
Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Chang et al. BMC Bioinformatics          (2024) 25:292  
https://doi.org/10.1186/s12859-024-05895-3

BMC Bioinformatics

Inference of single‑cell network using 
mutual information for scRNA‑seq data analysis
Lan‑Yun Chang1†, Ting‑Yi Hao1†, Wei‑Jie Wang1† and Chun‑Yu Lin1,2,3,4,5,6*    

From International Conference on Genome informatics GIW XXXI/ISCB-Asia V 2022 
Tainan, Taiwan. 12-14 December 2022. 

Abstract 

Background:  With the advance in single-cell RNA sequencing (scRNA-seq) technol‑
ogy, deriving inherent biological system information from expression profiles at a sin‑
gle-cell resolution has become possible. It has been known that network modeling 
by estimating the associations between genes could better reveal dynamic changes 
in biological systems. However, accurately constructing a single-cell network (SCN) 
to capture the network architecture of each cell and further explore cell-to-cell hetero‑
geneity remains challenging.

Results:  We introduce SINUM, a method for constructing the SIngle-cell Network 
Using Mutual information, which estimates mutual information between any two 
genes from scRNA-seq data to determine whether they are dependent or independent 
in a specific cell. Experiments on various scRNA-seq datasets with different cell num‑
bers based on eight performance indexes (e.g., adjusted rand index and F-measure 
index) validated the accuracy and robustness of SINUM in cell type identification, supe‑
rior to the state-of-the-art SCN inference method. Additionally, the SINUM SCNs exhibit 
high overlap with the human interactome and possess the scale-free property.

Conclusions:  SINUM presents a view of biological systems at the network level 
to detect cell-type marker genes/gene pairs and investigate time-dependent changes 
in gene associations during embryo development. Codes for SINUM are freely available 
at https://​github.​com/​SysMe​dnet/​SINUM.

Keywords:  Single-cell analysis, Network inference, Mutual information, Gene 
expression, Single-cell network, Single-cell clustering

Background
Hundreds of cell types manifest different morphologies, behaviors, and functions, 
although every cell in the human body contains nearly identical genomic information 
[1]. To unravel the homogeneity or heterogeneity among a population of cells, coordi-
nated gene expression in cells plays a crucial role in revealing biological function and 
cellular responses, especially when disease occurs [2]. Recently, the advance in single-cell 
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RNA sequencing (scRNA-Seq) technology enables mass production of single-cell tran-
scriptomic data and offers an attractive alternative to explore genetic and functional 
heterogeneity with cellular resolution via expression profiling studies; for example, the 
discovery of unidentified cell types [3], human embryonic development [4], and intra- 
and inter-tumoral heterogeneity [5, 6]. It has been known that it is difficult to under-
stand the gene functions and the effects of disease-associated variants at the individual 
gene level due to the complex and dynamic associations among these genes, which 
constitute a complicated network [7, 8]. However, most studies still rely on differential 
expression analysis on scRNA-seq data [9–11] but overlook the biological networks, 
which play a key role in the current development of biomarkers and therapeutic targets 
in disease [12–14].

In support of this pursuit, previous works have proposed several methods to estimate 
networks using gene expression data, such as on the basis of Boolean models [15], cor-
relation models [16, 17], and information models [18, 19] Yet, recent research has indi-
cated that Boolean model-based methods have limited scalability when constructing a 
genome-scale network; additionally, a large part of the variation for correlation-based 
approaches may originate from a variety of technical factors, which can easily produce 
confounding effects in correlation inference [20]. Unlike the Pearson correlation coeffi-
cient, which evaluates linear correlations between the measured variables, mutual infor-
mation (MI) as an information model is able to capture non-linear and non-monotonic 
relationships for representing the dynamic relationships between pairs or groups of 
genes more accurately [18, 21, 22]. MI is calculated by estimating pairwise joint probabil-
ity distributions and typically requires density estimation or data discretization, and the 
quality of these estimates depends on sample size [23, 24]. Thus, scRNA-seq data is suit-
able for an MI measure because the sample size is sufficiently large. One MI-based net-
work inference approach, called partial information decomposition and context (PIDC), 
has been designed for single-cell transcriptomic data analysis [18]. However, PIDC 
requires scRNA-seq data from a group of cells to build an aggregate network (i.e., one 
network for a group of cells), and it may be difficult to fully employ the advantages of sin-
gle-cell technology to explore cell-to-cell heterogeneity. Therefore, another information-
based method, cell-specific network (CSN), has recently been proposed to construct the 
single-cell network (SCN) [19]. The CSN method estimates the gene–gene association 
by statistical independence of two genes based on the joint density function, which is 
equal to the product of two marginal density functions when two genes are independ-
ent. However, CSN may underestimate some gene–gene associations that only occur in 
a small subgroup of cells because the theoretical model assumes an association if two 
genes are dependent in a certain amount of cells. For example, the SCNs inferred by the 
CSN method from seven scRNA-seq datasets display a low overlap (~ 3%) with the two 
human protein‒protein interaction (PPI) networks (Additional file 1: Table 1), collected 
from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database 
[25] and assembled from 21 public databases by Gysi et al. [26]. Thus, accurately extract-
ing the network architecture of each cell from such diverse scRNA-seq datasets is still an 
urgent and unmet need.

To address these issues, we propose a SIngle-cell Network Using Mutual informa-
tion (SINUM) method to infer SCNs from the scRNA-seq data (i.e., one network for 
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one cell). SINUM integrates a measure of MI with the hypotheses of various depend-
ent relations used in CSN to determine whether any given two genes are dependent (an 
edge) or independent (no edge) in a specific cell and further builds the SCN (undirected 
network). Moreover, SINUM SCNs can transform into the network degree matrix (DM) 
by counting and normalizing the number of edges connected to every gene in each SCN. 
Specifically, DM has the same dimension as the original gene expression matrix (GEM) 
(i.e., m genes × n cells) and can be directly used in most of the subsequent scRNA-seq 
analyses. Using the seven scRNA-seq datasets, we validated the effectiveness of our 
SINUM in distinguishing cell types, which outperforms the CSN method and direct 
use of the original GEM. Compared to CSN SCNs, the SINUM SCNs are more likely 
to fit the scale-free characteristics and display a higher overlap with the two human PPI 
networks. Additionally, our SINUM can be applied to identify cell-type marker genes 
and gene pairs, which have a differential network degree between a specific cell type 
and the others but no differential gene expression, and study time-dependent changes 
in gene associations during embryo development. We believe that SINUM offers a route 
of access for identifying gene–gene associations to construct networks at a single-cell 
resolution, provides a new opportunity to facilitate the identification of cell types and 
biomarkers, and presents a view of biological systems at the network level to compensate 
for the current analyses of scRNA-seq data.

Materials and methods
Construction of single‑cell network using mutual information (SINUM)

To determine the gene‒gene association of genes X and Y in a specific cell, we applied 
MI to quantify the mutual dependency between their expression values, GX and GY  . MI 
score for GX and GY  is defined as

where H(GX ) , H(GY ) , and H(GX ,GY ) are the entropy of GX , entropy of GY  , and joint 
entropy of GX and GY  , respectively. In information theory, MI as a similarity metric pro-
vides symmetric, i.e., I(GX ;GY ) = I(GY ;GX ) , and non-negative, i.e., I(GX ;GY ) ≥ 0 , 
measurement to determine the statistical dependency between two random variables 
(i.e., two genes in this work) [27]. In other words, MI quantifies how much a random 
variable reveals the other and could be interpreted as reducing uncertainty about one 
when given the knowledge of the other. When assessing the dependency, the higher the 
MI measure for a given gene pair, the stronger the coordinated expression between these 
two genes [18].

To estimate MI for determining an edge between two genes on scRNA-seq data, we 
first generated a scatter diagram for every two genes from the GEM, i.e., m genes lead to 
m(m− 1)/2 scatter diagrams, where each data point denotes a cell; x- and y-axes repre-
sent the expression values of these two genes in the n cells (Fig. 1A). The scatter diagram 
was further equally split into GR grids according to the total number of cells (here is n) 
and the distribution of cells; in other words, the minimum and maximum expression 
values of each two genes in the n cells were used to determine the overall boundaries 
and adjust the grid size. Thus, GR is the number of grids and given as

(1)I(GX ;GY ) = H(GX )+H(GY )−H(GX ,GY )
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If the cells are uniformly randomly distributed in the scatter diagram for two genes, we 
can expect the number of cells in each grid to be nearly equal; accordingly, the two genes 
are independent of each other. Then, we defined the tentative neighborhoods for the tar-
get cell c based on the given box size. The box size was used to determine the neighbor-
hood size; for example, the box size of 0.2 means that there are 20% of n cells within the 
tentative neighborhood of cell c. To reduce the intrinsic fluctuation of gene expression 

(2)GR = ⌊
√
n+

1

2
⌋

Fig. 1  Overview of SINUM (SIngle-cell Network Using Mutual information) method. A Generation of scatter 
diagrams for every two genes from the gene expression matrix (GEM), where the x- and y-axes are the 
expression values of every two genes within the n cells. Each point denotes a cell. B The statistical model 
of SINUM for estimating the association between genes X and Y. First, each scatter diagram containing n 
cells was split into ⌊

√
n+ 1

2
⌋ grids. Next, SINUM produces two boxes G(c)

X
 (light blue) and G(c)

Y
 (medium blue) 

close to cell c to represent its neighborhoods of expression values for genes X and Y, respectively; thus, 
the intersection region can directly produce the third box G(c)

XY
 (dark blue). The entropies H(GX )(c) , H(GY )(c) , 

and H(GX ,GY )(c) of the boxes G(c)
X

 , G(c)
Y

 , and G(c)
XY

 , respectively, were then evaluated for calculating mutual 
information, I(GX ;GY )(c) . The mutual information is used to evaluate whether any given two genes X and Y, 
are a dependent or independent gene pair in cell c among all cells. If the value of I(GX ;GY )(c) is larger than 
the threshold, it suggests that genes X and Y are dependent on each other in cell c and will be represented 
by an edge in a network. C Construction of n single-cell networks (SCNs) for n cells. For m genes, a total of 
m(m− 1)/2 scatter diagrams were generated to measure all possible associations between two genes. In 
each SCN, the red solid line represents that there’s an edge between two genes for a specific cell inferred by 
our SINUM method; otherwise, there’s no edge. D Generation of degree matrix (DM) by counting the number 
of edges connected to every gene in each SCN. Note that the size of DM is the same as GEM with m rows and 
n columns
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values in scRNA-seq data, the tentative neighborhood was expanded outward to the 
closest grid boundaries and formed the final neighborhoods, G(c)

X  (light blue) and G(c)
Y

(medium blue), for genes X and Y, respectively (Fig. 1B). Within the final neighborhoods 
G

(c)
X  and G(c)

Y  , several sub-regions x(c) and y(c) , could be identified based on the corre-
sponding grids, respectively; in other words, x(c) or y(c) is separately a column or row of 
grids belonging to G(c)

X  or G(c)
Y  . The intersection of the two final neighborhoods G(c)

X  and 
G

(c)
Y  can directly produce the third box, called G(c)

XY  (dark blue), and is also divided into 
several sub-regions xy(c) (Fig. 1B).

In this study, we derived a local measurement from Eq.  (1) to evaluate whether any 
given two genes X and Y, are dependent or independent in cell c. Thus, the MI score, 
I(GX ;GY )

(c) , is given as I(GX ;GY )
(c) = H(GX )

(c) +H(GY )
(c) −H(GX ,GY )

(c) . Then, 
the uncertainty and randomness of a random variable (i.e., a gene) in the probability 
distribution could be quantified by a measure of entropy. The entropy of GX in cell c, 
H(GX )

(c) , is calculated as

where p
(

x(c)
)

 is the probability for x(c) . Let n(c)x  , n(c)y  , and n(c)xy  denote the number of cells 
inside x(c) , y(c) and xy(c) , respectively, and the probability p

(

x(c)
)

 can be substituted by 
the frequency numerically:

H(GY )
(c) and H(GX ,GY )

(c) were defined by following the same manners.
Finally, we transformed the MI score obtained from entropy for every gene pair to a z 

score, z(c)XY  . z(c)XY  is defined as

where z(c)XY  denotes the significant level of the MI score between genes X and Y in cell c; 
µXY  and σXY  are the mean and standard deviation of MI scores, respectively, between 
genes X and Y across all cells. Here, the z score is used to determine the presence of an 
edge (association) between any given two genes in a single-cell network (SCN). There is 
an edge if its z score reaches above the threshold (Fig. 1C). For all gene pairs and cells, 
we could eventually construct n SCNs for n cells after repeating this procedure. Like the 
GEM, the DM was constructed by counting and normalizing the number of edges con-
nected to each gene in each SCN (Additional file 1: Note S1); thus, DM has the same 
column and row numbers as the GEM (Fig. 1D).

Network‑based clustering with dimension‑reduction for identifying cell types

Recently, the DM has been used to provide new insights from network science per-
spectives in applying the existing scRNA-seq technique, including dimensionality-
reduction, clustering, and visualization [19]. Here, we first applied the principal 
component analysis (PCA) [28] to reduce the DM (or GEM) to 20 dimensions and 

(3)
H(GX )

(c) = −
∑

x(c)∈G(c)
X

p
(

x(c)
)

× log p
(

x(c)
)

(4)p
(

x(c)
)

=
n
(c)
x

n

(5)z
(c)
XY =

I(GX ;GY )
(c) − µXY

σXY
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further reduce it to two dimensions for visualization using the t-distributed sto-
chastic neighbor embedding (t-SNE) [29]. PCA and t-SNE represent linear and non-
linear methods of dimensionality reduction, respectively. Second, we implemented 
k-means and hierarchical algorithms to perform clustering analysis. The k-means 
algorithm clusters data by separating samples into k groups of equal variance via 
minimizing the sum of the distances between the centroid and all member objects 
of the group. This algorithm requires the number of clusters to be specified. On the 
other hand, the hierarchical clustering builds nested clusters by merging or split-
ting them successively. This hierarchy of clusters is represented as a dendrogram, in 
which the root is the unique cluster that gathers all the samples and the leaves are 
the clusters with only one sample. Finally, we evaluated the clustering performances 
of different methods mainly based on eight performance indexes, including adjusted 
rand index (ARI), F-measure index (FMI), adjusted mutual information (AMI), com-
pleteness scores (CPT), Fowlkes-Mallows scores (FMS), homogeneity scores (HMG), 
and normalized mutual information (NMI). Note that we set the same parameters 
when performing dimension-reduction, clustering, and performance evaluation for 
SINUM DMs, CSN DMs, and GEMs.

Pre‑processing of scRNA‑seq data

The SCNs were constructed by the GEM of each scRNA-seq dataset and then trans-
formed to the DM. Due to a large number of dropout events (i.e., zero values) in 
scRNA-seq data, we filtered out the genes expressed in less than ten cells and per-
formed log2 transformation with a pseudo count of one on the raw matrix, i.e., raw 
matrix → GEM → SCNs → DM. Therefore, the DM has the same number of columns 
and rows as the GEM.

The SINUM method possesses a certain degree of unavoidable time complexity 
because of computing m(m− 1)/2 pair of genes when given a total of m genes. Thus, 
we first applied the FEAture SelecTion (FEAST) tool [30] to select the top 1,000 sig-
nificant features from the raw matrix as representative genes for determining the 
suggested setting of two adjustable parameters in the SINUM method (i.e., box size 
and z-score threshold). The FEAST tool, designed for feature selection of scRNA-
seq, can find clusters with high confidence by consensus clustering method, retains 
cells with high correlation with clusters, and finally identifies the significant features 
through F-statistics and ranking. The suggested parameters were determined by the 
ranking and re-ranking scores of the clustering performances based on the selected 
1,000 genes (Fig. 2A). Specifically, we measured the ranking score for each dataset 
by sorting their F-measure scores for SINUM DMs in descending order using 25 
different parameter combinations, including five different box sizes (0.05, 0.1, 0.15, 
0.2, 0.25) and five different z-score thresholds (− 2,− 1, 0, 1, 2). Next, the re-ranking 
score for each parameter combination using k-means (or hierarchical clustering) 
was evaluated based on the mean of ranking scores across seven datasets. Finally, 
the re-ranking scores from two clustering methods were averaged to determine the 
overall performance. Since the smaller mean of re-ranking scores represents better 
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performance, we used the box size = 0.2 and z-score > 0 as default parameters to 
build SINUM SCNs in this study.

ScRNA‑seq datasets for validation

To validate and compare SINUM SCNs, CSN SCNs, and GEM, we collected and 
downloaded seven ScRNA-seq datasets from the Gene Expression Omnibus (GEO) 
database [31]. The annotations of corresponding cell types provided by original works 
were assembled for each dataset. The brief introductions and summaries of these 
seven datasets are described as follows and listed in Additional file 1: Table S2.

Chu-type dataset [32], including seven cell types and 1,018 cells, comprises the cells 
of human embryonic stem cell-derived lineage-specific progenitors. The cell types 
contain H1 embryonic stem cells, H9 embryonic stem cells, human foreskin fibro-
blasts, neuronal progenitor cells, definitive endoderm cells, endothelial cells, and 
trophoblast-like cells.

Chu-time dataset [32], including six cell types and 758 cells, is composed of cells from 
human embryonic stem cells to produce definitive endoderm cells at different time 
points. The cell types contain six different time points, including 0 h, 12 h, 24 h, 36 h, 
72 h, and 96 h of differentiation.

Haring dataset [33], including 30 cell types and 1,545 cells, is composed of mouse 
brain dorsal horn cells. The cell types contain 15 inhibitory and 15 excitatory neuronal 
types, including the Gaba 1–15 and Glut 1–15, revealed by clustering cells with similar 
characteristics.

Fig. 2  Clustering performances of DMs and GEMs on seven scRNA-seq datasets. A Distributions of ranking/
re-ranking scores of clustering performances of SINUM DMs generated at different parameter combinations 
(on the x-axis, sorted by decreasing average re-ranking scores). In this analysis, we utilized the FEAST 
algorithm to select the top 1000 representative genes for each dataset and further performed the SINUM 
method to build SCNs and DMs. The k-means (green) and hierarchical (orange) clustering performances of 
these SINUM DMs on seven datasets (dots) were shown in the boxplot. The red dashed line represents the 
mean of the re-ranking scores evaluated by the ranking scores across seven datasets using two clustering 
methods. For each dataset, the ranking scores were measured by sorting the clustering performances 
at different parameter combinations between various box sizes and z score thresholds (for details, see 
Additional file 1: Tables S3 and S4). B Comparisons of k-means clustering performances of SINUM DMs (red), 
CSN DMs (blue), and GEMs (gray) on seven scRNA-seq datasets, evaluated by eight distinct performance 
indexes. Note that the SCNs were generated using whole GEMs. Each dot presents a dataset. ARI, adjusted 
rand index; FMI, F-measure index; AMI, adjusted mutual information; CPT, completeness scores; FMS, 
fowlkes-mallows scores; HMG, homogeneity scores; NMI, normalized mutual information; VMS, V-measure 
scores
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Baron dataset [34] has six sub-datasets, including four human and two mice samples, 
the human sample 1 was collected and used in this study. The human sample 1 sub-data-
set, containing 14 cell types and 1,937 cells, comprises individual pancreatic cells from 
one of four human donors. The cell types are composed of alpha, beta, delta, gamma, 
epsilon, acinar, ductal, quiescent stellate, activated stellate, endothelial, macrophage, 
mast, cytotoxic T, and Schwann cells.

Romanov dataset [35], including seven cell types and 2,881 cells, is composed of the 
mouse neuron cells of the central column of the medial-ventral diencephalon. The cell 
types contain oligodendrocytes, astrocytes, ependymal cells, microglial cells, endothelial 
cells, vascular and smooth muscle lineage cells, and neurons.

Yan dataset [4, 36], including five cell types and 124 cells, comprises the cells from 
human pre-implantation embryos and human embryonic stem cells. The cell types con-
tain human embryonic stem cells and different stages of human preimplantation blasto-
mere, containing oocyte, zygote, 2-cell, late developmental cells.

Darmanis dataset [37], including nine cell types and 466 cells, comprises the cor-
tex cells from adult and fetal human brain samples. The cell types contain astrocytes, 
neurons, oligodendrocytes, endothelial cells, oligodendrocyte precursor cells (OPCs), 
replicating neuronal progenitors (fetal- replicating), quiescent newly born neurons 
(fetal-quiescent).

Results
Single‑cell network using mutual information (SINUM)

Figure 1 illustrates the process of implementing the SINUM method to infer the SCNs 
with the MI score for each edge by quantifying the mutual dependence between the 
two genes. Given gene expression data of a population of cells, the aim of the SINUM 
method is to model SCNs for better estimating network-level similarity and diversity at a 
single-cell resolution level. To optimally model the SCNs, the SINUM method comprises 
two adjustable parameters, the box size to define the neighborhood of the expression 
distribution between any two genes across cells and the z score threshold for determin-
ing a significant level of mutual dependence for each edge. In other words, the box size 
is used to define the upper and lower boundaries of the target cell in the scatter diagram 
for every two genes, which represents the neighborhoods of the target cell for the calcu-
lation of entropy (H) and MI score. To cover the same number of cells, the neighborhood 
will be changed to smaller and larger when the target cell was located in the dense and 
sparse areas of the scatter diagram, respectively. If the z score is larger than the thresh-
old, there is a correlation between genes X and Y for the target cell c, represented by an 
edge; otherwise, there is no edge. Finally, the DM was constructed by counting the num-
ber of edges connected to every gene in each SCN.

To determine the suggested parameter combination for our SINUM, we first col-
lected seven scRNA-seq datasets given with the cell type labels from the GEO database. 
According to k-means and hierarchical clustering analyses of the DMs for the top 1,000 
representative genes at different parameter combinations (a total of 25), we found that 
the SINUM DMs achieved the highest mean F-measure scores (0.595) on these seven 
datasets when the box size and z score threshold were set to 0.2 and 0, respectively 
(Additional file 1: Fig. S1 and Tables S3 and S4). Moreover, the mean F-measure scores 
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for SINUM DMs using this parameter combination were also higher than those for CSN 
DMs (< 0.561) and GEM (< 0.565), irrespective of matrix size (i.e., 1000 or all genes). 
Additionally, to avoid clustering performances being dominant by certain datasets, 
we further measured the ranking and re-ranking scores for determining the suggested 
parameters (see the details in Materials and methods). Similar to the above results, the 
result showed that the SINUM DM generated by using box size = 0.2 and z score > 0 has 
a smaller mean of re-ranking scores between two clustering methods than other param-
eter combinations (Fig.  2A). Note that the smaller the mean of re-ranking scores, the 
better the recommendation. Thus, the box size = 0.2 and z score > 0 as default param-
eters were used to build SINUM SCNs.

Comparison of clustering performances for SINUM DMs, CSN DMs, and GEMs using 

the whole gene expression profiles of seven datasets

It has been known that identifying cell types by inputting global transcriptome profiles 
into unsupervised clustering is one of the main purposes of scRNA-seq [9, 38]. Thus, we 
first constructed the SINUM DMs, CSN DMs, and GEMs based on whole gene expres-
sion profiles of seven datasets. The eight performance indexes (e.g., ARI and FMI) were 
then used for performance evaluation, according to the known cell type labels of each 
dataset. The results indicated that the clustering performances for SINUM DMs were 
superior to CSN DMs and GEM irrespective of performance index or clustering method, 
except for the Darmanis dataset (Fig. 2B and Additional file 1: Table S5). Based on the 
t-SNE plots, we observed that different cell types could be distinguished more clearly 
by SINUM DMs than by CSN DMs and GEM (Fig. 3 and Additional file 1: Figs. S2 and 

Fig. 3  t-SNE plots for visualizing the k-means clustering performances of SINUM DMs, CSN DMs, and GEMs 
on Chu-type, Chu-time, and Yan datasets. For visualization, we applied t-distributed stochastic neighbor 
embedding (t-SNE) to reduce the dimensions to two after reducing by principal component analysis (PCA) to 
20 dimensions. The x-axis and y-axis in each plot represent t-SNE-1 and t-SNE-2, respectively. For each dataset, 
distinct cell types are marked by different colors. Adjusted rand index (ARI) and F-measure index (FMI) were 
employed in comparison of k-means clustering performances since the cell type labels of each dataset had 
been known
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S3); for example, H1 and H9 embryonic cells on the Chu-type dataset and cells captured 
at 0, 12, 24, and 36 h of differentiation on Chu-time dataset. These results validate the 
effectiveness of the SINUM method in presenting a view of biological network systems 
to discriminate the cell types.

Characteristics of SCNs constructed by different methods

The interactions between genes/proteins are considered the backbone of the cellular 
networks to regulate most biological processes [39]. To validate the identified edges of 
SCNs generated by SINUM and CSN methods, we first assembled two human PPI net-
works from the STRING database [25], containing 12,151 proteins (nodes) and 318,125 
PPIs (edges), and from 21 public databases curated by Gysi et al. [26], including 18,505 
proteins and 327,924 PPIs. Next, we constructed the SINUM and CSN SCNs based on 
the default parameters using seven scRNA-seq datasets and calculated the overlap coef-
ficient between the STRING (or Gysi) PPI network and each of either SINUM or CSN 
SCNs (Fig. 4 and Additional file 1: Table S1). The results showed that the overlap coef-
ficients of SINUM SCNs are significantly higher than CSN ones (p < 0.005, Wilcoxon 
signed-rank test), suggesting that SINUM has an advantage over CSN in inferring high-
confidence edges of networks at a single cell level.

Recently, it has been an important finding in studying cellular architecture that most 
biological networks exhibit a scale-free characteristic, P(k) ∼ k−γ [40, 41], where γ is 
the degree exponent; the probability of a node with k links decreases as the node degree 
increases on a log–log plot (i.e., a power-law distribution). The coefficient of determina-
tion (R2) was commonly used to assess the ability of the fitted line to accurately describe 
degree distributions with scale-free network properties [i.e., the linearity between 
log(P(k)) and log(k)] [16, 42]. To further assess whether SCNs are likely to exhibit a scale-
free topology, we adjusted the network scales (i.e., same edge number) by the SINUM 
and CSN SCN sizes separately to avoid a bias caused by network sizes (Additional file 1: 

Fig. 4  Distribution of overlap coefficient between the edges of STRING human PPI network and the SINUM 
(red) or CSN (blue) SCNs on (A) Chu-type, (B) Chu-time, and (C) Yan datasets. The overlap coefficient is defined 
as the size of the intersection divided by the smaller of the size of the two edge sets between the STRING 
human PPI network and each SCN. Data between the different methods were statistically analyzed using 
Wilcoxon signed-rank test. A triple asterisk indicates the p value < 0.005
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Figure S4). First, for adjusting the network scale by each SINUM SCN size, we extracted 
the overlapping subnetwork (i.e., intersection) between each SINUM SCN and the 
STRING human PPI network. Next, the edge z scores of CSN were assigned to all the 
edges of the STRING human PPI network. Finally, according to the number of edges 
in each overlapping subnetwork of SINUM, we further selected the same edge number 
from the STRING human PPI network in descending order of edge z scores of CSN to 
build the corresponding subnetwork of CSN. In other words, SINUM and CSN subnet-
works have the same edge number but may have different network topologies. The same 
procedure was also used to adjust the SINUM network scale by each CSN SCN size. 
According to the results, SINUM SCNs showed higher R2 values than CSN ones on sev-
eral datasets regardless of network scale (p < 0.005, Wilcoxon signed-rank test; Fig. 5). 
Additionally, the higher γ values come from SINUM SCNs depending on SINUM’s net-
work scales (p < 0.005, Wilcoxon signed-rank test; Additional file 1: Fig. S5). With CSN’s 
network scales, despite higher γ values for CSN SCNs, the variations of γ values among 
CSN SCNs on different datasets are apparently higher than those among SINUM SCNs. 
Moreover, compared to the original STRING PPI network, we also observed that the 
overlapping networks between the STRING PPI network and SINUM SCNs are more 
likely to fit scale-free characteristics (i.e., higher R2 and γ values), especially in R2 val-
ues (Fig. 5 and Additional file 1: Fig. S5). Interestingly, we found that the γ values for 
most SINUM and CSN SCNs are between 1 and 2; it is reminiscent of the concordance 
for many biological networks reported by the previous studies [13, 25, 26, 43]. Taken 
together, these results implied that our SINUM method could detect high-confidence 
edges and build the SCNs with the characteristic of scale-free networks.

Detection of the cell‑type marker genes and gene pairs

The previous work has indicated that some genes (also called ‘dark’ genes) have no sig-
nificant difference at a gene expression level but at a network degree level between a 
specific cell type and the other cell types [19]. These genes have been suggested as the 

Fig. 5  Distribution of coefficient of determination ( R2 ) values for the SINUM (red) and CSN (blue) SCNs 
constructed using (A) Chu-type, (B) Chu-time, and (C) Yan datasets. To avoid network size bias, each SCN was 
generated by SINUM (or CSN) method via selecting the edge sorted by respective confidence scores and had 
the same edge number (i.e., same network size) as the original CSN (or SINUM) SCN. Next, these SCNs were 
intersected with the STRING human PPI network to evaluate the scale-free topology fit index (i.e., R2 value). 
The red line represents the R2 value for the STRING human PPI network
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Fig. 6  Detection comparison of cell-type markers in human foreskin fibroblast (HFF) using the SINUM 
DMs, CSN DMs, and GEMs based on Chu-type dataset. (A) t-SNE plot of GEM for Chu-type dataset, colored 
by cell types (ARI = 0.89 and FMI = 0.92). The cell type of HFF (green) was chosen to detect the potential 
markers using the SINUM DMs, CSN DMs, and GEMs, such as gene MTHFD1 (methylenetetrahydrofolate 
dehydrogenase 1) and gene pair MTHFD1-IFI6 (interferon alpha inducible protein 6). Gene MTHFD1 in the 
t-SNE plots, colored by (B) the gene expression level and the network degree level in the (C) SINUM SCNs 
and (D) in the SINUM SCNs. The degree d for networks and raw count r for gene expression were transformed 
by log10(d + 1) and log2(r + 1), respectively. Fisher’s exact test was performed to statistically test whether the 
proportion of gene MTHFD1 as a hub in SCNs is higher among the HFF cells than among the other cells. 
The nodes with degrees within the top 25% of all nodes were defined as the hubs (i.e., hub genes) of each 
SCN. The odds ratio (OR) and p value (P) of statistical analysis are shown. Edge MTHFD1-IFI6 in the t-SNE plots, 
colored by the (E) SINUM edge scores (i.e., z scores) and (F) CSN edge scores (i.e., z scores). Fisher’s exact test 
was performed to statistically test whether the proportion of edges in SCNs is higher among the HFF cells 
than among the other cells
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signatures in distinguishing a specific cell type. Thus, we further examined whether the 
network-based methods (i.e., SINUM and CSN) could identify cell-type marker genes 
and gene pairs on the Chu-type dataset, including H1 embryonic stem cells, H9 embry-
onic stem cells, definitive endoderm cells, endothelial cells, human foreskin fibroblasts 
(HFF), neuronal progenitor cells (NPC), and trophoblast-like cells (Fig.  6A and Addi-
tional file 1: Fig. S6A). Based on the comparison between each cell type and the others, 
we then determined the cell-type marker genes and gene pairs (Additional file 1: Note 
S2). Obviously, the genes MTHFD1 (encoding methylenetetrahydrofolate dehydrogenase 
1; Fig.  6C) and RIN2 (encoding Ras and Rab interactor 2; Additional file  1: Fig. S6C) 
exhibit higher degrees in SINUM SCNs of HFF and NPC types than those in the other 
cell types, respectively. However, between the corresponding cell types and the others, 
these two genes have relatively small differences in network degrees of CSN SCNs and in 
gene expression (Fig. 6B, D and Additional file 1: Fig. S6B, D).

We next statistically tested whether the proportion of gene MTHFD1 (or RIN2) as a 
hub in SCNs is higher among the HFF (or NPC) cells than among the other cells, where 
the nodes with degrees within the top 25% of all nodes were defined as the hubs (i.e., 
hub genes) of each SCN [44]. The results showed that gene MTHFD1 is more likely to 
be the hubs of SINUM SCNs in HFF cells [p value = 7.4e−11 and odds ratio (OR) = 3.14; 
Fisher’s exact test] than those of CSN SCNs (p value = 0.97 and OR = 0.72; Fig. 6C, D). 
Additionally, we also found that the proportion of edge MTHFD1-IFI6 (interferon alpha 
inducible protein 6) in SINUM SCNs is significantly higher among the HFF cells than 
among the other cells (Fig. 6E, F). In HFF cells, the gene MTHFD1 is mainly expressed 
in the G1/S and G2 phases of the cell cycle in HFF cells and plays a regulatory role in 
the early stage of cell growth [45, 46]. Similar results were observed for gene RIN2 and 
gene pair RIN2-WIPF3 (WAS/WASL-interacting protein family member 3) in NPC cells 
(Additional file 1: Fig. S6C-F). These observations are reminiscent of the findings of the 
dark genes between normal and case samples [47] and the non-coding RNAs as dark 
matter in sequence [48]. In short, our SINUM has the ability to characterize cell-type 
marker genes and gene pairs, which may play important roles in specific cell types but 
are generally neglected by traditional differential gene expression analysis.

Network rewiring during embryo development at a single‑cell level

The indispensable vital organs in adults, such as the trachea, lungs, liver, pancreas, and 
thyroid, are all derived from the definitive endoderm [32, 49, 50]. Here, we applied 
SINUM to reconstruct time-dependent networks on the Chu-time dataset for exploring 
embryo development at a single-cell resolution. The dataset comprises 758 cells derived 
from human embryonic stem cells that give rise to definitive endoderm cells at six time 
points (0, 12, 24, 36, 72, 96 h). We then collected 58 embryo development-related genes 
(Additional file 1: Table S6) from several studies [19, 32, 51, 52] and performed an analy-
sis of time-dependent network rewiring on the basis of these genes. Note that 4 out of 
58 genes are not expressed or expressed in a small number of cells (< 10 cells) on the 
Chu-time dataset and would be discarded in this analysis. Each edge in a time-depend-
ent network represents that the two genes were determined as associated by our SINUM 
method in more than 70% of cells at a particular time point. We found that 81.5% of 
genes (44/54) have at least an association with each other at one of these time points 
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(Fig. 7). The results illustrated that the edge density of the network gradually increased 
until the 36th hour and then decreased, implying that the associations among these 
44 genes were strongest at the 36th hour (Fig. 7). Consistent with our result, previous 
research demonstrated that the markers of mesodermal and endodermal lineage were 
significantly up-regulated within 36 h after differential induction of human embryonic 
stem cells (hESC) [53], implicating the 36th hour is a critical stage of embryo differentia-
tion. Moreover, the 36th hour is a key time point during the progression to the four-cell 
stage in the human embryo development, as well as the activation point of ESSP2, which 
refers to a set of embryonic activated genes [54]. Collectively, all evidence indicates that 
the SINUM method not only successfully identifies the important time points of hESC 
differentiation process but also provides potential associations among differentiation-
related genes.

POU5F1 (OCT3/4), MYC (c-Myc), SOX2, and KLF4 have been recognized as key 
transcription factors during pluripotent stem cell induction [55]. Also, recent works 
indicated that NANOG as a transcription factor plays a crucial role in self-renewal and 

Fig. 7  Network rewiring diagrams among 44 embryo development-related genes at four different time 
points based on the Chu-time dataset. The SCNs were constructed by our SINUM method using the Chu-time 
dataset. Each edge in the diagram indicates that two genes are associated in more than 70% of cells at a 
particular time point. The node color (or colored outline) indicates that the gene has the highest mean 
degree among all SCNs (i.e., all cells) at a specific time point than at the other time points
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maintenance of pluripotency in hESC [56]. On the basis of these five transcription factor 
genes, we executed the network degree analysis of SINUM SCNs built using the Chu-
time dataset. The results showed that genes POU5F1, NANOG, and SOX2 exhibited the 
highest network degree at 0 h, suggesting these genes play a critical regulatory role in 
the early stage of embryo development (Fig. 8). We further found that the highest degree 
of genes MYC and KLF4 occur at the 36th hour. Previous studies have observed that 
the gene KLF4 is highly expressed from mouse four-cell to morula stage embryos and in 
human morula stage embryos [57]. Moreover, gene MYC has been indicated to be highly 
expressed from the eight-cell to blastocyst stage of embryo development in both mice 
and humans [55, 58]. These results suggest that MYC and KLF4 may regulate and induce 
the embryos into the next developmental stage after activation of POU5F1, NANOG, 
and SOX2. Taken together, the network degree analysis using our SINUM enables the 
characterizations of time-dependent network rewiring corresponding to embryo devel-
opmental stages at a single-cell resolution.

Discussion
The scRNA-seq technology provides the gene expression data at a single-cell resolu-
tion, but extracting inherent biological system information (e.g., cellular networks) to 
get insight into the detail remains a major challenge. In this study, we provide SINUM 
as a new strategy for single-cell data analysis, which introduces mutual information to 

Fig. 8  Violin plots of network degrees for five key transcription factors involved in the induction and 
maintenance of pluripotency in embryonic stem cells. The network degrees of the five key transcription 
factor genes, including POU5F1 (OCT3/4), NANOG, SOX2, KLF4, and MYC (c-Myc), in the SINUM SCNs generated 
using the Chu-time dataset are shown at six time points during embryo development. The dots with the 
same color represent the network degrees in different SINUM SCNs inferred at each time point. The degree 
(d) was transformed by log10(d + 1). The black line indicates the mean degree of the genes among all SCNs at 
that time point
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reconstruct SCNs. SINUM has several unique advantages. First, without prior knowl-
edge of clusters or cell types, applying the dimension-reduction and clustering methods 
in the network degree matrix of SINUM SCNs is able to identify cell types on vari-
ous scRNA-seq data and is superior to those of the other methods. Previous work has 
also mentioned that MI is relatively robust in terms of distinguishing various cluster-
ing solutions [59]. Second, capturing the intrinsic network architecture of each cell from 
scRNA-seq data can be considered a reverse engineering task. Compared to traditional 
statistical measures, the reverse engineering task will benefit from the flexibility of infor-
mation theoretical measures [60]. The accurate estimate of probability distributions for 
calculating MI generally depends on the sample sizes [23, 24]. Therefore, our theoretical 
model using density estimation and data discretization to conduct grid-based MI meas-
ures could be expected to be sensitive and appropriate for predicting gene–gene asso-
ciations from scRNA-seq data, which are generally sufficiently large. Additionally, the 
SINUM method is designed to construct a close-to-real network (i.e., a network with 
scale-free topology) on a single-cell basis from RNA-seq data; in other words, recon-
structing the cellular network for each cell, including both cell-specific and common 
edges. These may explain why SINUM SCNs overlap with the two human PPI networks 
more than CSN SCNs since these PPI networks themselves also displays a scale-free fea-
ture (R2 value of 0.81 and γ value of 1.4 for STRING and R2 value of 0.88 and γ value of 
1.6 for Gysi et  al.). Third, our SINUM could identify cell-type marker genes and gene 
pairs with a differential network degree between a certain cell type and the others but no 
differential gene expression, such as MTHFD1 and MTHFD1-IFI6 in HFF cells. Finally, 
the SINUM method has a utility in investigating time-dependent changes in associations 
among functional genes and further compensates for the traditional differential expres-
sion analysis on scRNA-seq data.

SINUM using mutual information has several limitations and challenges relative to 
dynamical system models [61, 62]. First, our SINUM method may overestimate some 
indirect gene–gene associations if these two genes are directly associated with one or 
several common genes (i.e., intermediary genes). Therefore, one of our future topics is 
to reduce the false positive rate since the current SINUM SCNs may have higher den-
sity than the real molecular network (e.g., gene regulatory network or PPI network) in 
the target cell. Second, similar to the CSN method, our SINUM method was designed 
to detect gene–gene associations (undirected edges) for building single-cell networks. 
In biological networks, the directions of the edges in many pathways, such as sign-
aling transduction, metabolic reaction, and transcriptional/translational regulation, 
could be regarded as the causal relationships between two molecules and are impor-
tant to understand cellular functions and processes as well as disease mechanisms. 
Hence, in the future, we aim to determine the directions between two genes in SCNs. 
For example, partial mutual information may be a useful means for detecting candi-
date causal and direct interactions [60]. Finally, the computational time and memory 
usage of our SINUM method grow exponentially with the numbers of genes and gene 
pairs (Additional file 1: Fig. S7). It is reminiscent of the discussion of scalability issues 
regarding the feature dimension and the sample size for single-cell data analysis in 
previous work [63]. Indeed, the SINUM method could be classified as a multivari-
ate gene/biomarker filtering method for scRNA-seq data analysis due to transforming 
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the gene expression matrix into a network degree matrix for feature transformation 
and selection. Thus, SINUM suffers from the same problem of the scalability of the 
feature selection, including the feature dimensionality (i.e., gene/gene pair number) 
and the sample size (i.e., cell number). There are two possible solutions: (1) parallel 
computing to reduce the computational time; and (2) only estimating the gene pairs 
which have the corresponding edges in the reference network (e.g., the STRING or 
literature-curated PPI network). For example, the computational time and the mem-
ory usage of the SINUM method in detecting the same edge number as the STRING 
human PPI network are around 0.4 min and 35 MB per cell, respectively. Therefore, 
we collected a large scRNA-seq dataset, 10 × PBMC, with more than 10  k cells and 
used solution (2) to ease the computational burden for examining whether SINUM 
still outperforms the CSN method in clustering performances. Based on the refer-
ence network (here is the STRING human PPI network), we constructed SINUM and 
CSN DMs using 10 × PBMC and the other seven datasets and then conducted the 
dimensionality-reduction and clustering analysis. Similar to the above results using 
the whole gene expression profiles, we found that SINUM DMs achieved better per-
formances than CSN DMs on most of the datasets regardless of sample size (i.e., cell 
number) or evaluation indexes (Additional file 1: Table S7). This analysis suggests the 
feasibility of the SINUM method using a reference network to reduce computational 
time while preserving the expected performance.

Conclusion
Our results shed light on the availability of MI measures in constructing SCNs and vali-
dated the accuracy (e.g., adjusted rand index and F-measure index) and robustness (e.g., 
datasets with different cell numbers) of SINUM in cell type identification. To our knowl-
edge, SINUM provides a new framework to facilitate the discovery of network architec-
ture at a single-cell level, heterogeneity among/within cell populations, as well as cell 
type-specific markers.
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