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Background
Advances in sequencing and mass spectrometry technologies have allowed access to 
extensive -omics data sets such as transcriptomics, proteomics, and metabolomics, 
which allows the integration of different omics data to gain biological insights into com-
plex diseases [1]. In recent years, multi-omics integration methods such as multi-omics 
factor analysis (MOFA and MOFA +) have been proposed to integrate multiple different 
layers of molecular profiles and capture biological-relevant information using latent fac-
tors [2, 3]. Another strategy is multi-omics network inference for integrating multiple 
-omics data sets to infer molecular interactions with respect to the trait(s) of complex 
disease and gain insights into associated biological processes [4]. Recent multi-omics 
network inference methods include knowledge-guided multi-omics network inference 
(KiMONo) [5] and Biomarker discovery using Latent Variable Approaches for Omics 
Studies (DIABLO) [6].

Abstract 

Summary:  Sparse multiple canonical correlation network analysis (SmCCNet) 
is a machine learning technique for integrating omics data along with a variable 
of interest (e.g., phenotype of complex disease), and reconstructing multi-omics 
networks that are specific to this variable. We present the second-generation SmCCNet 
(SmCCNet 2.0) that adeptly integrates single or multiple omics data types along with a 
quantitative or binary phenotype of interest. In addition, this new package offers 
a streamlined setup process that can be configured manually or automatically, ensur-
ing a flexible and user-friendly experience.

Availability:  This package is available in both CRAN: https://​cran.r-​proje​ct.​org/​web/​
packa​ges/​SmCCN​et/​index.​html and Github: https://​github.​com/​Kechr​isLab/​SmCCN​
et under the MIT license. The network visualization tool is available at https://​smccn​et.​
shiny​apps.​io/​smccn​etnet​work/.
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Canonical Correlation Analysis (CCA) [7], which seeks to find the linear combina-
tion (canonical weight) that maximizes the correlation between two sets of data [7]. 
When there are more than two datasets, Sparse multiple Canonical Correlation Analy-
sis (SmCCA) is used to maximize all pairwise relationships between multipel datasets 
[8] and has been widely used for multi-omics integration [9]. Although there are many 
existing multi-omics integration methods based on sparse multiple canonical correla-
tion analysis, many methods focus on predictive tasks [10, 11], and only a few studies 
have focused on reconstructing multi-omics interaction networks with respect to the 
trait of complex disease [6]. Sparse multiple Canonical Correlation Network Analysis 
(SmCCNet) is such a canonical correlation-based integration method that reconstructs 
phenotype-specific multi-omics networks, and simulation studies have shown that it 
outperforms other methods in detecting the correct features [12]. SmCCNet starts by 
using SmCCA to construct a global multi-omics interaction network with respect to a 
trait, then implements the hierarchical clustering algorithm to partition the global net-
works into multiple subnetwork modules. Each subnetwork module represents a specific 
subset of potential biological pathways/processes. SmCCNet has been applied to differ-
ent multi-omics integration tasks such as extracting protein-metabolite networks [13], 
mRNA-miRNA networks [14], and microbiome-proteomics network [15] associated 
with disease phenotypes.

Despite successful applications, SmCCNet in its current version has several limita-
tions. In the SmCCA modeling step: (1) the first version of SmCCNet (SmCCNet 1.0) 
only analyzes two omics data types with a quantitative phenotype, and it does not con-
sider a single-omics data or more than two -omics data; (2) SmCCNet 1.0 can only treat 
a binary phenotype as quantitative phenotype, similar to other methods like DIABLO 
and (3) SmCCNet 1.0 cannot select scaling factors that prioritize correlation structures 
of interest (e.g., omics-phenotype correlation over omics-omics correlation). Besides 
these modeling steps, SmCCNet 1.0 has other drawbacks in downstream network steps: 
(1) after clustering molecular features into different modules, sometimes the subnet-
works will contain molecular features that contribute less to the network, and SmCCNet 
1.0 is not able to eliminate those features; (2) SmCCNet 1.0 uses principal component 
analysis to summarize each network, but it fails to consider the network topology (i.e., 
how each molecular feature interacts with other network features); (3) SmCCNet 1.0 
requires more than 1000 lines of code with hard-coded setup to run through the pipe-
line, which usually takes more than 24 h to run through even after parallel processing, 
making it computationally inefficient; and (4) there is a lack of visualization options in 
SmCCNet 1.0, especially for multi-omics network visualization.

To enhance the practical utility of SmCCNet with improved or novel methods and 
functionalities, we have rewritten and upgraded the software (SmCCNet 2.0) to flexibly 
accommodate one or more omics data types, as well as a binary phenotype. We also cre-
ated an automated end-to-end pipeline that obtains the final network result with just a 
single line of code to substantially enhance the usability of the pipeline. Regarding net-
work analysis steps, we proposed a new network pruning algorithm after the network 
clustering step to reduce the subnetworks so that the most informative network struc-
ture can be obtained. To summarize each final subnetwork, we implemented the NetSHy 
network summarization algorithm to take network topology into account. Furthermore, 
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the other improvements from SmCCNet 2.0 include a data preprocessing pipeline, 
enhanced computational efficiency, an online RShiny application for network visualiza-
tion, and the storage of accessible and reproducible network analysis results in a user-
specified directory.

Methods and implementation
Overall, we showcased that we were able to improve the following functions within 
SmCCNet:

•	 Multi-omics SmCCNet with quantitative phenotype allows integration of more 
than two -omics data (improved functionality, Section Multi-omics SmCCNet with 
Quantitative Phenotype).

•	 Novel hybrid SmCCNet algorithm with binary phenotype (novel functionality and 
algorithm, section “Multi-omics SmCCNet with binary phenotype”).

•	 Single-omics implementation of SmCCNet algorithm with either quantitative or 
binary phenotype (novel functionality and algorithm, section “Single-omics SmCC-
Net with quantitative/binary phenotype”).

•	 Novel model-wise optimal scaling factors selection algorithm for multi-omics 
SmCCNet (novel functionality and algorithm, section “Scaling factor determina-
tion”).

•	 Implementation of NetSHy network summarization method to summarize network 
based on network topology (novel functionality, section “Network clustering and 
pruning”).

•	 Subnetwork pruning algorithm to reduce the size of multi-omics network (novel 
functionality and algorithm, section “Network Clustering and pruning”).

•	 New subnetwork visualization RShiny application for multi-omics interaction net-
work visualization (novel functionality, section “Network visualization”).

•	 Fast Automated SmCCNet conducts end-to-end pipeline with a single line of code 
and further improves the algorithm speed (novel functionality, section “Automated 
SmCCNet”).

•	 New -omics data preprocessing pipeline to filter out features with low variability, 
regress out clinical covariates, and center/scale (novel functionality, a general pre-
processing step before running SmCCNet).

•	 Simpler coding setup to run SmCCNet manually and boost the algorithm speed by 
100–1000x (improved functionality, described in section “Methods and implementa-
tion”).

Before running SmCCNet, the user can apply a streamlined function to preprocess the 
omics data, including filtering features with low Coefficient of Variation (CoV), center-
ing and scaling each molecular feature, and regressing out effects from covariates. The 
data preprocessing pipeline can be implemented by using the dataPreprocess() function. 
The end-to-end pipeline of SmCCNet takes in any number of molecular profiles (omics 
data) and either a quantitative or binary phenotype, and outputs the single/multi-omics 
subnetwork modules that are associated with the phenotype. The general workflow of 
SmCCNet is shown in Fig. 1.
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Number of omics data and phenotype modality

In general, SmCCNet consists of the following steps (See Figs. 2, 3, and 4):

•	 Step I: Determination of SmCCA/SPLSDA sparsity penalty parameters. The user 
can select the penalties for feature selection based on prior knowledge. Alterna-
tively, the user can pick sparsity penalties based on a K-fold cross-validation (CV) 
procedure that minimizes the total prediction error (e.g., Fig. 2). The K-fold CV 
procedure enhances the robustness of selected penalties when generalizing to 
similar independent omics data sets.

•	 Step II: Subsampliing algorithm that randomly subsample omics features, apply 
SmCCA/SPLSDA with chosen penalties and compute a canonical weight vector 
for each subsample. Repeat the process many times.

•	 Step III: Feature similarity matrix computation based on canonical weight matrix.
•	 Step IV: Hierarchical tree clustering to the similarity matrix to simultaneously 

identify multiple subnetworks.
•	 Step V: Network pruning algorithm to prune each subnetwork obtained from Step 

IV and visualize the -omics network with an RShiny application (https://​smccn​et.​
shiny​apps.​io/​smccn​etnet​work/) or Cytoscape.

Fig. 1  SmCCNet Workflow. The workflow of the second-generation SmCCNet, which takes in 
single-/multi-omics data with quantitative/binary phenotype and outputs multiple pruned omics 
subnetwork modules. Steps in the box represent the stepwise process of executing the SmCCNet, and if 
automated SmCCNet is used, all these steps within the box will be executed automatically

https://smccnet.shinyapps.io/smccnetnetwork/
https://smccnet.shinyapps.io/smccnetnetwork/
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Steps III to V remain consistent across all scenarios, regardless of the number of omics 
data types used and the phenotype modality involved. However, Steps I and II differ 
depending on the specific scenario. Below, we provide detailed descriptions for Steps I 
and II for each scenario:

Multi‑omics SmCCNet with quantitative phenotype

If multi-omics data is used with quantitative phenotype, same as SmCCNet 1.0, 
we implement the SmCCA algorithm (Eq.  1) for feature selection and network 
construction, which is achieved by using  getRobustWeightsMulti(). For T omics 

Fig. 2  Multi-Omics SmCCNet with Quantitative Phenotype Workflow. The workflow of the 
second-generation SmCCNet with multi-omics data and quantitative phenotype

Fig. 3  Multi-Omics SmCCNet with Binary Phenotype Workflow. The workflow of the second-generation 
SmCCNet with multi-omics data and binary phenotype
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data X1,X2, ...XT  and a quantitative phenotype Y measured in the same subjects. 
SmCCA finds the canonical weights w1,w2, ...,wT  that maximize the (weighted or 
unweighted) sum of pairwise canonical correlations between X1,X2, ...,XT  and Y, 
under sparsity constraints in Equ  1. In SmCCNet, the sparsity constraint func-
tions Pt(·), t = 1, 2, ...,T  , are the least absolute shrinkage and selection operators 
(LASSO) [16]. The weighted version corresponds to ai,j , bi (also called scaling factors), 
which are not all equal; the unweighted version corresponds to ai,j = bi = 1 for all 
i, j = 1, 2, ...,T  , where ai,j are for between -omics relationships, while bi is for the sin-
gle omics and phenotype relationship.

The sparsity penalties ct influence how many features will be included in each subnet-
work. With pre-selected sparsity penalties, the SmCCNet algorithm creates a network 
similarity matrix based on SmCCA canonical weights from repeatedly subsampled 
omics data and the phenotype and then finds multi-omics modules that are relevant 
to the phenotype. The subsampling scheme improves network robustness by analyzing 
subsets of omics features multiple times and forms a final similarity matrix by aggregat-
ing results from each subsampling step.

In step I, we use k-fold cross-validation to determine the optimal penalty param-
eters based on the loss function. In SmCCNet 1.0, the loss function is defined to be 
the prediction error, which is defined as follows:

(1)

(w1,w2, ...,wT ) = arg max
w̃1,w̃2,...,w̃T
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Fig. 4  Single-Omics SmCCNet with Quantitative/Binary Phenotype workflow The workflow of the 
second-generation SmCCNet with single-omics data and quantitative/binary phenotype
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where trainCC and testCC are defined as the training canonical correlation and testing 
canonical correlation respectively. In SmCCNet 2.0, the loss function is defined to be the 
scaled prediction error:

Compared to prediction error, the scaled prediction error aims not only to minimize the 
discrepancy between the training and testing canonical correlations but also to maxi-
mize the testing canonical correlation. This approach effectively prevents the selection 
of penalty parameters that could result in extremely low testing canonical correlations.

In Step II, to enhance the robustness of the multi-omics network, we employ a sub-
sampling algorithm.1 This algorithm selects only a fraction of the molecular features of 
each molecular profile during each iteration of subsampling. The complete workflow 
of multi-omics SmCCNet with quantitative phenotype is shown in Fig. 2. The detailed 
implementation can be found in the package vignette https://​cran.r-​proje​ct.​org/​web/​
packa​ges/​SmCCN​et/​vigne​ttes/​SmCCN​et_​Vigne​tte_​Multi​Omics.​pdf.

The setup of parameters substantially impacts the results and robustness of the 
SmCCNet. Specifically, the choice of scaling factors influences which molecular fea-
tures are incorporated into the final networks. If scaling factors are set to emphasize 
the omics-phenotype relationship, more molecular features with strong correlations to 
phenotypes are selected. Conversely, prioritizing between-omics associations leads to 
the inclusion of molecular features with robust inter-omics connections. To optimize 
these scaling factors, cross-validation can be used (details can be found in Sect.  ), and 
we recommend setting the cross-validation tuning grid to favor the omics-phenotype 
relationship. This approach aims to generate subnetworks with a stronger association to 
phenotypes. Additionally, the number of subsampling iterations affects the robustness of 
the networks; a greater number of iterations typically results in more robust subnetwork 
outcomes. Given these considerations, depending on the computational resources avail-
able, we suggest performing subsampling between 100 and 1000 times to enhance the 
robustness of the results.

Multi‑omics SmCCNet with binary phenotype

We developed the hybrid algorithm between Sparse Partial Least Squared Discrimi-
nant Analysis (SPLSDA) [17] and SmCCA for feature selection and network construc-
tion, which is achieved by using getRobustWeightsMultiBinary(). SPLSDA is a two-step 
approach to implement the partial least squared algorithm with the binary outcome, 
which is a combination of partial least squared and logistic regression.

First, SmCCA (Sparse Multiple Canonical Correlation Analysis) is applied without 
involving phenotype data to filter molecular features and identify those that are intercon-
nected. Next, SPLSDA (Sparse Partial Least Squares Discriminant Analysis) is employed 

(2)PredErr = |trainCC − testCC|,

(3)scaledPredErr =
|trainCC − testCC|

|testCC|
.

1  We drop subsampling from step I, which substantially increases the computational speed.

https://cran.r-project.org/web/packages/SmCCNet/vignettes/SmCCNet_Vignette_MultiOmics.pdf
https://cran.r-project.org/web/packages/SmCCNet/vignettes/SmCCNet_Vignette_MultiOmics.pdf
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on the chosen features across all molecular profiles to determine which features are 
associated with the phenotype. Finally, the canonical weights obtained from SmCCA 
and the feature importance weights from SPLSDA are combined into a weighted aver-
age, providing a consolidated measure of each feature’s relevance.

To select the optimal penalty parameters, k-fold cross-validation is implemented 
on the complete hybrid algorithm to evaluate penalty terms on SmCCA and SPLSDA 
simultaneously. In SmCCNet 2.0, various metrics can be used to evaluate each set of 
penalty parameters, which include prediction accuracy, AUC score, precision, recall, and 
F1 score.

After the optimal penalty terms are selected, the hybrid method is run on the com-
plete dataset, and, the same as regular SmCCNet, we use the subsampling scheme to 
ensure the robustness of the multi-omics network.

The complete workflow of multi-omics SmCCNet with quantitative phenotype is 
shown in Fig. 3. Consider X1,X2, ...,XT as T omics datasets, and Y as the phenotype data. 
The hybrid SmCCNet algorithm with binary phenotype is defined as follows (Step II in 
Fig. 3 run through Stage 1–3):

•	 Stage 1: Weighted/Unweighted Sparse Multiple Canonical Correlation Analysis 
(SmCCA, Step I(a) in Fig. 3): This is performed on X1,X2, ...,XT (excluding pheno-
type data). The output is canonical weight vectors (with nonzero entries, zero entries 
are filtered) W̃t ∈ R

p
(sub)
t ×1, t = 1, 2, ...,T  , which represent the omics-omics connec-

tions. In this step, we filter out features that have no connections with other features, 
which helps reduce dimensionality. Note that we tend to set relaxed penalty terms 
for this step to include as many omics features as possible to increase the perfor-
mance of the classifier in the next step.

•	 Stage 2: Subset Omics Data (Step I(a) in Fig. 3): Each dataset X1,X2, ...,XT is sub-
setted to include only omics features selected in Step 1, calling subsetted data 
X
(sub)
t ∈ R

n×p
(sub)
t .

•	 Stage 3: Multi-omics Data Concatenation and Sparse Partial Least 
Squared Discriminant Analysis Implementation (SPLSDA, Step I(b) in 
Fig.  3): The subsetted datasets X

(sub)
1 ,X

(sub)
2 , ...,X

(sub)
T  are concatenated into 

X (sub) = [X
(sub)
1 ,X

(sub)
2 , ...,X

(sub)
T ] ∈ R

n×p(sub) , p(sub) =
∑T

i=1 pi . The SPLSDA algo-
rithm is then run to extract R latent factors and a projection matrix, by default, R is 
set to 3. The projection matrix is defined as Z ∈ R

p(sub)×R . Latent factors are defined 
as L = [r1, r2, ..., rR] = X (sub) · Z ∈ R

n×R.
•	 Stage 4: Latent Factors Aggregation (After Step II and Before Step III in 

Fig.  3): The R latent factors are aggregated into one using logistic regres-
sion, defined by logit(Y ) = α1r1 + α2r2 + ...+ αRrR . Feature weights 
are given by aggregation of the projection matrix from Sparse PLSDA 
W ∗

t = Zt · α ∈ R
p
(sub)
t ×1, t = 1, 2, ...,T ,α = [α1,α2, ....,αR] ∈ R

R×1 , where Zt is the 
subset of projection matrix Z such that it only includes features from the tth omics 
data.

•	 Stage 5: Final Canonical Weight Normalization and Calculation for Global Net-
work Construction (Step III in Fig. 3): The feature weights W ∗

1 ,W
∗
2 , ...,W

∗
T  based 

on SPLSDA are normalized to have an L2 norm of 1. Let γ1 and γ2 be two scalars 
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representing the strength of omics-omics and omics-phenotype connections, 
respectively. The final canonical weight is obtained by combining the canonical 
weight from step 1 and the feature weight from the classifier from step 4: 
Wt =

γ1
γ1+γ2

W̃t +
γ2

γ1+γ2
W ∗

t , t = 1, 2, ...,T .

The configuration of parameters in SmCCNet influences both the results and the 
robustness of the inferred networks. One key parameter is the between-shrinkage fac-
tor, which determines the molecular features included in the final networks. Setting 
this factor to emphasize the omics-phenotype relationship (higher values) leads to the 
selection of molecular features with strong correlations to phenotypes. Conversely, a 
focus on between-omics associations results in the inclusion of features with strong 
inter-omics connections. Generally, it is advisable to set the between-shrinkage factor 
to favor the omics-phenotype relationship to generate subnetworks with a stronger 
association to phenotypes. Additionally, the robustness of the networks can be influ-
enced by the number of subsampling iterations, as discussed in Sect. , and the num-
ber of latent factors in SPLSDA. A higher number of latent factors typically leads to 
more robust network outcomes. Depending on the computational resources available 
and the data’s dimensionality, we recommend setting the number of latent factors 
between 3 and 10. Furthermore, the choice of evaluation metric can also impact the 
final network results. While the default evaluation method is the AUC score, other 
metrics such as accuracy, precision, recall, and F1 score may be considered based on 
specific analytical needs or study goals. This flexibility allows researchers to tailor the 
evaluation to better reflect the focus and nuances of their specific data and research 
objectives.

Single‑omics SmCCNet with quantitative/binary phenotype

In multi-omics SmCCNet, the between-omics interaction is taken into account. How-
ever, in the single-omics setting, this is no longer considered. Therefore, we developed 
two functions separately to tackle single-omics analysis (Fig. 4). If a quantitative phe-
notype is used, then sparse canonical correlation analysis (SCCA) is used to construct 
the global network by using the function  getRobustWeightsSingle(); if a binary phe-
notype is used, then both stage 3 and 4 of the hybrid algorithm above are used with 
SPLSDA algorithm by using the function getRobustWeightsSingleBinary(). For more 
information about the single-omics SmCCNet pipeline setup, runnable examples are 
provided in the package vignette. In addition, this pipeline has been applied to the 
proteomics network analysis to identify the single-omics networks associated with 
pulmonary function and smoking behavior [18].

Scaling factor determination

The scaling factors ( ai,j and bj ) in Eq. 1 can be supplied to prioritize the correlation 
structure of interest in Steps I and II of the SmCCNet Pipeline. Users can choose 
to supply their own choice of scaling factors or select them with the model-based 
approaches. We provide three different methods for selecting the scaling factors.
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Prompt to define scaling factors

If a user is able to supply the scaling factors for the model based on prior knowl-
edge, an interactive function scalingFactorInput() can be used to enter scaling factors 
manually for each pairwise correlation. For instance, when entering scalingFactorInpu
t(c(’mRNA’,’miRNA’, ’phenotype’)), three sequential prompts will appear, requesting the 
scaling factors for mRNA-miRNA, mRNA-phenotype, and miRNA-phenotype rela-
tionships, respectively.

Pairwise correlation to select scaling factors with automated SmCCNet

As an alternative, the pairwise correlation between each pair of omics data can be 
used to set the scaling factors. For this option, SCCA is run with a stringent penalty 
pair. The resulting canonical correlation will be treated as the between-omics scaling 
factor, while a scaling factor of 1 will be used for the omics-phenotype relationship. 
In addition, we introduce another parameter called the shrinkage factor to prioritize 
either the omics-omics relationship or the omics-phenotype relationship. For exam-
ple, in a multi-omics analysis with two omics data, if the omics-omics correlation is 
0.8 by SCCA, and the shrinkage parameter is 2, then the final scaling factors are set 
to (a, b1, b2) = c(0.4, 1, 1) , where a are the between-omics relationship and b’s are the 
omics-phenotype relationships. This method is currently implemented in the auto-
mated SmCCNet approach.

Cross‑validation to select scaling factors

The approach employs cross-validation to identify optimal scaling factors, illustrated 
using two omics types as an example. Initially, candidate sets of scaling factors are gener-
ated with all omics-omics scaling factors set to 1, and omics-phenotype scaling factors 
adjusted so their sum equals 1 for comparability. For instance, scaling factors (a1,2, b1, b2) 
must fulfill the condition a1,2 + b1 + b2 = 1 . A nested grid search strategy is then 
applied to simultaneously optimize the scaling factors and penalty parameters. Within 
this framework, as different sets of scaling factors are evaluated, the optimal penalty 
parameters are selected. For each candidate set of scaling factors, the optimal sparse 
penalty parameters (denoted as l1, l2) are identified via k-fold cross-validation. The eval-
uation metric’s value corresponding to these parameters is recorded, which is associ-
ated with the optimal penalty parameters for each candidate set. This process is repeated 
across all potential combinations of scaling factors. The set of scaling factors yielding 
the best performance, according to the chosen evaluation metric, is selected as the opti-
mal set, together with its associated optimal penalty parameters. Given the exponential 
increase in possible scaling factor combinations with more than three types of -omics 
data, the use of the automated SmCCNet algorithm is recommended for selecting opti-
mal scaling factors in analyses involving larger numbers of -omics data types.

Network clustering and pruning

The adjacency matrix is formed by taking the outer product of the canonical weights. 
After obtaining the adjacency matrix, hierarchical clustering [19] is implemented to 
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partition molecular features into different network modules, and this is achieved by 
using the function getAbar().

The objective of Step V is to prune the network by removing features (nodes) that have 
no/little contribution to the subnetwork using a network summarization score of Prin-
cipal Component Analysis (PCA) [20] or network summarization via a hybrid approach 
leveraging topological properties (NetSHy) [21] to produce a densely connected pruned 
subnetwork that maintains a high summarization correlation with respect to the pheno-
type (Fig. 5). Initially, the network features are ranked based on their PageRank scores 
[22]. Beginning with a user-defined minimum baseline network size, the method iter-
atively includes additional features, evaluating the summarization correlation with 
respect to both the phenotype and the baseline network at each step until reaching the 
optimal subnetwork size. The network pruning step is achieved by implementing the 
function networkPruning(), and the step-by-step description is given as follows:

•	 Calculate PageRank score for all molecular features in the unpruned network and 
rank them according to PageRank score.

•	 Start from minimally possible network size m1 , iterate the following steps until 
reaching the maximally possible network size m2 (defined by users):

–	 Add one more molecular feature into the network based on node ranking, then 
calculate NetSHy/PCA summarization score (PC1, PC2, PC3) for this updated 
network.

–	 Calculate the correlation between this network summarization score and phe-
notype for the current network size i ∈ [m1,m2] , and only use the PC with the 
highest correlation (determined by absolute value) w.r.t. phenotype, define this 
correlation as ρ(i,pheno).

Fig. 5  Network Pruning Algorithm Conceptual Figure. Conceptual figure of network pruning algorithm with 
the y-axis to be NetSHy/PCA summarization score’s correlation to phenotype (black) or baseline network at 
m1 (red). m∗ is the network size with the highest correlation to phenotype. x (x >m∗ ) is the maximum network 
size that has a least 0.8 correlation to the baseline network at m1 . mopt corresponds to the optimal network 
size
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•	 Identify network size m∗ ( m∗ ∈ [m1,m2] ) with ρ(m∗,pheno) being the maximally possi-
ble summarization score correlation w.r.t. phenotype (determined by absolute value).

•	 Treat m∗ as the new baseline network size, let ρ(m∗,i) be the correlation of summariza-
tion score between network with size m∗ and network with size i. Define x to be the 
network size ( x ∈ [m∗,m2] ), such that x = max{i|(i ∈ [m∗,m2])&(|ρ(m∗,i)| > 0.8)}.

•	 Between network size of m and x, the optimal network size mopt is defined to be the 
maximum network size such that |ρm(opt,pheno)

| ≥ 0.9 · |ρ(m,pheno)|.

Network visualization

The SmCCNet pipeline saves the final subnetwork information in a .Rdata file, which 
does not include data for network visualization. To enable the translation of this .Rdata 
file into a visual representation of the network, we have developed an R Shiny applica-
tion, accessible at https://​smccn​et.​shiny​apps.​io/​smccn​etnet​work/ (Fig. 6). This applica-
tion provides a user-friendly platform for visualizing single or multi-omics networks, 
utilizing subnetworks created and stored by SmCCNet. Users can obtain visualizations 
simply by uploading a.Rdata file with the naming convention ’size_a_net_b.Rdata’, where 
’a’ represents the pruned network size, and ’b’ indicates the network module index fol-
lowing hierarchical clustering.

To refine the network visualization, the application offers several adjustable param-
eters. The Correlation Cut-Off slider allows users to filter network edges based on corre-
lation values, enabling a focus on stronger connections. The Network Layout drop-down 
menu presents different layout options, which facilitates the selection of the preferred 

Fig. 6  Example R Shiny Interface for Network Information Visualization. The example interface for network 
visualization. The users can upload network .Rdata file to the application, and tune the visualization 
parameters to obtain the optimal visual representation of the -omics network. Other network-relevant 
information (PC loading bar graph, correlation heatmap, 3-D subject plot, feature-phenotype correlation 
table) can also be visualized using this application. Example figures can be found in Sect. 

https://smccnet.shinyapps.io/smccnetnetwork/
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visual arrangement for the network. Users can also adjust the sizes of vertex labels and 
vertices through the respective Vertex Label Size and Vertex Size sliders. Moreover, the 
Edge Intensity slider provides control over the color intensity and width of the edges. 
After adjusting these parameters to their satisfaction, users can generate the network 
visualization by clicking the ’Plot Network’ button. The ’Download Plot’ button enables 
the download of the network visualization as a PDF.

Additionally, this application also enables the demonstration of (1) the correlation 
matrix heatmap between network features; (2) the visualization of PC loadings for the 
first 3 PCs; (3) The 3-D graph visualizing the distribution of subjects with respect to the 
first 3 PCs, which serves as a quality-check method to provide some inferences on net-
work-phenotype association; and (4) the feature-phenotype correlation table can also be 
shown in the application (see Fig. 6).

The application is optimally designed for visualizing final subnetworks of a relatively 
small size (e.g., < 100 nodes). For larger networks, manual adjustments, such as moving 
nodes to prevent label overlap, are often necessary. In these instances, we recommend 
users employ Cytoscape [23] for network visualization. Communication between R and 
Cytoscape is facilitated by the RCy3 package [24].

Automated SmCCNet

In this version of the SmCCNet package, we introduce a pipeline known as Automated 
SmCCNet, which can be implemented with fastAutoSmCCNet(). This method stream-
lines the SmCCNet code and substantially reduces computation time. Users are simply 
required to input a list of omics data and a phenotype variable. The program then auto-
matically determines whether it is dealing with a single-omics or multi-omics problem, 
and whether to use CCA or PLS for quantitative or binary phenotypes respectively. For 
details of how each method is established and how parameters and coefficients are set, 
we recommend the user to refer to the multi-omics and single-omics vignettes.

Specifically, for multi-omics SmCCNet, if CCA is employed, the program can auto-
matically select the scaling factors (importance of the pair-wise omics or omics-pheno-
type correlations to the objective function). This is achieved by calculating the pairwise 
canonical correlation between each pair of omics under the most stringent penalty 
parameters. The scaling factor for the omics data A, B pair in SmCCA is set to the abso-
lute value of the pairwise canonical correlation between omics A and B divided by the 
between-omics correlation shrinkage parameter. By default, all scaling factors linked to 
the phenotype-specific correlation structure are set to 1. In Automated SmCCNet, users 
only need to provide a BetweenShrinkage parameter, a positive real number that helps 
reduce the significance of the omics-omics correlation component. The larger this num-
ber, the more the between-omics correlation is shrunk.

Moreover, for multi-omics SmCCNet with a binary phenotype, the scaling factor is 
not implemented. However, the user needs to provide values for γ1 (omics-omics con-
nection importance) and γ2 (omics-phenotype connection importance, see multi-omics 
vignette section 5 for detail). The automated SmCCNet program offers a method to cal-
culate γ1 while setting the value of γ2 to 1. This is generally done by averaging all the pair-
wise omics-omics canonical correlations in the multi-omics dataset.
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The program can also automatically select the percentage of features subsampled. 
If the number of features from an omics data is less than 300, then the percentage of 
feature subsampled is set to 0.9, otherwise, it’s set to 0.7. The candidate penalty terms 
range from 0.1 to 0.5 with a step size of 0.1 for single/multi-omics SmCCA, and from 
0.5 to 0.9 with a step size of 0.1 for single/multi-omics SPLSDA2 (for both omics-omics 
SmCCA step and omics-phenotype classifier, see section 5 in the multi-omics vignette 
for details).

The automated version of SmCCNet typically offers a computational speed advan-
tage over the standard manual SmCCNet, primarily due to the heuristic selection of 
scaling factors and the parallelization of the cross-validation step. This parallelization 
is achieved through the use of a parallelized map function in furrr package [25], substan-
tially improving the computational speed.

Computational runtime analysis

SmCCNet 2.0 substantially improves the computational time compared to SmCCNet 
1.0, which we demonstrate using simulated three omics datasets, each with 50 subjects 
and 100 features, and one quantitative phenotype. During the random subsampling 
phase, 70% of the features are selected. We also evaluate different number of subsam-
pling iterations from 50 to 500 with the step size of 50. SmCCNet runs consistently 
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Fig. 7  SmCCNet 2.0 Runtime Performance Compared to SmCCNet 1.0. The graphs shows the x-axis is the 
number of subsamples and the y-axis represents the time in minutes, which demonstrates SmCCNet 2.0 
runtime (in minutes) compared to SmCCNet 1.0 with respect to different number of subsampling iterations. 
4 simulated datasets are used: 3 omics data with 50 subjects and 100 features with a quantitative phenotype. 
At each iteration of subsampling, 70% of the features are randomly subsampled. 5-fold cross-validation is 
performed on both methods

2  Penalty terms in SmCCA is in the opposite direction of the SPLSDA, in SmCCA, a higher value of penalty term 
implies a less stringent sparsity penalty.



Page 15 of 23Liu et al. BMC Bioinformatics          (2024) 25:276 	

faster than SmCCNet 1.0, and the runtime difference increases as the number of sub-
sampling iterations increases (Fig. 7).

Additionally, we also conduct a runtime analysis to compare between automated 
SmCCNet and manual SmCCNet. Automated SmCCNet runs consistently faster than 
manual SmCCNet and the runtime difference increases as the number of features in 
each omics data increases (Fig. 8a). Furthermore, to examine the runtime of SmCC-
Net under different number of features and sparsity penalty tuning grids, we perform 
the runtime analysis to evaluate the runtime of automated SmCCNet. As the num-
ber of tuning parameter candidates for each omics data increases, the runtime also 
increases (Fig. 8b). As the number of features in each omics data increases, the runt-
ime increases as well, and the runtime increment is relatively consistent (Fig. 8b).

Fig. 8  SmCCNet 2.0 Runtime Analysis. a Runtime comparison between Automated SmCCNet and Manual 
SmCCNet (in minutes) with respect to different number of features in each dataset. 4 simulated datasets 
are used: 3 omics data with 50 subjects with a quantitative phenotype. For both methods, we use 125 
tuning grids for sparsity penalty parameters, and 27 tuning grids for scaling factor parameters. 5-fold 
cross-validaation is performed on both methods. b Runtime analysis of SmCCNet 2.0
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Example
We demonstrate the second-generation SmCCNet utilizing multi-omics data sourced 
from the Cancer Genome Atlas Program’s (TCGA) project [26] on breast invasive car-
cinoma (Firehose Legacy). The dataset contains RNA sequencing data with normalized 
counts, microRNA (miRNA) expression data, and log-ratio normalized reverse phase 
protein arrays (RPPA) protein data, all procured from tumor samples. After data pre-
processing, there are 107 subjects in our final data with 5039 genes, 823 miRNAs, and 
175 RPPAs. Furthermore, we regress out age, race, and radiation therapy status from 
each molecular feature. We provided 2 different examples of using fast automated 
SmCCNet for multi-omics analysis. Example of a more flexible multi-omics SmCC-
Net pipeline can be found in package vignette https://​cran.r-​proje​ct.​org/​web/​packa​ges/​
SmCCN​et/​vigne​ttes/​SmCCN​et_​Vigne​tte_​Multi​Omics.​pdf. We use survival time as the 
quantitative phenotype, and survival status as the binary phenotype.

Multi‑omics with quantitative phenotype

In the TCGA breast cancer example with a quantitative phenotype (survival time), the 
analysis can be run with the following code (assuming all X (-omics data list) and Y (sur-
vival time) are preprocessed):

In the first phase of the SmCCNet algorithm, 5-fold cross-validation is used to opti-
mize the sparsity penalty for each molecular profile and determine the best scaling fac-
tors. We consider the SmCCA penalty parameter for each molecular profile ranging 
from 0.1 to 0.5, with increments of 0.1, resulting in a total of 125 combinations. The 
preliminary CCA canonical correlation is 0.960 (gene-miRNA), 0.689 (gene-protein), 
0.632 (protein-miRNA), combined with the between-omics shrinkage factor of 5, result-
ing in the scaling factor of 0.192 (gene-miRNA), 0.138 (gene-protein), 0.126 (protein-
miRNA). After the 5-fold cross-validation, the optimal penalty parameters for molecular 
profiles are determined to be 0.1 (gene), 0.2 (miRNA), and 0.5 (protein), yielding a total 
test canonical correlation of 0.799 (normalized scaling factors such that they sum up to 
1), and the scaled prediction error of 0.521.

Following this, the complete SmCCNet algorithm is applied with the identified param-
eters. A subsampling scheme is utilized, selecting 70% of features per iteration for genes 
and miRNAs and 90% for proteins with 100 iterations to construct the global similarity 
matrix. Hierarchical clustering with a cut height of 0.995 and a network pruning algo-
rithm set to retain networks between 10 and 100 nodes in size are used to extract the 

https://cran.r-project.org/web/packages/SmCCNet/vignettes/SmCCNet_Vignette_MultiOmics.pdf
https://cran.r-project.org/web/packages/SmCCNet/vignettes/SmCCNet_Vignette_MultiOmics.pdf
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final network modules. The robustness and relevance of the networks are summarized 
using the NetSHy network summarization score.

After executing the SmCCNet algorithm, we identified five final multi-omics subnet-
works (Table 1). Among these, network module 3 demonstrated the strongest associa-
tion with survival time. Network analysis aims to uncover potential mechanistic insights 
into the biology of omics data and interpret their relationships with specific phenotypes. 
Furthermore, it seeks to identify master regulators, which could serve as potential ther-
apeutic targets. SmCCNet plays a pivotal role in achieving these objectives by gener-
ating subnetwork results that provide various forms of output. Specifically, SmCCNet 
formulates hypotheses based on the omics data provided, which can then be validated 
through existing literature or explored in future research. As an example interpretation, 
visualization of network module 3 (Fig.  9a) through the Shiny application revealed a 
hub structure centered on the protein PCNA, which has strong connections to the miR-
NAs miR-150. PCNA has been studied as a potential biomarker for breast cancer [27], 
while miR-150 is known to promote breast cancer growth by targeting the pro-apoptotic 
purinergic receptor  [28]. Despite this, the interaction between PCNA and miR-150 in 
breast cancer has been minimally studied, leading to a potential area for future research. 

Table 1  Summary of final subnetwork information for survival time, with information of network 
index, network size, highest NetSHy score correlation to survival time, number of genes, number of 
miRNAs, and number of proteins

Network Index Network Size PC Correlation to 
Phenotype

Number of 
Gene

Number of 
miRNA

Number 
of Protein

1 21 0.23509 14 7 0

2 98 0.24307 32 26 40

3 19 0.30108 5 11 3

4 60 0.16220 27 20 13

5 12 0.18218 5 3 4

Fig. 9  Multi-omics SmCCNet Result for Survival Time. Multi-omics SmCCNet subnetwork result for TCGA 
breast cancer data with respect to patient’s survival time (subnetwork 3). (a): Multi-omics network with 
respect to survival time. Purple nodes are genes, brown nodes are miRNAs, and dark blue nodes are proteins. 
Red edges represent positive association between two nodes, and negative edges represent negative 
association between two nodes. The color depth and edge width represent the strength of association 
between two nodes (edges are filtered based on a Pearson’s correlation threshold of 0.3). (b): the correlation 
heatmap between all subnetwork molecular features
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Additionally, the correlation heatmap (Fig.  9b) indicates strong correlations among 
molecular features in network module 3, which indicates the efficacy of our hierarchi-
cal clustering algorithm in grouping highly correlated molecular features that are signifi-
cantly associated with the phenotype of interest. Notably, the heatmap reveals an almost 
perfect correlation among miR-150, miR-142, and miR-146a, which are closely con-
nected to PCNA. This connection hints at a possible immune-related pathway involv-
ing miR-150 and miR-146a, particularly their time-dependent relationship with T-cell 
differentiation [29].

The NetSHy loading plots (Fig. 10a-c) reveal that network connections oriented around 
PCNA predominantly influence the first principal component (PC), while TSC1-oriented 
connections play a major role in both the second and third PCs. Notably, the third PC 
(PC3) exhibits the highest correlation with survival time, with a correlation coefficient 
( ρ ) of −0.301. Intriguingly, TSC1 by itself shows a relatively modest correlation with sur-
vival time ( ρ = −0.119). However, its network connections with other molecular features 
enhance this association threefold. This implies the importance of further investigating 
the interactions between TSC1 and other molecular features within the network, such as 
miR-142, to better understand breast cancer’s biological mechanism.

Multi‑omics with binary phenotype

In the TCGA breast cancer example with a binary phenotype (survival status), the analy-
sis can be run with the following code (assuming all X (-omics data list) and Y (survival 
status) are preprocessed):

Fig. 10  Final Subnetwork NetSHy Loadings for Survival Time. The NetSHy sumamrization loadings of all 
the final subnetwork features based on subnetwork 3. with panel a, b, and c represent PC1, PC2, and PC3 
respectively
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In the first phase of the SmCCNet algorithm, 5-fold cross-validation is used to opti-
mize the sparsity penalty for each molecular profile and determine the best scaling 
factors. We consider the SmCCA penalty parameter for each molecular profile rang-
ing from 0.5 to 0.9, with increments of 0.1, and the SPLSDA penalty parameter rang-
ing from 0.5 to 0.9, with increments of 0.1 as well, resulting in 625 combinations. AUC 
score is used to identify the optimal penalty parameters. Same as before, the preliminary 
CCA canonical correlation between -omics data is 0.960 (gene-miRNA), 0.689 (gene-
protein), 0.632 (protein-miRNA), combined with the between-omics shrinkage factor 
of 5, resulting in the scaling factor of 0.192 (gene-miRNA), 0.138 (gene-protein), 0.126 
(protein-miRNA) for the SmCCA step (exclude phenotype). The relative importance of 
the between-omics relationship and the omics-phenotype relationship is set to 5, mean-
ing that the omics-phenotype relationship in the model is 5 times as important as the 
between-omics relationship in the network construction step. After the 5-fold cross-val-
idation, the optimal penalty parameters for SmCCA are determined to be 0.5 (gene), 0.7 
(miRNA), and 0.5 (protein); and the optimal penalty parameter for SPLSDA is 0.9, yield-
ing validation AUC score of 0.709. SmCCNet is a network inference pipeline that bal-
ances the trade-off between omics-phenotype association and omics-omics association. 
As a result, the AUC score serves as a quality check for the final networks. If the impor-
tance of the omics-phenotype association is emphasized (increase between-shrinkage 
factor in fastAutoSmCCNet()), the AUC score will increase; conversely, if the omics-
omics association is prioritized, the AUC score will decrease, but a stronger association 
between molecular features will be observed. An AUC score of 0.709 indicates a good 
predictive performance, while still effectively capturing potential biological interactions 
with respect to breast cancer survival status in the resulting networks.

Similarly, as in the quantitative phenotype example, the complete SmCCNet algorithm 
is applied with the optimal parameters. A subsampling scheme is utilized, selecting 70% 
of features per iteration for 100 iterations to construct the global similarity matrix. Hier-
archical clustering with a cut height of 0.995 and a network pruning algorithm set to 
retain networks between 10 and 100 nodes in size are used to extract the final network 
modules. The robustness and relevance of the networks are summarized using the Net-
SHy network summarization score.

After executing the SmCCNet algorithm, we identified four final multi-omics sub-
networks (Table  2). Among these, network module 3 exhibited the strongest asso-
ciation with survival time. Network analysis aims to uncover potential mechanistic 
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insights into the biology of omics data and interpret their relationships with specific 
phenotypes. Furthermore, it seeks to identify master regulators, which could serve as 
potential therapeutic targets. SmCCNet plays a pivotal role in achieving these objec-
tives by generating subnetwork results that provide various forms of output. Spe-
cifically, SmCCNet formulates hypotheses based on the omics data provided, which 
can then be validated through existing literature or explored in future research. As 
an example interpretation, visualization of network module 3 (Fig. 11a) through our 
Shiny application shows that there is less network connectivity after edge filtering 
based on Pearson’s correlation (threshold = 0.3). After edge filtering, SLC40A1 has a 
relatively higher network connectivity. A study has shown that malignant breast can-
cer cells modulate their iron metabolism by downregulating the iron exporter gene 
SLC40A1 to accommodate their high demand for iron  [30]. Additionally, the cor-
relation heatmap (Fig. 11b) has a weaker signal than the survival time network, but 
still demonstrates some high correlation between network molecular features. For 
instance, there is a strong negative correlation between TLX1NB and SIDT1. While 
there is no established study confirming the biological association between TLX1NB 

Table 2  Summary of final subnetwork information for survival status, with information of network 
index, network size, highest NetSHy score correlation to survival time, number of genes, number of 
miRNAs, and number of proteins

Network Index Network Size PC Correlation to 
Phenotype

Number of 
Gene

Number of 
miRNA

Number 
of 
Protein

1 13 0.33536 11 2 0

2 17 0.42283 9 7 1

3 13 0.43232 9 4 0

4 14 0.38436 10 4 0

Fig. 11  Multi-omics SmCCNet Result for Survival Status. Multi-omics SmCCNet subnetwork results for TCGA 
breast cancer data with respect to patient’s survival status (subnetwork 3). a: Multi-omics network with 
respect to survival time. Purple nodes are genes, brown nodes are miRNAs, and dark blue nodes are proteins. 
Red edges represent positive association between two nodes, and negative edges represent negative 
association between two nodes. The color depth and edge width represent the strength of association 
between two nodes (edges are filtered based on a Pearson’s correlation threshold of 0.3, after edge filtering, 
not all network nodes are presented in the network); b: the correlation heatmap between all subnetwork 
molecular features
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and SIDT1 in the context of breast cancer, future studies can be conducted to validate 
their association.

The NetSHy loading plots (Fig.  12a–c) reveal that network connections oriented 
around KLRC4 predominantly influence the first and the second principal component 
(PC), while miR-24–1-oriented connections play a major role in both the third PCs. 
Interestingly, KLRC4 is filtered out after the stringent Pearson’s correlation edge filter-
ing as shown in Fig. 11a, suggesting that it does not have strong interactions with other 
network molecular features, but it is still influencing the network in other ways. KLRC4 
is associated with a stronger immune response in breast cancer, which correlates with 
good breast cancer prognosis, highlighting its potential importance in breast cancer tar-
geted immunotherapy treatments [31]. Additionally, the first PC (PC1) exhibits the high-
est correlation with survival status, with a biserial correlation coefficient ( ρ ) of −0.432. 
Interestingly, The highest individual feature-phenotype correlation is only 0.299, which 
suggests that adding network interactions improves the association with patients’ sur-
vival status compared to individual molecular features.

Conclusion
The second-generation SmCCNet is a powerful and comprehensive tool for multi-omics 
network inference with respect to a quantitative or binary variable (e.g., an exposure or 
phenotype for a complex disease). This upgraded tool incorporates numerous new fea-
tures including generalization to single or multi-omics data, a novel algorithm for single/
multi-omics data with binary phenotype, an automated pipeline to streamline the algo-
rithm with a single line of code, a network pruning algorithm, a topology-based network 

Fig. 12  Final Subnetwork NetSHy Loadings for Survival Status. The NetSHy sumamrization loadings of all 
the final subnetwork features based on subnetwork 3. with panel a, b, and c represent PC1, PC2, and PC3 
respectively
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summarization method, a new network visualization tool, and much more. Addition-
ally, compared to the first-generation SmCCNet, this new version substantially reduces 
the computational time, and the end-to-end pipeline can be set up easily with either a 
manual form for more specific parameter control, or through the new automated ver-
sion. In the TCGA breast cancer data example, we demonstrated how final subnetworks 
can be obtained using SmCCNet and the Shiny application. We also provide examples 
of how to interpret the final subnetworks. Depending on the type of multi-omics data 
supplied, additional interpretation methods such as enrichment / overrepresentation 
analysis, network mediation analysis, or genome-wide association study (GWAS) can be 
conducted, and some recent multi-omics study with SmCCNet have demonstrated how 
SmCCNet subnetwork results can be interpreted in these ways [13, 14, 18]. In the future, 
more features such as time-to-event data and longitudinal data will be incorporated into 
the pipeline.
Acknowledgements
We express our sincere gratitude to Wen (Jenny) Shi and Laura M Saba for their contributions to the development of the 
first-generation of SmCCNet.

Author Contributions
W.L. created the software, wrote the main manuscript text, and prepared all figures and tables; T.V. provided the network 
summarization algorithm of the software and provided feedback; I.K., K.P., and Y.Z. tested and validated the software and 
provided feedback; K.K. supervised the project provided guidelines and ideas to the software and manuscript and edited 
the software and manuscript. All authors reviewed the manuscript.

Funding
This work is supported in part by funds from the National Heart, Lung, and Blood Institute, National Institues of Health 
(R01 HL152735, TransOmics for Precision Medicines Fellowship: https://​topmed.​nhlbi.​nih.​gov/​awards/​15744).

Availability of data and materials
The TCGA breast cancer data used in example section is available at: http://​linke​domics.​org/​data_​downl​oad/​TCGA-​
BRCA/. Data are extracted and available along with all subnetwork results, figures and R scripts at: https://​github.​com/​
liux4​283/​SmCCN​et2.​0Resu​lt. All results are obtained based on SmCCNet version 2.0.1.

Declarations

Ethics approval and consent to participate
Not applicable. 

Consent for publication
Not applicable. 

Conflict of interest
No Conflict of interest is declared.

Received: 7 April 2024   Accepted: 14 August 2024

References
	1.	 Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18:1–15.
	2.	 Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, Buettner F, Huber W, Stegle O. Multi-omics factor 

analysis-a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol. 2018;14(6):8124.
	3.	 Argelaguet R, Arnol D, Bredikhin D, Deloro Y, Velten B, Marioni JC, Stegle O. Mofa+: a statistical framework for com-

prehensive integration of multi-modal single-cell data. Genome Biol. 2020;21:1–17.
	4.	 Hawe JS, Theis FJ, Heinig M. Inferring interaction networks from multi-omics data. Front Genet. 2019;10:535.
	5.	 Henao JD, Lauber M, Azevedo M, Grekova A, Theis F, List M, Ogris C, Schubert B. Multi-omics regulatory network 

inference in the presence of missing data. Brief Bioinform. 2023;24(5):309.
	6.	 Singh A, Shannon CP, Gautier B, Rohart F, Vacher M, Tebbutt SJ, Lê Cao K-A. Diablo: an integrative approach for 

identifying key molecular drivers from multi-omics assays. Bioinformatics. 2019;35(17):3055–62.
	7.	 Hotelling H. Relations between two sets of variates. In: Breakthroughs in Statistics: Methodology and Distribution, 

pp. 162–190. Springer, 1992.
	8.	 Witten DM, Tibshirani RJ. Extensions of sparse canonical correlation analysis with applications to genomic data. 

Statistical applications in genetics and molecular biology 2009;8(1).

https://topmed.nhlbi.nih.gov/awards/15744
http://linkedomics.org/data_download/TCGA-BRCA/
http://linkedomics.org/data_download/TCGA-BRCA/
https://github.com/liux4283/SmCCNet2.0Result
https://github.com/liux4283/SmCCNet2.0Result


Page 23 of 23Liu et al. BMC Bioinformatics          (2024) 25:276 	

	9.	 Jiang MZ, Aguet F, Ardlie K, Chen J, Cornell E, Cruz D, Durda P, Gabriel SB, Gerszten RE, Guo X, et al. Canonical correla-
tion analysis for multi-omics: application to cross-cohort analysis. PLoS Genet. 2023;19(5):1010517.

	10.	 Rodosthenous T, Shahrezaei V, Evangelou M. Integrating multi-omics data through sparse canonical correlation 
analysis for the prediction of complex traits: a comparison study. Bioinformatics. 2020;36(17):4616–25.

	11.	 Moon S, Hwang J, Lee H. Sdgcca: supervised deep generalized canonical correlation analysis for multi-omics inte-
gration. J Comput Biol. 2022;29(8):892–907.

	12.	 Shi WJ, Zhuang Y, Russell PH, Hobbs BD, Parker MM, Castaldi PJ, Rudra P, Vestal B, Hersh CP, Saba LM, et al. Unsuper-
vised discovery of phenotype-specific multi-omics networks. Bioinformatics. 2019;35(21):4336–43.

	13.	 Mastej E, Gillenwater L, Zhuang Y, Pratte KA, Bowler RP, Kechris K. Identifying protein-metabolite networks associated 
with copd phenotypes. Metabolites. 2020;10(4):124.

	14.	 Zhuang Y, Hobbs BD, Hersh CP, Kechris K. Identifying miRNA-mRNA networks associated with COPD phenotypes. 
Front Genet. 2021;12: 748356.

	15.	 Graham BI, Harris JK, Zemanick ET, Wagner BD. Integrating airway microbiome and blood proteomics data to iden-
tify multi-omic networks associated with response to pulmonary infection. The microbe. 2023;1: 100023.

	16.	 Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Methodol. 1996;58(1):267–88.
	17.	 Chung D, Keles S. Sparse partial least squares classification for high dimensional data. Stat Appl Gene Mol Biol 

2010;9(1).
	18.	 Konigsberg IR, Vu T, Liu W, Litkowski EM, Pratte KA, Vargas LB, Gilmore N, Abdel-Hafiz M, Manichaikul AW, Cho M, 

et al. Proteomic networks and related genetic variants associated with smoking and chronic obstructive pulmonary 
disease. medRxiv, 2024–02 2024.

	19.	 Murtagh F, Contreras P. Algorithms for hierarchical clustering: an overview. Wiley Interdisciplinary Reviews: Data Min-
ing and Knowledge Discovery. 2012;2(1):86–97.

	20.	 Abdi H, Williams LJ. Principal component analysis. Wiley interdisciplinary reviews: computational statistics. 
2010;2(4):433–59.

	21.	 Vu T, Litkowski EM, Liu W, Pratte KA, Lange L, Bowler RP, Banaei-Kashani F, Kechris KJ. Netshy: network summarization 
via a hybrid approach leveraging topological properties. Bioinformatics. 2023;39(1):818.

	22.	 Page L, Brin S, Motwani R, Winograd T. The pagerank citation ranking: bring order to the web. Technical report, 
Technical report, stanford University 1998.

	23.	 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software 
environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

	24.	 Gustavsen JA, Pai S, Isserlin R, Demchak B, Pico AR. Rcy3: Network biology using cytoscape from within r. F1000Re-
search 2019;8.

	25.	 Vaughan D, Dancho M. Furrr: apply mapping functions in parallel using futures. R package version 0.1. 0 2018.
	26.	 Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM, Castiglioni I, et al. 

Tcgabiolinks: an r/bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44(8):71–71.
	27.	 Malkas LH, Herbert BS, Abdel-Aziz W, Dobrolecki LE, Liu Y, Agarwal B, Hoelz D, Badve S, Schnaper L, Arnold RJ, et al. 

A cancer-associated PCNA expressed in breast cancer has implications as a potential biomarker. Proc Natl Acad Sci. 
2006;103(51):19472–7.

	28.	 Huang S, Chen Y, Wu W, Ouyang N, Chen J, Li H, Liu X, Su F, Lin L, Yao Y. miR-150 promotes human breast 
cancer growth and malignant behavior by targeting the pro-apoptotic purinergic p2x7 receptor. PLoS ONE. 
2013;8(12):80707.

	29.	 Gan L, Sun T, Li B, Tian J, Zhang J, Chen X, Zhong J, Yang X, Li Q. Serum miR-146a and miR-150 as potential new 
biomarkers for hip fracture-induced acute lung injury. Mediators Inflamm. 2018;2018(1):8101359.

	30.	 Jiang XP, Elliott RL, Head JF. Manipulation of iron transporter genes results in the suppression of human and mouse 
mammary adenocarcinomas. Anticancer Res. 2010;30(3):759–65.

	31.	 Tan W, Liu M, Wang L, Guo Y, Wei C, Zhang S, Luo C, Liu N. Novel immune-related genes in the tumor microenviron-
ment with prognostic value in breast cancer. BMC Cancer. 2021;21:1–16.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Smccnet 2.0: a comprehensive tool for multi-omics network inference with shiny visualization
	Abstract 
	Summary: 
	Availability: 

	Background
	Methods and implementation
	Number of omics data and phenotype modality
	Multi-omics SmCCNet with quantitative phenotype
	Multi-omics SmCCNet with binary phenotype
	Single-omics SmCCNet with quantitativebinary phenotype

	Scaling factor determination
	Prompt to define scaling factors
	Pairwise correlation to select scaling factors with automated SmCCNet
	Cross-validation to select scaling factors

	Network clustering and pruning
	Network visualization
	Automated SmCCNet
	Computational runtime analysis

	Example
	Multi-omics with quantitative phenotype
	Multi-omics with binary phenotype

	Conclusion
	Acknowledgements
	References


