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Introduction
Plant diseases are one of the main causes of crop yield reduction in cucumbers, often 
leading to significant crop losses and even total crop failure, directly affecting crop qual-
ity and yield, and resulting in substantial economic losses [1, 2]. Therefore, to improve 
crop quality and yield, it is crucial to study plant diseases and be able to detect and iden-
tify them in order to determine the optimal time for prevention and treatment. When 
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crops are infected by pathogens, most of the symptoms are manifested on the leaves, 
resulting in various phenomena such as lesions [3] and localized rot and wilting [4]. 
There are numerous types of crop diseases, and manual diagnosis is complex with a high 
misdiagnosis rate [5, 6]. Simultaneously, the spraying of pesticides is a primary measure 
for the prevention and treatment of plant diseases. However, pesticide application often 
overlooks the severity of crop symptoms [7], leading to imprecise pesticide dosages, 
resulting in soil pollution and overuse of pesticides [8]. Hence, to assist non-specialists 
in crop production in effectively carrying out their duties, detecting diseases, and diag-
nosing them promptly to avoid further crop losses, techniques in artificial intelligence 
and digital image processing are typically employed for disease detection. Segmentation 
and extraction of lesions on cucumber leaves can provide a reliable basis for future plant 
disease diagnosis and are of significant importance for the prevention and control of 
plant diseases and pests.

The severity of crop diseases can be assessed using image segmentation methods. 
Traditional methods assess the severity of crops such as cucumbers by segmenting 
crop leaves and lesion areas and calculating their areas. The main methods include: (1) 
Threshold-based segmentation methods [9, 10]: These methods, including genetic algo-
rithms and Otsu’s method, are relatively simple to implement and have low computa-
tional requirements. However, in the real world, scenarios are often complex. Due to 
the subtle differences in grayscale values of crop leaves and the overlapping grayscale 
values between multi-scale leaves, data image processing is challenging, causing diffi-
culties in lesion segmentation and detection. (2) Cluster-based segmentation methods 
[11, 12]: Common machine learning clustering segmentation methods include K-means 
and Fuzzy C-means. These methods apply to most samples. However, the segmenta-
tion results often depend on the selection of initial parameters, which can lead to local 
optima and reduce segmentation accuracy. (3) Region-based segmentation methods [13, 
14]: Common region-based methods include region growing and watershed algorithms. 
As the region-growing method is sensitive to noise, it is not suitable for leaf lesion seg-
mentation and detection under complex scenarios. As can be seen, traditional methods 
have a high complexity in preprocessing and poor generalizability, and most methods 
only target a single disease. Their ability to transfer to different types of plant disease 
segmentation is weak, making it difficult to handle multi-disease and multi-scale lesion 
segmentation simultaneously, which will severely impact the ability to segment and 
detect multiple diseases.

In addition to early traditional methods for image segmentation, deep learning tech-
nology proposes solutions to enhance the transferability of plant lesion segmentation 
tasks and to improve segmentation detection accuracy. Differing from early manual 
feature extraction methods, deep learning segmentation network models avoid cum-
bersome preprocessing stages, such as Fully Convolutional Networks[15], adopt end-
to-end feature extraction methods, and do not require complex preprocessing, like the 
U-net network [16], which can also achieve more accurate segmentation results, closer 
to real samples. Additionally, various types of DeepLab network [17] structures, with 
their higher accuracy and stronger transferability, will encourage more researchers to 
enter the field of agricultural image processing and make good progress [18–20]. How-
ever, due to the complexity of the real environment, ordinary deep learning methods 
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only function in a single environment, and the segmentation effect in complex scenar-
ios is poor, meaning the model lacks universality. For example, Chen et  al. proposed 
an improved semantic segmentation network, BLSNet, based on the Unet segmenta-
tion network introducing attention mechanisms and multi-scale modules, which have 
high segmentation accuracy and classification accuracy [21]. In recent years, more and 
more researchers have paid more attention to lesion segmentation and disease recogni-
tion under complex backgrounds, and explored the importance of lesion extraction for 
assessing disease severity.

Wang et  al. proposed a network structure combining DeepLabV3+ and U-Net for 
lesion segmentation and disease recognition in complex backgrounds, reducing the 
interference of similar pixel values in complex backgrounds in lesion extraction [22, 23]. 
However, due to the imbalance of pixel ratio in lesion segmentation, and the difficulty of 
recognizing leaf edge pixels caused by leaf overlap or debris occlusion, the designers of 
DUNet did not optimize the network structure for these problems. This paper proposes 
a novel two-stage LD-ASPP network model guided by adaptive loss, which effectively 
targets the imbalance of pixel ratio in lesion segmentation, and validates the high preci-
sion and accuracy of this method on a cucumber leaf disease dataset. The main contri-
butions of this study are as follows:

(1) To address the imbalance of background pixel and foreground target pixel ratios 
in lesion segmentation, the proposed adaptive loss algorithm is utilized to enhance 
the attention to difficult-to-distinguish edge pixels of leaves and to improve the 
category probability of pixels belonging to the background or foreground. This is 
mainly achieved through the modulation factor present in adaptive loss to adjust 
the classification weight. This factor decreases as the pixel classification confidence 
increases. At this point, during the training process, this modulation factor can 
reduce the weight of easily classified pixels and increase the weight of difficult-to-
classify pixels, prompting the model to effectively focus on the difficult-to-classify 
pixels. During the model training process, the classifier needs to classify a large 
amount of easily classified sample data, which leads to a decrease in the segmenta-
tion accuracy of sparse samples.

(2) The first stage, the Leaf-ASPP network structure, primarily segments out the com-
plete leaf contour from the complex environment. To enhance the network model’s 
focus on key areas and reduce the impact of overlapping leaves and debris, the Mult 
Residual ASPP improved module is used in place of the ASPP module to extract 
multi-scale feature images. An attention mechanism is introduced, combining ordi-
nary convolution with small convolution, to acquire features with stronger discrim-
ination.

(3) The second stage, Spot-ASPP network structure, extracts lesion areas from the seg-
mented complete leaves. Adjusting the dilation rate of the ASPP module enables 
the recognition of smaller lesion information, avoids accuracy loss, and aims at 
lesion segmentation to acquire a more complete lesion area. This stage introduces 
an enhancement of the network model’s focus on key area features and includes a 
convolutional channel attention block (CABM) to capture attention on important 
area pixels.
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(4) Combining the design of the two-stage model, the LS-ASPP integrated model is 
constructed for cucumber lesion segmentation and disease detection in complex 
scenarios. The comprehensive segmentation task will be decomposed into two 
stages: diseased leaf segmentation and lesion extraction, effectively improving seg-
mentation accuracy and playing a crucial role in other disease classification assess-
ment tasks.

Data sources
A. Xinjiang dataset

The experimental data comes from images of three types of cucumber diseases in the 
cucumber dataset from the AI laboratory of Xinjiang Institute of Technology, including 
48 images of cucumber powdery mildew, 88 images of cucumber angular leaf spot, and 
64 images of cucumber downy mildew.

B. Extensive cucumber dataset

This dataset included images of size 512 × 512 resolution with a complete cucumber 
dataset with eight different types of cucumber classes for building machine vision-based 
algorithms. These classes include Anthracnose, Bacterial Wilt, Belly Rot, Downy Mil-
dew, Pythium Fruit Rot, Gummy Stem Blight, Fresh leaves, and Fresh cucumber. In total, 
there are 1280 original images in this dataset.

Figure 1 presents examples of diseased samples from the cucumber leaf diseases in the 
datasets.

As can be seen from Fig.  1, the identification and segmentation of cucumber leaf 
diseases mainly have the following four difficulties: (1) Different diseases of cucumber 

a. Cucumber angular leaf spot b. Cucumber downy mildew  c. Cucumber powdery mildew
(A)

a. Anthracnose b. Bacterial Wilt c. Belly Rot
(B)

Fig. 1 An example of a cucumber leaf with diseased spots for A Xinjiang dataset, B Extensive cucumber 
dataset
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leaves will present different characteristics, and lesion segmentation needs to be con-
ducted according to these disease features; (2) The similarities between the characteris-
tics of different diseases interfere with the recognition task, leading to a low recognition 
accuracy rate, such as between cucumber downy mildew and cucumber angular leaf 
spot; (3) Complex backgrounds interfere with leaf segmentation and shadows from 
obstructions are misdetected as lesion areas; (4) Due to the irregular shape of cucumber 
leaf lesion areas, initial small lesions are difficult to discover, which increases the diffi-
culty of segmentation.

Data augmentation

Training data augmentation

Due to the uneven distribution of samples, the training process may lead to model over-
fitting. Therefore, data augmentation is timely adopted to improve the generalization 
performance of the training model. In this study, for each batch of data during the train-
ing process, a random augmentation method is chosen. Without increasing the original 
dataset, the original data features are preserved to better simulate the differences among 
various samples in a real complex environment. The training set mainly employs the fol-
lowing data augmentation methods: (1) Flipping: The images are manipulated through 
horizontal flipping, vertical flipping, vertical-then-horizontal flipping, and mirroring. 
There are four flipping methods in total, simulating the randomness of shooting angles 
when collecting samples, without changing the shape of lesions or their distribution on 
the leaf. (2) Color jitter: By adjusting the brightness or saturation of the image, the dif-
ferences in real-world lighting scenarios are simulated, ensuring no image distortion in 
the real environment. (3) Adding noise: Noise is added to simulate the noise generated 
during data collection, preventing the network model from overfitting. The effect of test 
data augmentation is shown in Fig. 2:

Test data augmentation

To address the data fluctuations in real complex environments, the dataset used in 
this study was shot under laboratory conditions. To simulate the scenarios of insuffi-
cient lighting, leaf deviation from the center, and obstructions in natural shooting, three 
image augmentation methods are employed to enhance the test data: (1) Translation: A 
part of the image is first cropped, and then the missing pixels are filled in with the border 
pixel values, simulating situations such as leaf deviation from the lens center and incom-
plete leaves during shooting. (2) Occlusion: Randomly-sized, randomly-located, and 
randomly-rotated images of tomato fruit, soil, and green leaves are generated to occlude 
the leaf area, simulating the target leaf being obscured. (3) Cropping: By cropping a cer-
tain proportion of the main area, the diseased part can be effectively highlighted. (4) 
Reducing brightness: The image brightness is reduced to simulate the condition of insuf-
ficient light. The brightness of the diseased leaf images can be sequentially reduced to 
50% of the original image and grayscale. The results of the test data augmentation are 
shown in Fig. 3.

Figure  3 shows the outcomes of implementing various test data augmentation tech-
niques on the original cucumber leaf images. The methods demonstrated include gray-
scaling, reducing brightness, and cropping.
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(a) Original test image This section exhibits the unedited, raw image taken in a con-
trolled lab setting. The purpose is to show how the dataset looks before any modifi-
cations are applied.

(b) Grayscale The ‘Grayscale’ section presents a black-and-white version of the original 
image. This transformation helps simulate low-light conditions, where colors may 
not be as distinct. Converting the image to grayscale encourages the model to focus 
on textures rather than colors, making it more adaptable to different lighting sce-
narios.

(c) Reduce brightness by 50% This part illustrates what happens when the brightness 
of the original image is halved. This adjustment mimics situations with reduced 
lighting, preparing the model for real-world applications. By gradually decreasing 

a. Original cucumber image b. Vertical flip              c. Clipping

d. Enhanced brightness    e. Reduce brightness by 30%  f. Reduce brightness by 50%

g. Rotation h. Scaling                            i. nonlinear brightness adjustments
Fig. 2 Illustration of training data sample augmentation

a. Original test image           b. Grayscale     c. Reduce brightness by 50%
Fig. 3 Illustration of test data sample augmentation
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brightness, the model becomes better at recognizing important features even in 
varying lighting conditions.

These examples highlight the importance of using data augmentation techniques to 
enhance the model’s performance in different environments. By incorporating these 
methods, the model becomes more reliable and can smoothly transition from ideal lab 
conditions to practical field settings.

Data annotation

For the plant disease identification network model inherently equipped with image-
level annotations, it is also necessary to process the training disease spot segmentation 
network model without annotations in the dataset of Xinjiang Institute of Technology 
laboratory. For the training of disease spot segmentation models, pixel-level annotations 
are required for disease spots as shown in Fig. 4 (Add leaf annotation and disease spot 
annotation).

Pixel-level annotation requires a substantial amount of human and material resources. 
Therefore, disease spot annotations are performed on a portion of the samples, select-
ing a total of 30 diseased non-healthy plant samples from various categories, with the 
LabelMe image annotation tool used for disease spot area annotation. Among them, 10 
disease spot samples are used for training the segmentation model, and 20 disease spot 
sample images are used for testing the segmentation model.

Methods
The main issues faced by cucumber disease spot segmentation and disease detection 
include:

1. Pixel ratio imbalance This issue mainly stems from sparse pixels in the target area, 
leading to an imbalance in the ratio of background area pixels to target pixels, such 
as in the task of extracting small disease spots. As shown in the figure, the ratio of 
disease spot area pixels to leaf pixels is small, making disease spot area pixels prone 
to loss. Additionally, a large number of easily classified pixels in the background area 
can generate significant losses, resulting in the total loss, when finally computed, far 
exceeding that of the disease spot area pixels. This directly reduces the efficiency of 
model training and severely impacts segmentation results.

a. Original diseased leaf b. Pixel-level annotation
Fig. 4 Pixel-level annotation of diseased leaf spots
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2. High number of hard samples Hard samples mainly originate from complex back-
ground images in the natural environment. Due to interference from clutter, leaf over-
lap, shadow occlusion, uneven lighting, etc., the pixel areas of the interfering parts can 
be considered hard samples. This leads to incomplete leaf edge segmentation and dif-
ficulties in disease spot extraction. These hard-to-distinguish pixels all impact disease 
spot extraction.

To address the above issues, this study makes improvements in two aspects: loss function 
and model structure. By adopting an adaptive loss function, issues like low model efficiency 
due to the sum of the losses of a large number of easy samples during training exceeding 
the total loss are ameliorated. This can to some extent solve problems such as pixel imbal-
ance and low precision due to hard samples. By carrying out the tasks of leaf and disease 
spot segmentation in stages, interference from pixels in complex backgrounds is reduced. 
The first stage uses the Leaf-ASPP network model to segment leaf contours, and the second 
stage uses the Spot-ASPP network structure to extract disease spot areas.

Adaptive loss function

The introduction of an adaptive loss function mainly aims to resolve issues such as pixel 
ratio imbalance and an excessive number of hard samples in the task of segmenting dis-
eased cucumber leaves, problems that traditional Cross-Entropy (CE) loss cannot solve. 
While balanced loss can effectively alleviate class sample imbalance, it overlooks the issue 
caused by an excessive number of hard samples. Therefore, by improving CE loss and bal-
anced loss, an adaptive loss is generated and its optimization effect is discussed.

As a classic loss function in semantic segmentation in image processing, the Cross-
Entropy binary classification loss function is defined as shown in the following Eq. (1):

where y ∈ [0, 1] represents whether the pixel value p ∈ [0, 1] is true or false, represents 
the probability that the model predicts that this pixel belongs to the class y = 1 . Specifi-
cally, in the context of this paper, during image segmentation, it is determined whether 
the pixel value belongs to the foreground pixel, otherwise it is a background pixel. In the 
first stage, y = 1 indicates that the pixel belongs to the target leaf area.

For easily classified pixels, such as those with probability values far greater than 0.5, the 
CE loss function generates a very small loss value. However, due to the vast number of pix-
els, for example, when the number of easily classified pixels in the data greatly exceeds the 
loss of hard-to-distinguish pixels, it produces overwhelming results, leading to insufficient 
training and poor network performance. Therefore, their loss cannot be ignored.
α-balanced CE loss is a common method to solve the problem of class imbalance. By 

introducing a balancing factor α to the CE loss function, the following Eq. (2) is formed:

In practical operation, by setting cross-validation, α-balanced CE loss can increase 
the weight of smaller categories. Although it assigns weights to samples belonging to 

(1)CE =

{

− log (p), if y = 1
− log (1− p), if y = 0

(2)α-balanced CE
(

y, p
)

=

{

−α log (p), if y = 1
−(1− α) log (1− p), if y = 0

.
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the same category, it can reduce the impact of a large proportion of data on the loss. 
However, the problem of hard samples existing in the data must be considered, such 
as how to effectively partition off pixels in areas of leaves covered by shadows, rain-
drops, dust, or interference pixels overlapping with other leaves in the background, 
to exclude interference. CE loss, however, α-balanced cannot effectively solve the 
problem of hard samples. Therefore, a new type of adaptive loss function will be 
tried to solve the above problems.

The question of whether the model can actively focus on hard-to-classify pixels 
during training, without the need for human intervention in setting weights, becomes 
a key link in disease spot segmentation. A modulation factor [cos (p+ π/2)+ 1] is 
introduced into the CE loss function. This term will decay as the pixel classification 
confidence increases, thereby changing the loss weight of hard-to-classify pixels and 
sparse category pixels in the overall loss. The adaptive loss function (3) is as follows:

here p represents the probability value that the model predicts the pixel belongs to the 
y = 1 class, and the value of the modulation factor is determined by the probability P . It 
decays as the probability value p increases, thereby reducing the loss value of easily clas-
sified pixels. Equation (3) includes the following content:

(1) When the probability p decays, it indicates that the pixel value is hard to classify, 
and the size of the modulation factor increases as the probability p decays. When 
the probability p is 0, the modulation factor sin (p+ π)+ 1 is 1. The loss is infini-
tesimal and does not affect the overall loss.

(2) When the probability value p increases, indicating that the pixel is easy to classify, 
the modulation factor decreases as the probability p rises, thus the loss value of eas-
ily classified pixels will decrease. When the probability p rises to 1, the modulation 
factor reaches its minimum value. The pixel loss value will be reduced to a mini-
mum.

The modulation factor can dynamically adjust the weight size according to the dif-
ficulty level of the probability values belonging to different categories, thereby adap-
tively adjusting the loss value. This process reduces the impact of the total loss of 
easily classified pixels on model performance. The adaptive loss function can reflect 
dynamic attention to pixels of two categories of different difficulty levels. To a cer-
tain extent, it can alleviate the problem of an excessive number of hard samples in 
leaf segmentation. It can adaptively assign gradually decreasing weight values to eas-
ily classified pixels in the background area, improving segmentation accuracy and 
enhancing network model performance. At the same time, it effectively mitigates 
the imbalance problem of the pixel ratio in disease spot segmentation. Overall, the 
adaptive loss function can effectively improve the network model’s disease spot seg-
mentation performance.

(3)α-balanced CE
(

y, p
)

=

{

−[sin (p+ π)+ 1] log (p), if y = 1
−[sin (1− p+ π)+ 1] log (1− p), if y = 0
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Two‑stage LS‑ASPP network model

Most leaves in complex environments overlap each other, and the background clutter 
and irrelevant leaves overlap with the target segmentation leaves, affecting the segmen-
tation effect. In addition, there may be diseased leaves in the background image, and 
areas similar to disease spots can also interfere with the target leaf segmentation. There-
fore, a single-stage segmentation task may result in an incomplete disease spot segmen-
tation area, and the low segmentation accuracy can lead to inaccurate disease detection. 
Therefore, the segmentation task is refined into two stages, from obtaining the disease 
leaf outline to extracting the disease spot area, optimizing the segmentation process, and 
improving segmentation precision. This study uses the ASPP as the benchmark network 
structure, designing a two-stage segmentation model for cucumber disease leaf and dis-
ease spot segmentation.

The two-stage LS-ASPP segmentation network model consists of Leaf-ASPP and Spot-
ASPP. Both stages use the Atrous Spatial Pyramid Pooling (ASPP) as the benchmark net-
work structure. The proposed model’s first-stage network structure uses Leaf-ASPP to 
extract target leaves from complex scenes. Then, in the second stage, Spot-ASPP is used 
to segment the more complete disease spot area in the segmented disease leaf. Each 
stage focuses only on one specific type, reducing the difficulty of segmentation.

Leaf‑ASPP

In real scenarios, the image background often contains overlapping leaves, which makes 
it difficult to accurately extract the contours of target leaves, as well as other leaves. 
More so, uneven illumination, raindrops, and dust can also directly affect segmentation. 
Therefore, to address these issues and enhance the capability of capturing cucumber dis-
ease leaf outlines, we have improved upon the original Atrous Spatial Pyramid Pooling 
(ASPP), rebranding the optimized network as the Leaf-ASPP network. The main struc-
tural optimizations include the replacement of the ASPP module with the Mult Residual 
ASPP module, enhancing the model’s ability to perceive disease leaf outlines in com-
plex backgrounds. The detailed Leaf-ASPP network model is composed of encoder and 
decoder parts, and its architecture (Fig. 5) is shown below:

To improve the disease leaf segmentation performance of the model in complex 
scenes, we introduced the Mult Residual ASPP module, also known as the MRA-Net 
network, to capture more different multi-scale feature leaf outlines.

Generally, the larger the receptive field, the better the network’s ability to perceive and 
judge each pixel. However, due to the characteristics of large neural network models, the 
number of network layers that increase sequentially, and the frequent use of up-sam-
pling and down-sampling modules to process features, can lead to loss of detail informa-
tion and reduced segmentation accuracy.

Both the Mult Residual ASPP and ASPP modules use dilated convolutions to enlarge 
the receptive field to obtain different scale feature maps. However, the original ASPP 
model mainly consists of three parallel dilated convolutions applied to a feature map, 
with the basic kernel size being 3 × 3. As such, in the initial model, the features extracted 
by the convolution kernel are similar and cannot distinguish difficult pixel features, 
which leads to an inability to accurately capture disease leaf outlines. Therefore, we have 
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improved upon the original network, and the embedding of the MRA module enhances 
the model’s edge extraction ability.

As shown in Fig.  5, each branch of the MRA module consists of ordinary convolu-
tion, dilated convolution, and attention modules. The difference from the original spa-
tial pyramid pooling structure lies in the different kernel sizes between the branches of 
the MRA module. In ordinary convolution, different kernel sizes will capture different 
receptive fields for each branch. Each branch’s basic feature map will effectively capture 
different information and improve feature distinguishability. Finally, the outputs of each 
branch are fused to form multi-scale features.

In the encoder, two features are output: low-level features and high-level features. 
Low-level features are extracted by the Xception backbone network, mainly containing 
shallow information such as disease spot outlines and shapes. High-level features are 
processed by the backbone network and residual ASPP, mainly containing deep informa-
tion such as texture and color features.

The Residual ASPP inputs the original features into three 1 × 1 convolution modules, 
four extended attention convolution units, and one residual unit. Each extended atten-
tion convolution unit consists of an ordinary attribute convolution module, a 3 × 3 con-
volution module, and an attention module, while the residual unit is composed of a 1 × 1 
convolution module and an attention module. Among them, the dilation rates of the 
four extended convolution attentions are 1, 3, 3, and 5, with a kernel size of 3 × 3. Then, 
the outputs of each extended attention convolution unit are added to the output of the 
residual unit to get the four output feature maps of the Residual ASPP. Finally, the four 
feature maps are concatenated, and the merged result is input into a 1 × 1 convolution 
module. Through the above operations, the high-level features are finally obtained.

In the decoder, the outputs of low-level and optimized high-level features from the 
encoder are received. First, the low-level features are input into the attention module 
and the 1 × 1 convolution layer, yielding a small-scale refined low-level feature map. 
Then, the up-sampled high-level features are concatenated with the shallow features to 

Fig. 5 Architecture of MRA-Net
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obtain a fused feature map. Finally, the fused feature map is input into a 3 × 3 convolu-
tion layer for up-sampling processing to get the network’s prediction base map.

By improving upon the original ASPP module, the MRA module’s extraction of multi-
scale features will reduce more irrelevant information, enhancing the model’s ability to 
perceive disease leaf edge pixels. This will significantly improve the original network’s 
segmentation performance.

Spot‑ASPP

In the first stage of image segmentation, the information of disease leaf contours has 
been obtained. The disease leaf image contains only a small amount of sparse disease 
spot features, and the spot pixels account for a small proportion of the total disease leaf 
area pixels. This increases the difficulty of disease spot extraction in the second stage, 
resulting in a lower accuracy of disease spot segmentation. Therefore, the original net-
work’s spatial pyramid pooling is optimized again to enhance the model’s segmentation 
performance. The main improvements are: (1) Adjusting the dilation rate in the ASPP 
module to reduce the loss of detailed information. (2) The Convolutional Block Atten-
tion Module (CBAM) is introduced to highlight important information features again, 
capture small area pixels such as disease spots, and suppress irrelevant other disease 
leaf information to improve disease spot segmentation accuracy. The improved network 
structure is named Spot-ASPP, and its framework is shown in the Fig. 6.

Firstly, to enhance the segmentation effect of disease spots, smaller-sized dilated con-
volutions in the original network are retained, such as those with dilation rates of 2, 4, 
6, and 8. The improved network structure is referred to as the CBAM-Net network. The 
receptive field range is mainly expanded by increasing the dilation rate, but due to the 
reduced correlation of adjacent local information in the feature map, small target area 
details will be lost directly. Therefore, the CBAM-Net structure retains smaller dilation 
rate dilated convolutions, which are more conducive to small disease spot pixel extrac-
tion, to achieve a more precise segmentation accuracy.

Fig. 6 Architecture of CBAM-Net
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Secondly, to enhance the robustness of the model’s segmentation performance, the 
Convolutional Block Attention Module (CBAM) is introduced following the optimiza-
tion of the original ASPP network. In the channel attention module, the feature maps 
are input into the max pooling layer (Maxpool) and the average pooling layer (Avgpool), 
generating feature maps that are passed to a Multilayer Perceptron (MLP), thus creating 
the channel attention map (see Fig. 7).

The channel attention module uses Avgpool and Maxpool modules to integrate the 
channel information of the feature maps, outputting two types of spatial information 
contexts processed by max pooling and average pooling respectively. Following a matrix 
summation operation, the fused matrix map is multiplied by the input features. This 
operation will effectively enhance the extraction capability for important features and 
strengthen the expressive power of the features.

Model training

Experiment configuration

To validate the effectiveness of the U-shaped network model of the LS-ASPP net-
work, the proposed method or model is applied to the task of cucumber leaf disease 
spot image segmentation, and is compared with other methods or models. The network 
model training and testing environment are both the Ubuntu 18.04 LTS 64-bit operat-
ing system. The proposed method is designed using the Python programming language, 
with Python version 3.7, and the experiment platform uses PyTorch 1.10.2 as the deep 
learning open-source framework. The experimental hardware platform environment 
includes an Intel(R) Core(TM) i9-10900F CPU @ 2.80 GHz processor, 32 GB of memory, 
and an NVIDIA GeForce RTX 3080Ti with 26G of video memory. CUDA_11.6.0 and 
CUDNN_10.2 are used as the library tools for network model training acceleration.

Model parameters

The U-shaped network convolutional layer of the LS-ASPP network refers to the Unet 
network model pre-training parameters for initialization, which has now been adopted 
by PyTorch as the default parameter initialization function. The negative slope of the 
activation function is 0. Kaiming initialization is mainly designed for deep neural net-
works using nonlinear activation, which can effectively prevent the explosion or disap-
pearance of activation layer outputs in the forward propagation of deep neural networks, 
thus accelerating model convergence. The model learning rate is 0.0001, the number of 
training epochs is 15, the total number of iterations is 360, and the batch size for disease 

Fig. 7 Architecture of channel attention module
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spot segmentation training is 4. The optimizer is Adam [17], with a weight decay of 
0.00005.

Experimental results and analysis
This study selects at least three network models for comparison. Some disease spots 
are quite similar, and the same type of disease spots show different features at differ-
ent disease stages, and the feature extraction network pays excessive attention to disease 
features.

Not using pre-training parameters and having a small proportion of training samples 
can lead to poor model recognition performance. After preliminary leaf position shifts, 
due to changes in their background shapes, some required disease spot area features are 
cropped, resulting in a decline in model recognition and segmentation performance.

The Vit network model pays more attention to the disease spot area. The Unet network 
model is sensitive to the orientation and location of its disease spots. Changes in the 
relative position of the background and the disease spot area can lead to poor recogni-
tion performance. Global pooling can enhance the relationship between feature maps 
and categories, showing invariance to spatial changes, and performs well in shift tests.

Analysis of disease segmentation results

Segmentation result metrics

In order to accurately assess the segmentation precision of the diseased spot area, this 
study typically employs four conventional evaluation metrics in semantic segmenta-
tion: Pixel Accuracy (PA), Mean Pixel Accuracy (MPA), Mean Intersection over Union 
(MIoU), and Frequency Weighted Intersection over Union (FWIoU).

Pixel Accuracy refers to the ratio of the number of correctly predicted pixels to the 
total number of pixels, as shown in Eq. (4):

where m represents the number of categories, qii represents the number of correctly pre-
dicted positive pixel samples by the model.

Mean Pixel Accuracy is the proportion of each category of pixels correctly classified, 
and averaged over categories.

Disease spot segmentation precision

The experiment used 84 images with disease spot annotations, processed by data lay-
ering, as training samples, and 36 images as test samples. The annotation only divided 
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the images into foreground and disease spot areas, without considering disease category. 
The experimental results were based on the average of 225 image test results. Table 1 
presents a comparison of the segmentation precision for each algorithm. As can be seen 
from Table  1, the segmentation precision of LS-ASPP is significantly improved com-
pared to FCN, U-Net, and VIT. The segmentation precision of the Unet model is not 
significantly different from that of other networks trained with FCN, indicating that this 
method can achieve good segmentation results even when using very few training sam-
ples. The structures of U-Net and VIT are superior to the FCN model, because FCN only 
uses a single feature map from the output of the last three pooling layers during upsam-
pling, without merging low-level semantic features, which leads to poor segmentation 
results. On the other hand, network models that merge low-level semantic features have 
optimized the disease spot segmentation effect.

Figure 8 shows the segmentation results of cucumber downy mildew leaves by FCN, 
U-Net, VIT, and the LS-ASPP model with self-attention mechanism used in this 
experiment. It can be seen that adding skip-connection modules can fully merge low-
level semantic feature information. U-Net, VIT, and LS-ASPP models can segment 

Table 1 Segmentation accuracy of each algorithm

Dataset Method Pixel 
accuracy 
(%)

Mean pixel 
accuracy 
(%)

Mean 
intersection 
over union (%)

Frequency 
weighted 
intersection 
over union (%)

Run time 
on graphic 
processing unit 
(GPU) (ms)

Xinjiang FCN 92.56 81.51 71.11 87.45 22

U-Net 93.41 81.92 72.29 88.49 13

Vit 94.66 83.28 75.68 90.34 12

LS-ASPP 95.67 84.23 76.35 91.45 12

Extensive 
cucumber

FCN 90.79 80.73 65.49 80.49 31

U-Net 86.37 80.26 66.67 83.43 18

Vit 89.67 81.56 74.92 86.45 17

LS-ASPP 91.58 77.49 72.88 88.98 15

a.Leaf spots of cucumber  b.FCN c.UNet d.VIT e.LS-ASPP
Fig. 8 Comparison of segmentation results of various deep learning network models
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smaller disease spot areas, while the FCN model will lose some disease spot informa-
tion, with incomplete and relatively vague segmentation boundaries and low acqui-
sition capability for small disease spots at a distance. The use of the U-Net model 
can lead to uneven edges in the disease spot area, mainly because U-Net only has a 
convolutional layer in the upsampling process and does not capture all global disease 
spot information.

Because this experiment uses the LS-ASPP network structure with attention mech-
anism modules, this structure can capture all information, accurately capturing global 
information at a distance, thus more accurately capturing global disease spot semantic 
information. Therefore, it has a stronger segmentation capability for less prominent 
small disease spot areas and can more accurately capture global leaf spot information.

Table 1 showcases the segmentation results of three diseases on three models: FCN, 
U-Net, and Vit. The addition of skip connections and the fusion of low-level semantic 
features enable the U-Net and Vit models to segment smaller diseased areas, while 
the FCN structure tends to lose some details in its segmentation results. The segmen-
tation boundaries are blurry and closely situated diseased areas tend to stick together. 
The LS-ASPP model produces smoother disease boundaries than the U-Net, whose 
segmentation edges appear jagged. This is because the U-Net only introduces a con-
volutional layer after upsampling, while the LS-ASPP, with its convolution operation 
in the reconstruction layer and attention mechanism, can further smooth edges and 
gather global segmentation information.

Different diseases present different levels of segmentation difficulty. For instance, the 
diseased areas of cucumber powdery mildew are light yellow, with early symptoms and 
indistinct edges, making segmentation challenging. The average segmentation results of 
84 test samples for each type of disease spot indicate that the LS-ASPP model exhibits 
high segmentation accuracy for diseases of the spot type, as shown in Table 2.

The model’s input size influences segmentation results: when the input size is 
increased from 224 × 224 to 384 × 384, while keeping the patch size at 4, the LS-ASPP 
network’s input token sequence becomes larger, thereby improving the model’s seg-
mentation performance. Despite a slight improvement in segmentation accuracy, the 
computational burden of the entire network also increases significantly. To ensure 
algorithm efficiency, this study uses an input resolution scale of 224 × 224.

Table 2 Segmentation accuracy for diseases

Dataset Disease classes Pixel 
accuracy 
(%)

Mean pixel 
accuracy (%)

Mean 
intersection over 
union (%)

Frequency 
weighted 
intersection over 
union (%)

Xinjiang Cucumber powdery 
mildew

93.52 86.24 78.65 88.71

Cucumber angular 
leaf spot

93.25 85.68 77.94 88.23

Cucumber downy 
mildew

93.78 83.72 74.56 91.37

Extensive cucumber Anthracnose 91.73 84.47 74.44 85.36

Bacterial wilt 91.11 83.42 76.09 84.14

Belly rot 90.87 77.68 74.00 85.77
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The model’s scale also influences results: akin to reference [19], we believe deepening 
the network will impact the model’s performance. An increase in model scale does not 
enhance performance but instead raises the computational cost of the entire network. 
Balancing precision and speed, we opt for an attention mechanism-based symmetric 
model for plant image disease segmentation.

Performance comparison for different diseases

The LS-ASPP model was put to the test datasets for three different diseases: cucum-
ber powdery mildew, cucumber angular leaf spot, and cucumber downy mildew. We 
analyzed the performance metrics for each disease individually and presented the aver-
age scores in Table 3. Looking at the table, we can see that the LS-ASPP model excels 
in accurately segmenting all three diseases. It achieves the highest score for cucumber 
powdery mildew and slightly lower scores for the other two diseases. However, the 
model consistently maintains strong performance overall, indicating its suitability for 
segmenting these diseases and potentially others that are similar.

According to the data in the table, it is clear that the LS-ASPP model performs well in 
all the metrics that were evaluated. Specifically, the model achieves an impressive Mean 
IoU of about 79%, 78%, and 74% for cucumber powdery mildew, cucumber angular leaf 
spot, and cucumber downy mildew, respectively. Similarly, the FreqWeighted IoU met-
ric shows a very satisfactory score of around 89%, 88%, and 91% for the corresponding 
diseases. This indicates that the LS-ASPP model consistently performs well in handling 
different cucumber diseases, demonstrating its strength and reliability.

Evolution of loss during model training process

It is important to keep an eye on how the loss changes while training a model. By check-
ing the training and validation losses, we can learn a lot about how the model is learn-
ing and if it’s overfitting or underfitting. In Fig. 8, it is seen the losses every five epochs 
throughout the training.

As displayed in Fig. 9, initially, the training loss starts relatively high at 0.762, accom-
panied by a considerable validation loss of 0.684. Subsequently, the training loss steadily 
declines as the model trains longer, reaching 0.317 at epoch 50. Meanwhile, the valida-
tion loss experiences a mild oscillatory pattern, eventually settling near the training loss. 
This observation implies that the model successfully minimizes the errors on both train-
ing and validation sets.

Table 3 The performance metrics for each disease individually and presented the average scores

All values reported as means ± standard deviation

Performance metric Cucumber powdery 
mildew

Cucumber angular leaf 
spot

Cucumber 
downy 
mildew

Pixel accuracy (%) 93.5 ± 1.5 93.2 ± 1.2 93.7 ± 1.3

Mean pixel accuracy (%) 86.2 ± 2.4 85.6 ± 2.2 83.7 ± 2.4

Mean IoU (%) 78.6 ± 2.9 77.9 ± 2.7 74.5 ± 3.1

FreqWeighted IoU (%) 88.7 ± 1.4 88.2 ± 1.3 91.3 ± 1.6
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Discussions
We suggest adding more data sets with different types of crops and environments to 
strengthen the model’s effectiveness. By including a wide range of crops and external 
factors in the data set, we can ensure that the model is better suited for real-world use. 
This expansion will involve retraining the model with the new data and assessing its per-
formance using established criteria. The expected results of this project are:

(1) Enhanced model flexibility: By expanding the data set to include various crops and 
growing conditions, we increase the chances of successful implementation in differ-
ent fields.

(2) Confirmation of robustness: Testing the model on diverse data sets confirms its 
ability to maintain high performance levels despite variations in appearance and 
environmental factors.

(3) Real-world applicability: Demonstrating the model’s effectiveness in handling a 
wide range of crops and environmental conditions strengthens its credibility and 
usefulness in practical applications.

By taking this approach, the model we propose can move beyond just being good at 
identifying cucumber leaves to becoming a comprehensive solution for detecting and 
monitoring plant diseases, meeting the needs of modern agricultural practices.

Conclusion
Plant disease segmentation models are prone to interference from shadows and obstruc-
tions, and the extraction of features has an inherent uncertainty. To address these chal-
lenges, the LS-ASPP network model was constructed using images from the dataset. The 
use of the LS-ASPP module in the network model enhances the model’s ability to cap-
ture global information, thereby improving the segmentation of disease spots.

The model is trained with only a small amount of annotated disease spot samples, 
significantly reducing the annotation cost. Compared to the U-Net and LS-ASPP mod-
els, this model achieves superior segmentation accuracy. It performs well in terms of 
pixel accuracy, mean intersection over union, and frequency weighted intersection 
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Fig. 9 Evolution of loss during model training process
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over union, all of which are key segmentation evaluation metrics. This suggests that the 
model exhibits robustness against shadows and obstructions.

By adding skip connections, the network model can integrate low-level features, and 
by restoring detailed features, it can retain smaller disease spots and refine segmentation 
boundaries. The trial demonstrates that the LS-ASPP model, equipped with a self-atten-
tion mechanism, exhibits good generalization performance and robustness.
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