time quantitative reverse transcription PCR 
(RT-qPCR) experiments [27, 39].

Influence of sample size

The scRNA-seq dataset (GSE59114) provided by Kowalczyk et  al. [40] were used to 
evaluate the influence of sample size (number of profiles in a group) to the perfor-
mance. The dataset consisted of the profiles of 89 long-term hematopoietic stem 
cells (LTHSCs) from young mice (2–3  months) and 135 LTHSCs from old mice 
(20 months). We randomly sampled the profiles of two conditions into subsets with 
sizes of 10, 30, 50, and 70, respectively. The DEGs were identified between the subsets 
with the same sample size. DEGs identified by the same algorithm in the entire data-
set were used as the gold standard. The random sampling experiments were repeated 
10 times for each sample size and the average performance indices were calculated as 
the final result.

Weak‑signal test dataset

To test the performance of our algorithm on weak-signal detection, we used the 
GSE82158 dataset provided by Misharin et  al. [41]. We compared the profiles of 4 
monocyte-derived alveolar macrophages (Mo-AMs) and 4 tissue-resident mac-
rophages (TR-AMs) from mice treated with bleomycin for 10  months. Pathway 
enrichment analysis was performed on the DEGs to detect biological signals.

Pseudo‑bulk method

In addition to comparing the input single-cell profiles directly, the pseudo-bulk 
method is also available in the implementation of RankCompV3. The single-cell 
profiles are randomly partitioned into a number of subsets of equal sample size, 
respectively, in each group. The profiles in each subset are aggregated into a single 
pseudo-bulk profile. Differential expression analysis is then conducted with these syn-
thetic profiles from two groups.

For the benchmark datasets from Squair et  al.’s study [26], the pseudo-bulk pro-
files were generated in the same manner with the original study, where the cells were 
aggregated in each replicate.

Data preprocessing

The contingency tables were constructed from the raw counts except for GSE59114 
and GSE82158 where the counts were not available. In GSE59114, the profiles were 
provided as log2(TPM + 1) and in GSE82158 the profiles were normalized with 
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edgeR. We removed the genes that were not expressed in most of the cells and 
the cells expressing very few genes. No other preprocessing steps were applied for 
RankCompV3.

Pathway enrichment analysis

Pathway enrichment analysis was performed against the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database [42] with the hypergeometric distribution model [43] 
through the clusterProfiler package (“enrichKEGG” function). The P values were cor-
rected by the BH method for multiple tests.

Results
Performance on the null dataset

We tested the FPR using the null dataset of profiles of 80 cells lysed from frozen mouse 
embryonic stem cells under the same culture conditions, provided by Grün et al. [35]. 
The dataset was randomly divided into two subsets, each with 40 profiles. In 10 rand-
omized trials with a false discovery rate (FDR) < 0.05 as the threshold, no or very few 
DEGs were detected by RankCompV3, Bimod, LR, MAST, DEsingle, Wilcoxon, edgeR, 
limma, and scDD algorithms. On average, 43.9, 7.5, 0, 0, 4.7, 0, 0, 0, and 77.5 DEGs were 
detected, respectively. The Monocle2 and SigEMD algorithms detected 132.6 and 1291 
DEGs, which showed relatively high FPRs. These results show that the RankCompV3 
method performs well in controlling the FPR in the negative dataset.

Performance comparison with Squair et al.’s benchmark test

Squair et  al. performed a benchmark test on various DEG algorithms. It included the 
algorithms specially designed for single-cell mode and the algorithms designed for bulk 
profiles. The results from bulk RNA-seq profiles of the same samples were used as the 
ground truth to test the performance of the algorithms in single-cell and pseudo-bulk 

Table 2  Area under the concordance curve (AUCC) for RankCompV3 for pseudo-bulk analysis 
scheme and single-cell analysis scheme in the benchmark datasets from Squair et al. [26]

a Concordance with the ‘ground-truth’ DEGs obtained with the bulk datasets using RankCompV3;
b Concordance with the ‘ground-truth’ DEGs obtained with the bulk datasets using edgeR-LRT, the best method in Ref. [26];
c Concordance with the given bulk DEGs and no bulk profiles were provided

Dataset Ground-trutha edgeR-LRTb

Pseudo-bulk Single-cell Pseudo-bulk Single-cell

Hagai2018_mouse-lps 0.742 0.502 0.457 0.504

Hagai2018_mouse-pic 0.651 0.590 0.560 0.533

Hagai2018_pig-lps 0.543 0.483 0.489 0.455

Hagai2018_rabbit-lps 0.453 0.385 0.447 0.335

Hagai2018_rat-lps 0.666 0.521 0.453 0.453

Hagai2018_rat-pic 0.536 0.420 0.364 0.289

Angelidis2019_alvmac 0.039 0.028 0.053 0.049

Angelidis2019_pneumo 0.216 0.195 0.226 0.176

CanoGamez2020_memory-iTreg 0.382 0.306 0.186 0.177

Reyfman2020_alvmacc 0.170 0.094 0.004 0.004

Reyfman2020_pneumoc 0.269 0.099 0.004 0.004
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modes. Eleven gold standard datasets were used to evaluate the performance of Rank-
CompV3 using the same benchmark protocol as in Ref. [26]. The results are listed in 
Table 2. In most datasets, the concordance between the pseudo-bulk and the ‘ground-
truth’ is very high. The median AUCC of RankCompV3 in the pseudo-bulk mode 
is 0.45, which is higher than that of the best method in Ref. [26] (edgeR-LRT, median 
AUCC = 0.38) (Fig. 2). More importantly, the concordance is also high for RankCompV3 
applied to single-cell profiles directly (median AUCC = 0.39), which is better than the 
best method for single-cell in the Ref. [26] (t-test and Wilcoxon rank-sum test, the 
median AUCC is 0.24) (Fig. 2).

Only in two datasets, Angelidis2019_alvmac and Reyfman2022_pneumo, did Rank-
CompV3 perform poorly. The data quality of Angelidis2019_alvmac dataset was very 
poor and many genes were not detected in either the bulk or single-cell profiles. For the 
Reyfman2022 datasets, no bulk profiles were provided, and the given bulk DEGs were 
used as the ‘ground-truth’.

Furthermore, in comparison with the ‘ground-truth’ obtained with edgeR-LRT, our 
results also show strong concordance. The median AUCC metric is 0.36 for the pseudo-
bulk method and 0.29 for the single-cell method.

These results suggest that RankCompV3 can be effectively used for pseudo-bulk analy-
sis, which can improve the performance of differential expression analysis in scRNA-seq 
data.

Performance evaluation with the simulated single‑cell dataset

Since we could not obtain all the truly differentially expressed genes in a real dataset, 
we simulated multimodal scRNA-seq profiles with scDD for cells under two condi-
tions with 75 cells in each to test the performance. The dataset contains 2000 DEGs 
equally distributed in four different modes and 18,000 non-DEGs equally distrib-
uted in two modes. The ROC curves are shown in Fig. 3A. RankCompV3 has an AUC 
of 0.865, which is in the middle-tier of all 12 algorithms. The AUCs of Monocle2, 
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SigEMD, Bimod, LR, MAST, DEsingle, Wilcoxon, edgeR, DESeq2, limma, and scDD 
are 0.649, 0.915, 0.820, 0.713, 0.620, 0.949, 0.632, 0.951, 0.966, 0.837, and 0.963, 
respectively.

The performances of the different algorithms are compared in Table 3 at a FDR < 0.05 
threshold. RankCompV3 had a FPR of 0.018, a precision of 0.815, and an accuracy of 
0.955, which were all better than or similar to the other algorithms. Compared to LR, 
MAST, and Wilcoxon, RankCompV3 showed a higher TPR while maintaining an 
extremely low FPR. Monocle2, SigEMD, and edgeR obtained extremely high TPRs, 
but they also contained a large number of false positives (FPs). Monocle2 had a TPR of 
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Table 3  Detection performance of RankCompV3 and 11 other algorithms in the simulated scRNA-
seq dataset (FDR < 0.05)

Method # DEGs TPR FPR Precision Accuracy

RankCompV3 1731 0.706 0.018 0.815 0.955

Monocle2 16,383 0.998 0.799 0.122 0.280

SigEMD 4252 0.930 0.133 0.437 0.873

Bimod 1497 0.648 0.011 0.866 0.955

LR 732 0.366 0.000 1.000 0.937

MAST 320 0.160 0.000 1.000 0.916

DEsingle 1546 0.761 0.001 0.984 0.975

Wilcoxon 363 0.182 0.000 1.000 0.918

edgeR 2474 0.876 0.040 0.708 0.951

DESeq2 1634 0.762 0.006 0.933 0.971

limma 988 0.487 0.001 0.985 0.948

scDD 1599 0.728 0.008 0.910 0.966
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0.998, but its accuracy was only 0.122. This is because Monocle2 identified 16,383 DEGs 
among 20,000 genes, which introduced a larger FPR of 0.799 (Fig. 3C).

We evaluated the genes of different modes separately and compared the TNRs of non-
DEGs of the two different modes and the TPRs of DEGs of the four different modes, as 
shown in Fig. 3B. The results showed that the average TNR of the two modes of non-
DEGs, EE and EP, was 0.982 using RankCompV3. The highest TPR of the four modes of 
DEGs, DD, DP, DB, and DM, was 0.962. For the DEG modes with no or low multimodal-
ity, DE and DM, the average TPR was 0.927. For the highly pleiotropic DEGs, DP and 
DB, the identification ability for DP was also very high (0.946), but it failed to detect 
DB genes. These results demonstrate that RankCompV3 strictly controls the FPR in the 
single-cell simulation dataset and has a good ability to detect DEGs of low multimodality 
and some DEGs with high multimodality.

In the simulated dataset, we randomly generated 10 pseudo-bulk profiles for each 
group to identify DEGs. The mean number of detected DEGs from the 10 random 
experiments was 1737.5 (standard deviation, SD = 13.3), and the mean number of true 
DEGs was 1413.3 (SD = 3.1). These numbers show a slight improvement compared to 
those obtained with the single-cell profiles directly (1731 and 1411, respectively). The 
mean AUCC metric was 0.884 (SD = 0.01), showing a strong concordance between the 
pseudo-bulk and the single-cell methods.

Performance evaluation in real scRNA‑seq dataset

Although the simulated dataset mimics numerous aspects of single-cell expression pro-
files, it cannot fully capture the complex characteristics of real data. To evaluate the 
performance of RankCompV3 on real data, we used the scRNA-seq dataset provided 
by Islam et al. [38], which consisted of the profiles of 48 mouse ES cells and 44 mouse 
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embryonic fibroblasts. The top 1000 differential genes verified by RT-qPCR experiments 
were used as the gold standard DEGs (top1000).

Figure 4A shows the number of DEGs identified by each algorithm, the true number 
of DEGs (the number of genes that intersect with the top1000 genes), AUCC, and preci-
sion. RankCompV3 identified 1045 DEGs, of which 242 were true DEGs (TPR = 0.242). 
Although the number of true DEGs is the smallest, RankCompV3 has the highest preci-
sion and accuracy. RankCompV3 has a strictly conservative FPR (0.037), while maintain-
ing a higher accuracy (0.932) than the other 11 methods which show high FPRs, ranging 
from 0.122 to 0.873. Among the other 11 algorithms, limma, Monocle2, DEsingle, and 
edgeR have the highest TPRs, which are 0.761, 0.931, 0.797, and 0.753, respectively. 
However, these algorithms also have high FPRs, ranging from 0.330 to 0.873. As a result, 
their accuracies are relatively low, ranging from 0.150 to 0.651.

Since the top1000 is a partial list of true DEGs which might cause higher FPRs in some 
algorithms, we further evaluated the performance with AUC and AUCC. The ROC 
curves are shown in Fig. 4B. The AUC of RankCompV3 is 0.662, which is comparable 
to the other 11 algorithms. The AUCs of Monocle2, SigEMD, Bimod, LR, MAST, DEs-
ingle, Wilcoxon, edgeR, DESeq2, limma, and scDD are 0.699, 0.628, 0.700, 0.686, 0.670, 
0.629, 0.674, 0.758, 0.598, 0.571, and 0.575, respectively. The AUCC in Fig. 4A measures 
the concordance between the top 1000 DEGs detected by each algorithm and the gold 
standard. EdgeR and Monocle2 obtained the best concordance scores (0.60), followed by 
RankCompV3 and DESeq2 (0.59).

In conclusion, RankCompV3 can identify DEGs in scRNA-seq positive datasets. Com-
pared to the high FPRs of many other methods, RankCompV3 may be more suitable for 
studies that require strict control of FPR.

Effect of sample size to performance

To investigate the dependence of performance on sample size, we used the scRNA-seq 
dataset of LTHSC of two age-group mice provided by Kowalczyk et  al. [40]. Subsets 
with sizes of 10, 30, 50, and 70 were randomly sampled for each age-group, and the sam-
pling experiments were repeated 10 times. DEGs identified by the same algorithm in the 
entire dataset were taken as the gold standard. We assessed the concordance of the gene 
list sorted according to the significance level between the entire dataset and the subsets. 
Figure 5 shows the trend of the AUCC for the complete gene list and the top 1000 genes. 
The AUCC for the top 1000 genes is more meaningful since they are concentrated with 
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more DEGs. As the sample size increased, the TPR and AUCC for the complete gene list 
increased whereas the FNR decreased (Fig. 5, see also Supplementary file 1: Fig. S2). At a 
sample size of 30, RankCompV3 identified approximately half of the gold standard DEGs 
while the AUCC for the top 1000 genes reached a plateau. This indicates that most of the 
genes of interest have been correctly placed at the top of the gene list, despite some not 
being identified as DEGs.

Application in weak‑signal datasets

In Misharin et al.’s study [44], they found that the differential expression of Siglecf can 
reliably distinguish Mo-AMs from TR-AMs in the bleomycin-induced early fibro-
sis. However, after 10  months of treatment with bleomycin, TR-AMs and Mo-AMs 
expressed similar levels of Siglecf and could not be distinguished by flow cytometry 
[41]. Only 330 DEGs were identified by two-way ANOVA (FDR < 0.05). With FDR < 0.05, 
RankCompV3 identified 5023 DEGs. SigEMD, Monocle2, edgeR, scDD, Bimod, DESeq2 
and limma detected 2688, 1456, 1224, 720, 182, 111 and 79 DEGs, respectively. Other 
algorithms failed to detect or detected very few DEGs.

Through functional analysis, we confirmed that many DEGs identified by Rank-
CompV3 have been shown to be associated with the differentiation of Mo-AMs and 
TR-AMs and the development of pulmonary fibrosis. For example, Siglecf is a reli-
able marker to distinguish Mo-AMs from TR-AMs [44]. Vcam-1 is a TGF-β1 respon-
sive mediator that is upregulated in idiopathic pulmonary fibrosis [45]. SPARC drives 
pathological responses in non-small cell lung cancer and idiopathic pulmonary fibrosis 
by promoting microvascular remodeling and the excessive deposition of ECM proteins 
[46]. FGF2 inhibits pulmonary fibrosis through FGFR1 receptor action [47]. Adam8 defi-
ciency increases CS-induced pulmonary fibrosis [48]. Macrophages expressing SPP1 
proliferate during pulmonary fibrosis [49]. Sparc, Fgfr1 and Adam8 were identified by 
RankCompV3 only. Many other algorithms failed to detect any of these DEGs, and only 
Monocle2 (Siglecf, Spp1, and Vcam1), SigEMD (Spp1), edgeR (Siglecf, Spp1, and Vcam1), 
and DESeq2 (Spp1) identified 1 to 3 of the above functional-meaningful genes.
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We performed pathway enrichment analysis (FDR < 0.05) for the DEGs identified by 
RankCompV3. The DEGs were enriched in 82 pathways, of which five were associated 
with pulmonary fibrosis (Fig.  6). Similarly, we performed pathway enrichment analy-
sis on the DEGs identified by the other algorithms. Only five algorithms, Monocle2, 
SigEMD, DEsingle, edgeR, and DESeq2, recognized 1 to 3 of these functional pathways. 
Even when the significance threshold was relaxed to FDR < 0.2, the DEGs identified by 
Bimod and MAST were still not enriched in any of these pathways.

The Wnt signaling pathway was specifically identified by RankCompV3. The Wnt sign-
aling pathway is an important pathway promoting pulmonary fibrosis [50], and stud-
ies have shown that targeting the Wnt pathway is a potential new treatment option for 
fibrosis [51].

In conclusion, RankCompV3 can detect weak biological signals that are functionally 
meaningful.

Discussion and conclusion
REOs are stable in normal samples, but they are often disrupted in diseased samples 
[52]. This led us to develop two versions of RankComp [7], which can be used to identify 
DEGs at both the population and individual levels. These algorithms are insensitive to 
batch effects and have the advantage of being able to integrate datasets from different 
sources.

Fisher’s exact test was used in the original version of RankComp to calculate the sig-
nificance level of the 2 × 2 contingency tables. RankCompV2 [8] added a filtering step 
to obtain a stable list of DEGs using non-DEGs as the background. This improvement 
circumvents the correlation effect between the true DEGs and their paired genes. But 
we failed to recognize that the REO analysis is a matched pairs design. The stability and 
direction of the REO of a gene-pair are interrelated in the two groups; they should not 
be counted independently.

In this study, we modified the contingency tables to tabulate the counts of 9 possible 
REO combinations for matched pairs design. McNemar’s test is designed for the 2 × 2 
contingency table of a matched pairs experiment. The McNemar–Bowker test extends 
it to the variables of general k categories other than dichotomous variables and it is also 
called symmetry test of contingency tables. However, in this study, the three REO out-
comes are ranked categories, and McCullagh’s method is a more appropriate choice. 
This method uses a logistic model to compare ordered categorical data in matched pairs 
experiments.

Previously, we showed that our RankComp algorithms based on REOs can be applied 
to microarray and bulk RNA-seq profiles and proteome profiles [11, 12, 53]. However, 
their applicability to scRNA-seq data has not been explored.

The scRNA-seq profiles tend to exhibit multi-mode expression patterns, heterogene-
ity, and sparsity compared to the bulk RNA-seq profiles. This makes it challenging to 
identify DEGs in scRNA-seq data. Many algorithms [54, 55] have been developed for 
scRNA-seq data to deal with dropouts [56, 57] or multi-mode patterns. However, these 
algorithms often cannot deal with both simultaneously. Additionally, many algorithms 
developed specifically for scRNA-seq have high FPRs and are affected by the number of 
cells and signal strength of the datasets. Algorithms developed for bulk RNA-seq data 
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have also been shown to perform well in scRNA-seq data [27, 28]. For example, limma, 
edgeR, and DESeq2 are all effective at identifying DEGs in scRNA-seq data.

In our study, we found that RankCompV3 exhibits an extremely low FPR in both simu-
lated scRNA-seq data and a real negative dataset. Although DEseq2 and DEsingle per-
form well on the simulation dataset, but they have moderate or low performance on 
other datasets. This may indicate that they have a performance advantage in those data-
sets that satisfy an ideal distribution, but in real scenarios where the distribution is more 
complex, these methods often result in poorer performance. Additionally, RankCompV3 
showed a lower FPR and higher accuracy than limma, edgeR, and DESeq2 in a positive 
test dataset of scRNA-seq.

Another advantage of the RankComp algorithms is that either the counts or normal-
ized data (such as RPKM, FPKM, or TPM) can be used. As a heuristic method, Rank-
CompV3 does not rely on a particular distribution of the gene profiles. The implication 
of normalization to DEG identification was discussed in a previous work [7].

Pseudo-bulking is a method that has been found to be effective in improving differen-
tial expression analysis in scRNA-seq data [26]. In pseudo-bulking, cells of the same type 
within a biological replicate are aggregated to a pseudo-bulk profile. This helps to lower 
the impact of dropouts in scRNA-seq, which are common due to the low sequencing 
depth of single cells.

Using the bulk profiles as the ground truth, pseudo-bulk analysis schemes can cap-
ture more true lowly expressed DEGs while lowering false positive with high expres-
sion. We have also implemented this method in RankCompV3. Tests with simulated and 
benchmark datasets show that our method produces concordant results using either 
single-cell or pseudo-bulk methods. The pseudo-bulk method slightly improves the per-
formance compared to the single-cell method. The results in Squair et al.’s show that the 
performance of edgeR-LRT is better than 13 algorithms, especially the results of pseudo-
bulk analysis are better than those of single-cell analysis. Through our previous analysis, 
edgeR also maintains better performance advantages than other 10 algorithms in mul-
tiple datasets. Therefore, we conducted comparative tests against edgeR-LRT using sin-
gle-cell and pseudo-bulk data, and the results showed that our algorithm RankCompV3 
performed better than edgeR.

In RankCompV3, the quantitative expression level is not used. This means that the 
method is not biased towards highly expressed genes. The advantage of denser read 
counts, which leads to a more accurate ordering of genes in the pseudo-bulk profiles, 
is largely compensated by the larger number of single-cell profiles through the binomial 
test of the stability of a REO in a group.

The influence of sample size on the performance of the evaluated methods was inves-
tigated. Most methods showed little improvement with increasing sample size. However, 
RankCompV3 showed a gradual increase in TPR with increasing sample size. In terms 
of TPR and FNR, RankCompV3 was second only to Monocle2. However, Monocle2 
achieved its high TPR and FNR by including a large proportion of genes as DEGs in the 
full dataset. This resulted in extremely high FPR and low accuracy.

In contrast, RankCompV3 achieved strict FPR control while maintaining high preci-
sion and accuracy. This was possible because RankCompV3 does not rely on the quan-
titative expression level of genes. Instead, it uses a binomial test to assess the stability 
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of REOs in single-cell profiles. This makes RankCompV3 more robust to dropouts and 
other technical artifacts, and allows it to identify DEGs with high accuracy even in small 
datasets.

For weak-signal datasets, some common algorithms cannot capture differential 
expression signals. For example, in the pulmonary fibrosis dataset, LR, MAST, DEsin-
gle, and Wilcoxon algorithms failed to identify or identify very few DEGs. However, our 
algorithm identified more DEGs than the other 11 algorithms, and the DEGs are signifi-
cantly enriched with pulmonary fibrosis-related pathways.

One reason for detecting a relatively high number of DEGs is due to the less stringent 
control of the REO stability when the sample size is very small. In the case of a sample 
size of 4, the probability of observing all identical REO outcomes, e.g., a < b in 4 profiles, 
is 6.25% using the binomial model, even if the two genes have the same expression levels. 
This implies that the off-diagonal elements of the contingency tables may be higher than 
expected with the preset significance threshold. This is a limitation of the method that 
might lead to high FPRs when the sample sizes are too small.

However, the functional study of the DEGs identified by RankCompV3 indicates that 
they are reliable in this weak signal dataset. This suggests that the algorithm is able to 
identify true DEGs even in the presence of noise and other technical artifacts.

In summary, the results of this study demonstrate that RankCompV3 is a promising 
algorithm for identifying DEGs in scRNA-seq data, even in small datasets with weak 
biological signals. It is able to achieve strict FPR control while maintaining high preci-
sion and accuracy, which makes it a valuable tool for identifying biologically relevant 
DEGs.

Implementation and runtime analysis
For computational efficiency reason, we implemented RankCompV3 in Julia, a mod-
ern scientific computing language that is both easy to use and has performance on 
par with C [58]. The RankCompV3 package can be directly added using the Pkg.
add(“RankCompV3”) function in Julia and it can also be called in R via julia_installed_
package("RankCompV3"). The source code is available at https://​github.​com/​pathi​nt/​
RankC​ompV3.​jl.

A typical analysis takes a few minutes, depending on the sample sizes (number of pro-
files in each group), number of genes, and number of execution threads. The most time-
consuming step in RankCompV3 is the comparison of a large number of gene pairs. The 
time complexity of a naïve implementation is O(nN2), where N is the number of genes 
passing the filtering step and n is the total sample size.

In Supplementary file 2: Table S2, we show the average runtimes of the 12 tools for the 
test in Fig. 3. Even using a single thread, RankCompV3 is able to achieve faster or similar 
speed compared with other algorithms. Furthermore, the time cost can be significantly 
reduced by increasing the number of execution threads. In Supplementary file 1: Fig. S3, 
we show the parallel runtimes for 1 to 8 threads on a single node.
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