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Abstract 

Circular RNA (CircRNA)–microRNA (miRNA) interaction (CMI) is an important model 
for the regulation of biological processes by non-coding RNA (ncRNA), which provides 
a new perspective for the study of human complex diseases. However, the existing 
CMI prediction models mainly rely on the nearest neighbor structure in the biologi-
cal network, ignoring the molecular network topology, so it is difficult to improve 
the prediction performance. In this paper, we proposed a new CMI prediction method, 
BEROLECMI, which uses molecular sequence attributes, molecular self-similarity, 
and biological network topology to define the specific role feature representation 
for molecules to infer the new CMI. BEROLECMI effectively makes up for the lack 
of network topology in the CMI prediction model and achieves the highest prediction 
performance in three commonly used data sets. In the case study, 14 of the 15 pairs 
of unknown CMIs were correctly predicted.

Keywords: Competing endogenous RNA, circRNA–miRNA interaction, Association 
prediction, Network embedding, Biomarker discovery

Introduction
CircRNA (circular RNA) is a kind of non-coding RNA with a closed-loop structure that 
exists in eukaryotic cells [1]. CircRNA was first discovered in the 1980s [2] and is con-
sidered to be a noise or by-product in the process of transcription. However, with the 
development of high-throughput sequencing technology, researchers have re-focused 
on circRNA and found that they have a variety of biological functions. By screening 
and analyzing the differentially expressed circRNA, researchers revealed the expression 
patterns of circRNA in different tissues, developmental stages, and disease states [3]. 
CircRNA affects cell function by regulating miRNA activity or interacting with RNA-
binding proteins. Therefore, it plays a role as a potential biomarker [4].
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MicroRNA (miRNA) is a kind of non-coding RNA, which can regulate gene expres-
sion by binding to the 3’ untranslated region (3’UTR) of the target gene [5]. In the CMI, 
circRNA binds to miRNA through the "miRNA response element (MRE)" with com-
plementary sequences to form a circRNA-miRNA complex [6, 7]. This binding occurs 
mainly through two main mechanisms: the sponge effect and the competitive binding 
mechanism. In the sponge effect, circRNA absorbs multiple miRNA molecules as the 
"sponge" of miRNA, thus reducing the binding between miRNA and target mRNA, and 
affecting the regulation of target genes by miRNA. In the competitive binding mecha-
nism, circRNA and miRNA compete directly with the 3’UTR binding sites of the same 
target gene to hinder the effect of miRNA on the target gene. CMI plays an important 
role in the regulation of gene expression, cell proliferation, and tumorigenesis, which 
provides new hope for the diagnosis, treatment, and prognosis of diseases [8, 9].

Although circRNA has been proven to play an important role in biology, its specific 
function is not completely clear, so there is an urgent need for a comprehensive study of 
circRNA. At present, a large number of circRNA have been identified, which brings new 
opportunities and challenges to the related data mining work. Limited by manpower, 
materials, and resources, it is impractical to match a large number of CMI data aimlessly. 
Therefore, the use of computing technology to provide a high probability pre-selection 
range for wet experiments has become the main means of CMI discovery. CMI inference 
methods based on computing technology are mainly divided into two kinds: one is based 
on sequence matching, such as miRanda [10], and TargetScan [11], and the other is the 
prediction model based on known association. Based on the principle of complementary 
binding sites, the method based on sequence matching can achieve large-scale CMI pre-
diction, but it will produce too many false positive samples, and only relying on a single 
feature will cause the known molecular association and biological structural features to 
be ignored; the use of advanced prediction model can effectively make up for the short-
comings of sequence matching methods, but it is often affected by data scale, network 
expansion, attribute collection and so on.

Currently, models that use computational methods to predict associations between 
biomedical entities are constantly being proposed, such as drug–drug interaction pre-
diction [12], drug–target interaction prediction [13, 14], LncRNA-disease prediction 
[15–17], lncRNA–protein interaction [18, 19], circRNA-disease prediction [20–22], 
disease-associated Piwi-interacting RNAs prediction [23], cell–cell communication 
inference [24–26] and phage-host interaction prediction [27]. However, there are still 
few studies on prediction models for circRNA–miRNA interactions. Most of the existing 
CMI prediction models use the nearest-neighbor relationship in the biological network 
for modeling. For example, Wang et al. [28] proposed the KGDCMI method, which uses 
the HOPE method to embed the node association structure in the CMI network to pre-
dict the unknown CMI; Guo et al. [29] used the SDNE method to embed the similarity 
between nodes and the similarity of neighbor sets in the CMI network to predict the 
new CMI. Yu et al. [30] and He et al. [31] use graph convolution neural network to aggre-
gate the feature prediction of nearest neighbor nodes in high-dimensional space CMI; 
Qian et al. [32] proposed CMASG, by extracting linear and nonlinear features from the 
CMI network to predict unknown CMI. Wang et al. used the signed graph convolutional 
neural network to aggregate friend and foe relationships in circRNA-miRNA-cancer 
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networks to predict unknown CMI [33]. These methods are used to model and extract 
the nearest neighbor relationship in the CMI network to realize the effective prediction 
of CMI. However, as a kind of community relationship in the network, the application 
of the nearest neighbor relationship in the biological network has some limitations: 1. 
CMI biological network is sparse, most nodes have little or no nearest neighbor relation-
ship; 2. The nearest neighbor relationship will be bound to the node representation, so 
it is difficult to achieve network expansion; 3. Limited by the capture mode of neigh-
boring nodes, the similarity (structural similarity) between nodes with similar network 
topology features but not adjacent nodes is ignored. This makes it difficult to achieve 
a breakthrough in the accuracy of CMI prediction. As a kind of network structure, the 
local topological structure information in the network has been applied to the CMI pre-
diction model. Wang et al. added local topological structure similarity to the model as a 
supplement to obtain reliable prediction performance [34]; Wang et al. used the wavelet 
diffusion mode to extract the topological structure feature of nodes in the CMI network 
and obtain the highest prediction performance [35]. This means that the topological 
structure feature is effective in model feature extraction, but these methods only use the 
local topological structure in the network as a supplement to the features and do not 
clearly define the topological structure, which limits the value of local topological struc-
ture features.

In this paper, we propose a CMI prediction method, BEROLECMI, which defines 
role attributes for each molecule through molecular attribute features, molecular self-
similarity networks, and molecular network features for advanced prediction tasks. 
Specifically, BEROLECMI first uses the pre-trained Bidirectional Encoder Representa-
tions from the Transformers model for DNA language in genome (DNABERT) [36] to 
extract attribute features from RNA sequence, then constructs RNA self-similarity net-
works through Gaussian kernel function and sigmoid kernel function respectively, and 
the high-level representation is learned by sparse autoencoder (SAE) [37]. Next, the 
proposed model uses the structured embedding method to extract the role similarity 
of each molecule in the CMI network. Finally, these features are organically integrated 
as molecular exclusive role features and sent to the classifier for training and prediction 
tasks. In the performance verification, the prediction performance of the BEROLECMI 
in common data sets exceeds that of all known models. In the case study, the proposed 
method accurately predicts 14 of 15 pairs of CMIs. The flow chart of BEROLECMI is 
shown in Fig. 1.

Materials and methods
Molecular attribute feature construction

In this part, the BEROLECMI method combines the sequence structure of molecules 
and self-similarity network to construct molecular attribute descriptors. Specifically, 
we first cut the sequence of RNA molecules to form effective sequence fragments, and 
then use the pre-training model, DNABERT, to learn the potential features in RNA 
sequences. Next, we use the Gaussian kernel function and sigmoid kernel function to 
construct molecular self-similarity networks and use SAE to learn the advanced repre-
sentation of molecular self-similarity. Finally, the RNA sequence feature and molecule 
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self-similarity feature are fully connected, and the exclusive attribute feature is assigned 
to each molecule.

RNA sequence feature extraction

The Bidirectional Encoder Representations from Transformers (BERT) model has 
achieved great success in the field of natural language processing (NLP), which pro-
vides a new pattern for the use of large-scale preprocessing models. However, due to 
the unique biological characteristics, and physical and chemical structure of DNA 
sequences, the traditional NLP algorithm is difficult to effectively apply to the modeling 
of DNA data. Therefore, through the improvement and adjustment of BERT, Ji et al.[36] 
developed a DNABERT model suitable for DNA sequences. In this part, we introduce 
the DNABERT model to learn the sequence features of RNA. Specifically, BEROLECMI 
first cuts the RNA sequence according to the sequence aggregate of 6-mer, which is 
determined by the training corpus of the DNABERT model; then, the obtained RNA 
sequence aggregate is used as the corpus, and the pre-trained DNABERT model is used 
to capture the local and global representation of the DNA sequence. The feature extrac-
tion process of the RNA sequence is shown in Fig. 2. In addition, detailed information 
about the DNABERT pre-training model is referred to in the research of Ji et al. [36].

Molecular self‑similarity feature construction

RNA molecular self-similarity features are based on the functional similarity hypoth-
esis, that is, molecules with similar binding targets may have the same functions. BER-
OLECMI introduces the Gaussian kernel function and sigmoid kernel function to 
construct RNA self-similarity in the CMI network. For the dataset CMI-9905 stored in 

Fig. 1 The flow chart of BEROLECMI
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the adjacency matrix M, when circRNA a interacted with miRNA b, Mab is 1, otherwise 
0. The circRNA Gaussian kernel representation in the matrix can be calculated as:

where Ua and Ub represent circRNA a and circRNA b respectively, KcircRNA(Ua, Ub) 
denotes the GIP kernel similarity between circRNA a and b, λ is a parameter controlling 
the bandwidth of the GIP kernel function, calculated as:

Similarly, the miRNA Gaussian kernel representation can be calculated as:

The circRNA sigmoid kernel representation is defined as:

where η = 1/N, N is the dimension of the input data.
Similarly, the miRNA sigmoid kernel representation is defined as:

Molecular self‑similarity integration

BEROLECMI organically integrates Gaussian kernel similarity and sigmoid kernel simi-
larity of molecules to obtain a highly representative self-similarity matrix. For circRNA, 
the similarity matrix can be calculated as:

(1)KcircRNA(Ua,Ub) = exp(−�||LP(Ua)− LP(Ub)||
2)

(2)�U = �U ′/

(

1

n

n
∑

L=1

||LP(Ui)||
2

)

(3)KmiRNA(Va,Vb) = exp(−�||LP(Va)− LP(Vb)||
2)

(4)�V = �V ′/

(

1

n

n
∑
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||LP(Vi)||
2

)

(5)ScircRNA(Ua,Ub) = tanh{η[G(Ua)] × µ[G(Ub)]}

(6)SmiRNA(Va,Vb) = tanh{η[G(Va)] × µ[G(Vb)]}

Fig. 2 The feature extraction process of the RNA sequence
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For miRNA, the similarity matrix can be calculated as:

The Gaussian kernel similarity, sigmoid kernel similarity, and self-similarity matrix of cir-
cRNA and miRNA are shown in Fig. 3.

Molecular self‑similarity feature enhancement

BEROLECMI performs dimensionality reduction and feature enhancement on molecular 
self-similarity networks by introducing SAE. The SAE has the same encoding and decoding 
structure as the ordinary autoencoder, and the input layer maps the input data to the hid-
den layer L for encoding:

where X(L0) is the input data, W is the parameter of the hidden layer.
The difference is that the SAE adds sparsity constraints during the training process. By 

adding sparsity constraints to the neurons in the hidden layer, the hidden layer keeps a low 
activation value to obtain highly representative key features. The sparse penalty term T can 
be calculated as:

(7)

FU (Ua,Ub) =

{

ScircRNA(Ua,Ub) KcircRNA(Ua,Ub) < 0.1, ScircRNA(Ua,Ub) > 0.1
KcircRNA(Ua,Ub) otherwise

(8)FV (Va,Vb) =

{

SmiRNA(Va,Vb) KmiRNA(Va,Vb) < 0.1, SmiRNA(Va,Vb) > 0.1
KmiRNA(Va,Vb) otherwise

(9)L1 = σ(WX(L0)+ b)

(10)T =

N
∑

i=1

KL(P||F)

Fig. 3 The self-similarity of molecular
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where T represents the sum of the degree to which the penalty item P deviates from F, 
and N represents the number of neurons in the hidden layer. In this experiment, the KL 
divergence (Kullback–Leibler) is used to calculate as follows:

where P is the sparse parameter of KL, the closer F is to P, the smaller the value of KL.
By adding sparsity constraints in the encoding layer, SAE can learn a low-dimen-

sional robust representation of the original features, thereby improving model 
performance.

Network embedding based on role definition

To effectively extract molecular structured embeddings in biological networks, BER-
OLECMI introduces the Role2vec algorithm [38] combined with attribute random 
walks to capture molecular structure similarities in networks. For an undirected 
graph G < N, E > composed of N nodes and E edges constructed based on the CMI 
biological network, the Role2vec algorithm defines different roles for nodes according 
to the network topology, such as motifs, graphlets, etc., as shown in Fig. 4. The struc-
ture type is flexibly selected via parameters.

The detailed description of the Role2vec algorithm is shown in Algorithm  1. 
Role2vec uses graph G, sub-graph structure M, embedded dimension d, node walk 
r, walk length l, and context window size z as the algorithm input. In steps 1–3, the 
subgraph structure in graph G is first extracted and transformed into a specific repre-
sentation, and then the subgraph structure is mapped to x by the function f. In step 4, 
the transfer probability p is calculated. In steps 6–10, the nodes were reordered in the 
reconstructed graph G’, and the attribute walk to extract the feature representation a 
of node n. Then, add a to the set A. Finally, the role embedding representation of each 
node is obtained by using the stochastic gradient descent algorithm.

(11)KL(P||F) = P log
P

F
+ (1− P) log

1− P

1− F

Fig. 4 Different roles for nodes according to the network topology
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Algorithm 1 Role2vec

Different from the traditional random walk, the walk method with the structure type 
as the node attribute only focuses on the local topology of the node, so it can effectively 
define roles for different nodes. This means that the nodes only rely on structural fea-
tures for embedding, which has high scalability and can be extended to nodes in distant 
or even different graphs.

Results
Evaluation criteria

In this study, we introduce five-fold cross-validation (five-fold CV) to evaluate the per-
formance of the proposed method. five-fold CV divides the CMI data into five subsets 
at random, each time four subsets are used as the training set, one subset is used as the 
test set, and five experiments are performed until the predicted score of each subset. We 
comprehensively evaluate the predictive performance of the proposed model by com-
bining multiple evaluation criteria including Accuracy. (Acc.), Precision. (Prec.), Recall 
and F1-score. The evaluation criteria can be represented as:

(12)Acc =
TP + TN

TP + TN + FP + FN

(13)Pr ec. =
TP

TP + FP

(14)Recall =
TP

TP + FN

(15)F1− score = 2×
Precision× Re call

Precision+ Re call
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Among them, TP and TN respectively represent the number of positive samples and 
negative samples predicted correctly by the model; FP and FN respectively represent the 
number of negative samples and positive samples predicted incorrectly by the model. In 
addition, we introduce the receiver operating characteristic curve (ROC), and precision-
recall curve (PR).

In this work, we evaluate model performance through the five-fold CV based on three 
commonly used datasets in the field of CMI prediction. The CMI-9905 dataset was com-
piled by Wang et al. [28], including 9905 interactions between 2346 circRNA and 962 
miRNA. The data set contains CMI with high confidence, which is used as the bench-
mark data set in this study. The CMI-9589 dataset comes from the circBank database 
[39], and we select 9589 interactions of CMI between 2115 circRNA and 821 miRNA 
with high confidence as training data. The CMI-753 dataset is collected from the circR-
2Cancer database [40]. Through strict screening and processing, we have obtained 753 
interactions of CMI between 515 circRNA and 469 miRNA in the latest version of the 
data, all of which are supported by experiments. In this experiment, we use this data for 
a case study.

In addition, we construct negative samples to balance the data set based on the 
uniqueness principle of sequence complementarity. Since miRNA has the response 
components (MRE), endogenous RNAs with a common MRE regulate each other’s 
expression by competitively binding to miRNA. This theory is called the competitive 
endogenous RNA hypothesis [41]. If a circRNA is determined to contain an MRE, it 
may be a potential target of a miRNA, and vice versa. In this study, negative samples 
are defined as interacting pairs that do not share common MREs, and we adopt specific 
negative sample construction methods for different data sets. Specifically, for the CMI-
9905 dataset and CMI-9589 dataset, we construct all possible interactions between cir-
cRNA and miRNA, then delete the CMI with confidence score (score > 0) in the circBank 
database, and finally randomly select the same number of CMI as negative samples to 
participate in model training; For the CMI-753 data set based on real cases, since known 
interaction pairs are reported by experiments or papers, we select interaction pairs that 
have not been reported in existing studies as negative samples. Using this method can 
effectively avoid the potential CMI as a negative sample and ensure the reliability of the 
model performance.

Table 1 The prediction result of BEROLECMI based on the benchmark dataset

Test set Acc Prec Recall F1‑score AUROC AUPR

1 0.8465 0.8491 0.8465 0.8463 0.9171 0.9104

2 0.8301 0.8333 0.8301 0.8297 0.9040 0.9024

3 0.8367 0.8401 0.8367 0.8363 0.9090 0.9115

4 0.8304 0.8320 0.8304 0.8302 0.9050 0.8983

5 0.8541 0.8590 0.8541 0.8536 0.9170 0.9204

Mean 0.8395 0.8427 0.8396 0.8392 0.9104 0.9086

Std 0.0093 0.0101 0.0094 0.0093 0.0056 0.0076
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Performance evaluation

In this section, we use the CMI-9905 as the benchmark dataset for performance evalua-
tion. The data of the model in the five-fold CV is objectively recorded in Table 1.

The data in Table 1 shows that in the five-fold CV based on the benchmark data set, 
the average values of the six evaluation criteria of BEROLECMI are 0.8395, 0.8427, 
0.8396, 0.8392, 0.9104, and 0.9086, respectively, which means that the proposed model 
can efficiently complete the prediction task of CMI. The ROC and PR curves of the BER-
OLECMI are shown in Fig. 5.

Performance on different datasets

To reflect the generalization ability of BEROLECMI in CMI prediction, we perform pre-
diction tasks based on all commonly used datasets in the field of CMI prediction (CMI-
9589, CMI-753). According to our statistics, more than 80% of CMI prediction models 

Fig. 5 The ROC curve (A) and PR curve (B) of the BEROLECMI

Table 2 The prediction result of BEROLECMI based on commonly used datasets

Acc Prec Recall F1‑score AUROC AUPR

CMI-9589

 1 0.8835 0.8856 0.8835 0.8833 0.9528 0.9499

 2 0.8723 0.8759 0.8723 0.8720 0.9492 0.9409

 3 0.8743 0.8755 0.8743 0.8742 0.9454 0.9367

 4 0.8832 0.8848 0.8832 0.8831 0.9507 0.9465

 5 0.8756 0.8777 0.8756 0.8754 0.9475 0.9416

 Mean 0.8777 0.8799 0.8778 0.8776 0.9491 0.9431

 Std 0.0046 0.0043 0.0047 0.0047 0.0025 0.0046

CMI-753

 1 0.6987 0.6987 0.6987 0.6987 0.7781 0.7758

 2 0.7409 0.7461 0.7409 0.7393 0.8133 0.7932

 3 0.7309 0.7364 0.7309 0.7292 0.7856 0.7591

 4 0.7375 0.7432 0.7375 0.7361 0.8002 0.7503

 5 0.6811 0.6876 0.6811 0.6785 0.7766 0.7289

 Mean 0.7178 0.7224 0.7178 0.7163 0.7907 0.7614

 Std 0.0236 0.0243 0.0237 0.0237 0.0140 0.0219
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use the dataset adopted in this work as benchmark data. The experimental results based 
on commonly used datasets are shown in Table 2.

The data in Table  2 shows that in all common data sets in the field of CMI predic-
tion, the AUROC of BEROLECMI based on the CMI-9589 data set exceeds 90%, and the 
AUROC based on the CMI-753 data set exceeds 75%, which means that the proposed 
model can effectively complete the CMI prediction task in commonly used data sets, 
and is expected to become a reliable candidate tool for CMI prediction.

The validity of the model feature extraction

In this section, we verify the effectiveness of feature extraction for each part of the BER-
OLECMI through independent experiments. Specifically, we divide BEROLECMI into 
three modules: sequence feature extraction (BE-A), self-similarity feature extraction 
(BE-B), and structured embedding (BE–C), and then use the three modules separately 
for feature extraction and perform prediction tasks to evaluate the proposed model for 
each module feature extraction effectiveness. The experimental results are objectively 
recorded in Table 3. To facilitate comparison, we use histograms to visualize the data in 
Table 3, as shown in Fig. 6.

The data in Table 3 shows that all the feature modules of the BEROLECMI can effec-
tively complete the CMI prediction, which shows the effectiveness of the feature extrac-
tion strategy of the proposed method; among all three modules, the sequence feature 

Table 3 Predicted result of different modules of BEROLECMI

Acc Prec Recall F1‑score AUROC AUPR

BE-A

 1 0.6663 0.7022 0.6663 0.6509 0.7104 0.7266

 2 0.6769 0.7088 0.6769 0.6641 0.7376 0.7521

 3 0.6681 0.711 0.6681 0.6503 0.7539 0.7606

 4 0.6772 0.6983 0.6772 0.6683 0.7375 0.7534

 5 0.658 0.6874 0.6580 0.6440 0.7209 0.7364

 Mean 0.6693 0.7015 0.6693 0.6555 0.7320 0.7458

 Std 0.0071 0.0084 0.0072 0.0091 0.0150 0.0124

BE-B

 1 0.8243 0.8262 0.8243 0.8241 0.8873 0.8803

 2 0.8261 0.829 0.8261 0.8257 0.8934 0.8921

 3 0.8152 0.8175 0.8152 0.8149 0.8769 0.8715

 4 0.8147 0.8168 0.8147 0.8144 0.8830 0.8812

 5 0.8311 0.8326 0.8311 0.8310 0.8884 0.8847

 Mean 0.8222 0.8244 0.8223 0.8220 0.8858 0.8819

 Std 0.0063 0.0062 0.0064 0.0064 0.0055 0.0066

BE-C

 1 0.8009 0.8021 0.8009 0.8007 0.8850 0.8869

 2 0.8089 0.8106 0.8089 0.8087 0.8867 0.8739

 3 0.8059 0.8081 0.8059 0.8056 0.8885 0.8835

 4 0.8102 0.8120 0.8102 0.8099 0.8857 0.8782

 5 0.8001 0.8036 0.8001 0.7995 0.8808 0.8660

 Mean 0.8052 0.8072 0.8052 0.8048 0.8853 0.8777

 Std 0.0040 0.0038 0.0041 0.0041 0.0025 0.0073
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extraction module has the lowest prediction results, which shows that the sequence 
feature is useful complements to model features; self-similarity features and structured 
embeddings achieve high predictive results, which means that combining functional 
similarity assumptions and role-defined structural embeddings can effectively improve 
the predictive performance of the model. Through the organic integration of the three 
feature extraction modules, we achieved the highest model prediction performance, ver-
ifying the effectiveness of the model construction.

Optimal classification strategy

In this study, we conduct prediction tasks based on different classifiers to determine the 
best classification strategy for the proposed method. In prediction tasks based on CMI-
9905 datasets, we use the lightGBM [42], Random forest (RF) [43], Logistic Regression 
(LR) [44], Support Vector Machine (SVM) [45], Linear Regression (LinR) [46] for CMI 

Fig. 6 Performance comparison of different modules

Fig. 7 Comparison of prediction results of different classifiers (A is the comparison of AUC results, B is the 
comparison of AUPR results)
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prediction tasks, and the best classification strategy was selected by comparing the per-
formance of the proposed methods. The prediction results are shown in Fig. 7.

The data in Fig.  7 shows that the model using the lightGBM classifier achieves the 
highest predictive performance. LightGBM (Light Gradient Boosting Machine) [34] is an 
ensemble learning classifier based on Gradient Boosting Decision Tree (GBDT), which 
performs well in prediction tasks.LightGBM adopts the ensemble learning method to 
build a powerful prediction model by iteratively training multiple weak prediction mod-
els. It repeatedly optimizes the loss function, and each iteration builds a new decision 
tree on the residual of the previous model and then combines multiple decision trees 
to generate the final prediction result. LightGBM has the advantages of high efficiency, 
low memory consumption, accuracy, and support for large-scale data sets. Through the 
comparison of various classifiers, we finally choose LightGBM as the final classification 
strategy of the model.

Compared with the existing models

To evaluate the advantages of BEROLECMI in the CMI prediction, we compared the 
proposed model with other models in the CMI prediction field based on three com-
monly used data sets.

Lan et al. proposed the NECMA model, which combines circRNA-miRNA association, 
circRNA Gaussian kernel similarity and miRNA Gaussian kernel similarity to construct 
a heterogeneous network, then uses the NetMF algorithm based on matrix decomposi-
tion to extract hidden features in the heterogeneous network, and finally uses weighted 
neighborhood regularized logistic matrix decomposition and inner product obtain 
the circRNA-miRNA association probability [47]; Qian et al. proposed the CMIVGSD 
model, using the singular value decomposition algorithm and variational autoencoder 
to extract linear and nonlinear features from the circRNA-miRNA interaction network 
to predict unknown circRNA-miRNA interactions [32]; Wang et al. proposed the KGD-
CMI model, which combines RNA sequence feature and CMI network behavior feature 
to predict unknown CMI; Yu et al. proposed the first comprehensive prediction model 
of circRNA, SGCNCMI, which uses the graph neural network based on the contribut-
ing mechanism aggregates multi-modal information of molecules in biological networks 
and can achieve multiple predictions of circRNA-miRNA interactions, circRNA-gene 
interactions, and circRNA-cancer associations [30]; Guo et  al. proposed the WSCD 
model, combined with the word2vec algorithm in natural language processing to process 
RNA sequences, used the SDNE algorithm to extract behavior features in the CMI net-
work, and finally used a deep neural network to predict CMI [29]; He et al. proposed the 
GCNCMI model, using graph convolutional neural networks to aggregate node informa-
tion to predict potential circRNA-miRNA interaction; Wang et al. proposed the JSND-
CMI model, which for the first time combined denoising methods and local topological 
structure information in the CMI network for molecular feature extraction to predict 
unknown CMI [34]; Yao et al. proposed the IIMCCCMA model, which combined matrix 
factorization and improved inductive matrix completion algorithms predict unknown 
CMI [48]. Wang et al. proposed BioDGW-CMI, which combines BERT and wavelet dif-
fusion to extract sequence and association network structure information of RNA mole-
cules to predict potential CMI [35]. These models have achieved exciting results in CMI 
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prediction, and we compare the BEROLECMI with these models to reflect the superior 
performance of the proposed model.

The comparison data are recorded in Table 4. It is worth noting that all the compari-
son data in this study use the same data and verification methods as the comparison 
models, and the number of comparison models exceeds 70% of all models in the field of 
CMI prediction.

Data based on the CMI-753 dataset comes from the work of Yao et al. [48].
The data in Table 4 shows that BEROLECMI surpasses all known models in the per-

formance comparison of all three datasets.
In addition, we conduct a paired t-test based on the CMI-9905 data set and known 

advanced models in the CMI field to evaluate the statistical difference between the 
proposed model and the state-of-the-art (SOTA) model. The experimental results are 
recorded in Table 5.

The data in Table  5 shows that in the verification of the proposed method with the 
SOTA model, the P values were less than 0.05 confidence level, which means that there 
is a significant difference between the proposed model and the comparison model, and 

Table 4 Model performance comparison with different CMI prediction models

AUROC AUPR

CMI-9905

 KGDCMI 0.8930 0.8767

 WSCD 0.8923 0.8935

 SGCNCMI 0.8942 0.8887

 JSNDCMI 0.9003 0.8999

 BioDGW-CMI 0.9026 0.8962

 BEROLECMI 0.9104 0.9086

CMI-9589

 CMIVGSD 0.8804 0.8629

 SGCNCMI 0.9015 0.9011

 KGDCMI 0.9041 0.8937

 GCNCMI 0.9320 0.9396

 JSNDCMI 0.9415 0.9403

 BioDGW-CMI 0.9476 0.9416

 BEROLECMI 0.9491 0.9431

CMI-753

 NECMA 0.4989 0.0003

 GCNCMI 0.5679 0.0004

 CMIVGSD 0.5755 0.0007

 IIMCCMA 0.6702 0.0009

 BioDGW-CMI 0.7821 0.7688

 BEROLECMI 0.7907 0.7614

Table 5 Paired t-test results of the BEROLECMI and other models under five-fold cross-validation

t‑test WSCD KGDCMI SGCNCMI JSNDCMI

p value 0.0011 0.0005 0.0071 0.0233
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it has better statistical validity predict performance. There is no doubt that the proposed 
method is currently the most competitive in the field of CMI prediction.

Case study

To verify the practicability of BEROLECMI, we conducted a case study based on the 
CMI-753 dataset. The data in this dataset are all manually collected from existing litera-
ture and research, and all have experimental support.

In the case study, we perform a prediction task based on 15 pairs of CMIs to simu-
late the prediction performance of the proposed model in unknown CMIs. Specifically, 
we remove the interacting pairs for case studies in the CMI-753 data and then use the 
known 738 pairs of CMIs for model training to predict unknown CMIs. The prediction 
results are recorded in Table 6.

The data in Table 6 shows that among the 15 pairs of CMI used for prediction, 14 pairs 
were successfully predicted, which means that BEROLECMI can effectively predict CMI 
in real cases, and it is expected to be a powerful tool to provide pre-selection for wet 
experiments.

Conclusion
The circRNA-miRNA-mediated model provides new hope for the diagnosis and treat-
ment of many complex diseases, but the biological properties of the mediated model are 
not completely clear, so there is an urgent need to speed up the discovery of CMI.

Influenced by the neighbor relationships in community networks, existing CMI 
prediction models typically rely on the nearest neighbor relationships in biological 

Table 6 The prediction results in the case study

Num circRNA miRNA Prediction score Evidence Cancer Detection method

1 circ-ITCH miR-10a 0.9999 30556849 Epithelial ovarian 
cancer

qPCR

2 circ-ITCH miR-224 0.9999 29386015 Bladder cancer qRT-PCR

3 circPVT1 miR-4663 0.9999 31636510 Esophageal carci-
noma

qRT-PCR

4 circMTO1 miR-6893 0.9998 31226633 Cervical cancer RT-qPCR;western blot

5 circMTO1 miR-92 0.9998 31456594 Glioblastoma qRT-PCR

6 circ-ABCB10 miR-340-5p 0.9996 32196586 Hepatocellular 
carcinoma

qRT-PCR;Western 
blot.etc

7 circ-ABCB10 miR-452-5p 0.9996 32196586 Hepatocellular 
carcinoma

qRT-PCR;Western 
blot.etc

8 circ-ABCB10 let-7a-5p 0.9996 32273769 Breast cancer qRT-PCR

9 circPVT1 miR-145 0.9985 30922567 Colorectal cancer RT-qPCR

10 circ-PRMT5 miR-377 0.9969 31479715 non-small cell lung 
cancer

qPCR

11 circ-ABCB10 miR-1252 0.9724 31381507 Epithelial ovarian 
cancer

qRT-PCR

12 circMTO1 miR-19b-3p 0.9087 31886569 rectal cancer qRT-PCR;Western blot

13 circMTO1 miR-9 0.7650 32207384 Renal cell carcinoma qRT-PCR

14 circ-PRMT5 miR-498 0.7338 31479715 Non-small cell lung 
cancer

qPCR

15 circMTO1 miR-17-5p 0.2904 31713278 Prostate cancer RT-qPCR



Page 16 of 18Wang et al. BMC Bioinformatics          (2024) 25:264 

networks as the main modeling method. For example, KGDCMI and WSCD employ 
High-Order Proximity preserved Embedding (HOPE) and Structural Deep Network 
Embedding (SDNE) respectively, to capture high-order neighbor information and 
network structural features in heterogeneous CMI networks. Others like SGCNCMI, 
GCNCMI, and KS-CMI utilize graph convolutional neural networks to aggregate 
features of central nodes and neighbor nodes in the graph. In essence, these models 
use the nearest neighbor relationship set of the network or the nodes in the graph 
for feature extraction and aggregation. Although they can effectively predict CMI, 
only paying attention to a single structural feature may lead to difficult performance 
improvement. In addition, some models try to use other types of features in the CMI 
network for modeling, such as BioDGW-CMI uses the method based on wavelet dif-
fusion to obtain the node network structure; JSNDCMI uses the multi-structure fea-
ture extraction framework to extract the topology features and functional similarity 
features of the nodes in the network. The prediction performance of these models 
is better than that of other models by adding a variety of molecular network struc-
ture features to feature extraction, which proves the advantage of multi-structure 
feature extraction in CMI prediction. However, although the existing methods have 
made progress, the existing methods still lack a targeted structure definition in the 
network. In this work, we propose a CMI prediction method BEROLECMI to simu-
late the molecular topology in the network. In this method, nine kinds of graphlet 
between each node and its adjacent four nodes in the CMI network are defined to 
extract topological features, then the attributes, self-similarity, and topological fea-
tures of molecules are modeled to define unique role features for each molecule, thus 
inferring unknown CMIs.

BEROLECMI achieved the highest prediction performance in all commonly used data-
sets in the field of CMI prediction. Among them, in CMI-9905, the prediction results 
were 0.78% higher than the second-highest model; in the sparser CMI-753, the predic-
tion results were higher than the second-highest model. 0.86%, which is much higher 
than other models by more than 10%. This means that topological structure features are 
an effective means of extracting network features for molecular association prediction, 
especially in the context of sparse relationships. In the case study, the proposed model 
accurately predicted 14 out of 15 pairs of CMIs. Excellent experimental results show that 
this method can effectively improve the performance of CMI prediction.

Although our method achieved promising results, there are still certain limitations 
that need to be addressed. In terms of feature extraction, although topological structures 
show higher advantages in sparse networks compared with nearest-neighbor structures, 
modeling of a single structure type shows limited capabilities in prediction tasks involv-
ing multi-type data. Therefore, the targeted use of multi-structure feature extraction will 
be the key to further improving prediction performance. In data construction, we use an 
equal amount of randomly generated negative samples for model training, which may 
cause potential CMI to be used as false negative samples, which can lead to a decline 
in model performance. We hope to continue to optimize the data used for training in 
subsequent research to further improve prediction performance. However, it is undeni-
able that BEROLECMI is currently the most competitive CMI prediction method and 
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has proven the effectiveness of the feature construction method based on role definition, 
which is expected to provide a reference for subsequent research.
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