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Background
Due to the ongoing progress and the emergence of new discoveries in biomedical areas 
such as genetics, pharmacology, public health and life science topics, the repository of 
the biomedical literature is continually expanding with a remarkable growth rate. This 
proliferation of biomedical data makes it challenging for researchers and professionals to 
keep up with the latest findings, useful knowledge and research trends. Thus, informa-
tion retrieval and automatic text mining systems have become extremely important.

As one of the systems, PubMed is a widely used, well-organized public database that 
supports the advanced search and retrieval of biomedical and life sciences literature. It 

Abstract 

Background:  There has been a considerable advancement in AI technologies like LLM 
and machine learning to support biomedical knowledge discovery.

Main body:  We propose a novel biomedical neural search service called ‘VAIV Bio-
Discovery’, which supports enhanced knowledge discovery and document search 
on unstructured text such as PubMed. It mainly handles with information related 
to chemical compound/drugs, gene/proteins, diseases, and their interactions (chemi-
cal compounds/drugs-proteins/gene including drugs-targets, drug-drug, and drug-
disease). To provide comprehensive knowledge, the system offers four search options: 
basic search, entity and interaction search, and natural language search. We employ 
T5slim_dec, which adapts the autoregressive generation task of the T5 (text-to-text 
transfer transformer) to the interaction extraction task by removing the self-attention 
layer in the decoder block. It also assists in interpreting research findings by summariz-
ing the retrieved search results for a given natural language query with Retrieval Aug-
mented Generation (RAG). The search engine is built with a hybrid method that com-
bines neural search with the probabilistic search, BM25.

Conclusion:  As a result, our system can better understand the context, semantics 
and relationships between terms within the document, enhancing search accuracy. 
This research contributes to the rapidly evolving biomedical field by introducing a new 
service to access and discover relevant knowledge.

Keywords:  Natural language processing, Text mining, LLM, Transformer, RAG​, 
Biomedical interaction extraction, Neural search, T5, Embedding

Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you 
modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of 
it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise 
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted 
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

DATABASE

Kim and Yoon ﻿BMC Bioinformatics          (2024) 25:273  
https://doi.org/10.1186/s12859-024-05903-6

BMC Bioinformatics

*Correspondence:   
shkim.lex@gmail.com; 
jtyoon@vaiv.kr

1 Department of Computer 
Science, Sogang University, 35, 
Baekbeom‑Ro, Mapo‑Gu, Seoul, 
Korea
2 VAIV Company Inc, 97, 
Dokseodang‑Ro, Yongsan‑Gu, 
Seoul, Korea

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05903-6&domain=pdf


Page 2 of 25Kim and Yoon ﻿BMC Bioinformatics          (2024) 25:273 

contains more than 36 million citations and abstracts of biomedical literature from sev-
eral NLM (National Library of Medicine) literature resources, including MEDLINE, life 
science journals, clinical studies and online books, with new content continually being 
added. Utilizing Medical Subject Headings (MeSH) terms correctly can enhance search 
accuracy on PubMed. However, identifying and applying MeSH terms effectively may be 
difficult for general users. In addition, users should select relevant keywords or phrases 
to retrieve precise search results or understand the various filters and operators to refine 
the search. Furthermore, it is hard to search for hidden knowledge, such as associations 
or interactions between entities, on PubMed.

Hence, there has been a significant demand for a more advanced search and knowl-
edge discovery system to reduce the time to develop biomedical hypothesis or curate 
databases. Such a system should not only perform basic search based on queries and 
keywords but also provide capabilities for summarizing the search results, QA (ques-
tion answering), and delivering more enriched complex information about interactions 
between biomedical entities from unstructured text data.

Related works

Recently, promising advancements in transformer-based LLM (large language models) 
[1], utilizing billions of parameters trained on extensive text corpora, such as GPT-4 [2] 
or T5 [3], have achieved state-of-the-art (SOTA) performance in many NLP (natural lan-
guage processing) tasks. In practice, ChatGPT [2, 4] demonstrates excellent capabilities 
in language understanding and generation, and it continues to evolve rapidly to under-
stand and respond to a wide range of complex query requests including image or voice.

In the biomedical field, transformer-based methodologies like BioBERT [5], PubMed-
BERT [6], BioLinkBERT [7], SciFive [8], and T5slim_dec [9] have demonstrated the poten-
tial of LLMs in various text mining tasks. For instance, SciFive [8] and T5-MTFT [10], 
pretrained on biomedical texts using T5 architecture [4] have shown good performance 
in RE (relation extraction). Specifically, SciFive attempted a domain-specific T5 model 
which was pretrained on C4 [11], PubMed abstracts, and PMC full-text articles. It out-
performed other encoder-only models in biomedical domain. BioLinkBERT [7] captured 
document links, such as hyperlinks and citation links. It was pretrained by feeding the 
linked documents by PubMed citation links into the same context as inputs to include 
knowledge that spans across multiple documents. It proposed document relation predic-
tion, which classifies two linked segments as ‘contiguous’, ‘random’, or ‘linked’, as an alter-
native to the next sentence prediction objective in BERT [12]. This approach enables the 
incorporation of cross-document knowledge that is not available in single documents.

Some recent studies [13, 14], have directly applied LLMs such as ChatGPT to their 
problem domains without extensive finetuning via few-shot learning or simple prompt-
ing. According Chen Q. et al.’s study [13], the average performance of SOTA systems in 
biomedical NER (named entity recognition) was about 0.86 (F1-score), and that in RE 
was approximately from 0.80 to 0.82 on average. However, ChatGPT based on prompts 
obtained a BLURB (Biomedical Language Understanding & Reasoning Benchmark) 
score of 0.595, which was significantly lower than the SOTA systems. Only in the QA 
task, ChatGPT (0.825) showed a competitive performance compared to the systems like 
PubMedBERT (0.717), BioLinkBERT-Base (0.808), and BioLinkBERT-Large (0.835). That 
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means that the biomedical domain is a still significantly challenging and complex area to 
handle directly using prompts in ChatGPT.

Although ChatGPT is capable of responding to various biomedical questions, it often 
encounters hallucination problem, where the model generates sentences containing 
incorrect information. Verifying references accurately, is another important issue par-
ticularly in conducting scientific research based on precise facts. In this study, we com-
bine neural retrieval system with advanced language generation technique for a more 
informed and reliable text mining.

System objectives and effects

This study aims to provide a comprehensive knowledge database and intensive search & 
QA system on biomedical articles. We suggest a novel biomedical search service called 
‘VAIV Bio-Discovery’ which incorporates transformer-based large-scale biomedical text 
mining with neural search [15]. The foremost objective is to facilitate understanding of 
the complex interactions between chemical compounds/drugs and other entities from 
scientific literature.

Our system exhibits the following strengths: (1) it provides four types of user-friendly 
interfaces with query options including a basic search, entity and interaction search, 
and natural language query search. (2) The intended use of this database is to pro-
vide enriched complex data sources about biomedical entities, MeSH terms, interac-
tions between entities extracted from scientific literature such as PubMed abstracts by 
using a transformer-based deep learning method [9]. The target entities are chemical 
compounds/drugs, genes/proteins, and diseases. The target interactions are drug-drug 
interactions (DDI), chemical compounds and protein/gene relations (CPR), and chemi-
cal compounds/drug and diseases relations (CDR). (3) The system presents meaningful 
insights into research trends by offering statistically ranked quantitative information on 
how frequently named entities and their relations are mentioned in research publica-
tions. (4) It assists in interpreting research findings by summarizing the retrieved search 
results into natural language using an LLM. We provide a functionality which allows 
users to start the natural language query related to entities of interest. To this end, we 
employ the Retrieval Augmented Generation (RAG) method [16] which first conduct a 
deep learning-based neural search to identify articles that are likely to contain answers 
in response to the given natural language. Then, it creates prompts using the query and 
extracted passages for LLM to generate a summarized answer text.

This process effectively highlights valuable information extracted from biomedical 
texts rather than simply listing up the retrieved documents with keywords from a query. 
There are several database systems publicly available, such as UniProt,1 which provides 
information on protein sequences and functions; the Comparative Toxicogenomics 
Database (CTD) [17, 18], offering customized data related to a set of chemicals, diseases, 
genes, Gene Ontology terms, pathways, and references; and the Therapeutic Target 
Database (TTD) [19] as well as GenBank2 and Protein Data Bank (PDB).3

1  https://​www.​unipr​ot.​org/
2  https://​www.​ncbi.​nlm.​nih.​gov/​genba​nk/
3  https://​www.​rcsb.​org/

https://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.rcsb.org/
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Specialized curated databases in a targeted area and their integration are still neces-
sary to ensure data currency and completeness for knowledgebase. However, there has 
been a considerable advancement in AI technologies like LLM and machine learning to 
support biomedical knowledge discovery. Our system specializes in fully automatically 
discovering enriched information mentioned in unstructured text data without relying 
on external databases or resources. In addition, it distinguishes itself from other DBs by 
enabling natural language queries for user friendly searches and summarizing the con-
tent of the retrieved research articles.

Consequently, it supports the development of biomedical hypotheses and the appro-
priate curation of databases. It can facilitate for researchers or curators/DB construc-
tors to access and discovery more complex and enriched information from unstructured 
biomedical publication text in a comprehensible way and follow up the latest research 
findings.

The interactions on our database can support to understand unpredictable changes in 
pharmacological effects of drugs, mechanisms of diseases, and to develop therapeutic 
drugs. In addition to, they help in designing drugs that modulate gene expressions or 
interact with specific proteins involved in disease pathways. Since many diseases have 
a genetic basis, understanding the relationships between chemical compounds and spe-
cific genes or proteins can lead to the development of targeted therapies.

Construction and content
Motivation example

We first describe the intended use of this database system, providing with motivation 
examples. Consider Table 1: most search engines straightforwardly retrieve results for 
basic queries like 1) using Boolean operators and title filters. In the example, to perform 
the specified search on PubMed, the ‘AND’ operator and the ‘Title’ filter are necessary. 
However, addressing search requirements such as examples in 2) and 3) can be very chal-
lenging because we practically have no prior knowledge about which genes/proteins are 
most closely associated with a specific entity. Although previous biomedical text-mining 
approaches are helpful in finding documents including specific biomedical terms, they 
often fail to provide statistically ranked quantitative information or meaningful relation 
information between biomedical entities.

Table 1  Search types

Query type Example

(1) Basic query search (operator/filter) • Search for documents with calcium and anoxia in the title
→ (calcium[Title]) AND (anoxia[Title]) [PubMed]

(2)Entity or relation search • What diseases co-occur most with calcium in the document 
collection? I would like to search for documents with calcium 
and related diseases
• What diseases are associated with calcium in the papers 
containing the MeSH term ‘child’?
• What gene/proteins have the “ACTIVATOR” interaction with 
calcium? List them by frequency order and show the docu-
ments

(3) Natural language query search • What methods can be used for detecting beta thalassemias?
• What chemical compounds inhibit the activation of BRCA1?
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In addition, researchers seek to obtain answers through natural language queries 
from a large number of documents. Classical term-based search systems rank a set of 
documents by computing a relevance score for each document based on a given query. 
However, a document can be actually relevant to a query even without matching terms. 
Thus, we attempt neural search which uses vector embedding to represent document 
and query more semantically. It enables to capture context of a term in a document and 
semantic relations with other terms. Moreover, since the answers to a given query are 
often scattered across multiple documents, summarization is very helpful. For search 
and summary generation, we adopt the retrieval augmented generation based on the 
large language model.

Database content

In this section, we describe a system design including indexing and implementation 
along with data sources and the informatics of data generation. For convenience, we 
explain the details with each module. The system architecture can be depicted as shown 
in Fig. 1.

NE (named entity) recognition and relation extraction module

Using the specialized NLP module, biomedical named entities, general keywords, and 
biomedical relations between the entities are gradually extracted from the documents. 
We first collected 219,317 publication abstracts from 2023 PubMed4 baseline and 6,924 
from PubMed daily updates. The National Library of Medicine (NLM) offers an annual 
baseline set of PubMed citation records as well as daily update records, both available 
for free download in XML format. In the MEDLINE PubMed XML, certain mandatory 
elements such as the article title, abstract, author name, publication date and journal 
title are essential for a record to be complete. On the other hand, optional supplemen-
tary elements like author affiliation, grant support, reference, keywords, chemical lists, 
MeSH terms, tags, and other metadata provide additional information that enhances 
the record’s comprehensiveness and usefulness. In this study, two supplementary ele-
ments, chemical list and MeSH term lists are considered in addition to the essential 
elements. Additionally, documents related to the functions of 8,499 targets from TTD 

Fig. 1  System architecture

4  https://​ftp.​ncbi.​nlm.​nih.​gov/​pubmed/​basel​ine/

https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/
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[19] which describe therapeutic protein and nucleic acid targets, related diseases, path-
ways, and corresponding drugs were added. These documents were indexed, but inter-
actions between entities were not extracted. The biomedical named entity tagger5 [20] 
we used recognizes entities of chemicals/drugs, genetics (genes/proteins), and diseases/
symptoms from the abstract texts. Its core engine for text entity recognition is based on 
BioBERT [4]. According to the study [20], this tagger achieved a micro-average F1-score 
of 0.86 for partial matches on the PGxCorpus [21].

In biomedical literature, accurate recognition and category mapping of entities are 
very challenging since they often exhibit inconsistencies and ambiguities in expressions 
due to synonyms, abbreviations, and diverse nomenclature of terms. In addition, some 
entities can belong to both chemical compound/drug and protein/gene categories. For 
example, ‘interferon alfa-2b’ is a form of recombinant human interferon used to treat 
‘hepatitis B and C infection’, ‘genital warts’, ‘hairy cell leukemia’, ‘follicular lymphoma’, 
‘malignant melanoma’, and ‘AIDs-related Kaposi’s sarcoma’. It exhibits biological char-
acteristics as a recombinant protein and is used as a drug to mimic the action of the 
protein in some contexts. In scientific and medical contexts, a comprehensive under-
standing requires considering these diverse perspectives.

To address potential errors of the NE tagger, we also include terms from the chemical 
list provided by the PubMed XML as entities if they appear in the abstract. However, 
since PubMed’s chemical list encompasses genes and proteins besides chemical com-
pounds, we constructed an additional dictionary to differentiate them under the gene/
protein category. It was compiled using the entities listed in DrugBank [22], CTD (Com-
parative Toxicogenomics Database) [17, 18] and UniProt [23] databases along with the 
entities annotated in the ChemProt [24], DDI [25] and DrugProt [26] Corpus.

After identifying entities in the text, their co-occurrences are indexed to investigate 
their relatedness. Similarly, general key terms are extracted and indexed after remov-
ing stop words for keyword search. The keywords in our search engine correspond to 
general terms, named entities, and MeSH terms. For each keyword, co-occurrences with 
named entities and MeSH terms are indexed and sorted by frequency. Table 2 presents 
terms associated with ‘mcp-1’, a protein that plays a crucial role in the immune response 
and inflammatory processes in the human body. These terms can be categorized into 
gene/protein, chemical compound, disease entities, MeSH terms and general terms. 
In our work, MeSH terms are treated as entities. Consequently, the search engine has 
indexed various pairs of entities, including the entity–entity, general term-entity, and 
entity-interactions.

Our system classifies the type of interaction into the relevant category, as presented 
in Table 3, if a sentence contains a pair of entities that exhibit potential interaction. For 
instance, in the case of DDI, when two distinct chemical compounds or drugs are men-
tioned within the same sentence, they are considered as candidates for interaction clas-
sification. To analyze interaction candidates, approximately 2.12 million sentences from 
abstracts were processed using a sentence splitter.

5  https://​github.​com/​libra​iry/​bio-​ner

https://github.com/librairy/bio-ner
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To extract relations between entities, we adopted the T5slim_dec model proposed in our 
previous study [9], which is a modified version of the original T5 [4] specifically designed 
for interaction generation. In the relation generation task, the transformer model gener-
ates a single interaction string such as "DDI-effect" or "AGONIST," as its output for each 
given sentence input. In this task, the self-attention mechanism in decoder block pri-
marily functions as an identity function and the multi-head does not effectively capture 
the connections between target tokens due to the presence of only a single target token. 
Thus, the T5slim_dec model removes the self-attention layer in the general transformer’s 
decoder and integrates the target interaction labels directly into the vocabulary.

Table 2  Associated terms for ‘mcp-1’

Keywords Freq Category

Inflammation 127 Gene/Protein

il-6 113 Gene/Protein

il-8 63 Gene/Protein

monocyte chemoattracant protein-1 58 Gene/Protein

cytokines 54 Gene/Protein

rantes 40 Gene/Protein

atherosclerosis 40 Disease

tnf-alpha 29 Gene/Protein

infection 27 Disease

ip-10 26 Gene/Protein

il-10 26 Gene/Protein

stress 25 Disease

ccl2 25 Gene/Protein

icam-1 23 Gene/Protein

Chemokines 22 Gene/Protein

Monocyte chemotactic protein-1 20 Gene/Protein

Influenza 18 Disease

: :

Keywords Freq Category

Humans 127 MeSH

Animals 113 MeSH

Chemokine ccl2 63 MeSH

Male 58 MeSH

Mice 54 MeSH

Inflammation 40 MeSH

Cytokines 40 MeSH

Female 29 MeSH

Cultured cells 27 MeSH

Inbred c57bl mice 26 MeSH

Tumor necrosis factor-alpha 26 MeSH

Macrophages 25 MeSH

Messenger rna 25 MeSH

nf-kappa b 23 MeSH

Middle aged 22 MeSH

Signal transduction 20 MeSH

Biomarkers 18 MeSH

: :
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Consequently, T5slim_dec constrains its outputs (target labels) to generate complete 
whole tokens, rather than predicting a sequence of separated tokens in an autoregressive 
manner. It utilizes the pretrained parameters of SciFive [8] which were further finetuned 
on specific training datasets, namely ChemProt [24] and DrugProt [26] for BioCreative 
RE tasks. The model has demonstrated improved relation classification performance 
compared to SOTA models in the ChemProt and DDI tasks. It achieved an F-score accu-
racy of 0.92 in the DDI dataset and 0.943 in the ChemProt dataset.

In the ChemProt BioCreative task [24], interactions were grouped into 10 semanti-
cally related classes, labeled from CPR:1 to CPR:10. However, only five relation types 
were utilized to evaluate system performance. The types of interest correspond to 
CPR:3, CPR:4, CPR:5, CPR:6, and CPR:9. In contrast to ChemProt evaluation, this 
work considers all CPR interaction types as target interactions. From a granularity 
perspective, these groups pose challenges of the practical utility in biomedical appli-
cations and add complexity into the classification procedure. Moreover, the train-
ing datasets for CPR:7(modulator) and CPR:8 (cofactor) are quite limited in size. 
This indicates that the categories are difficult to classify accurately. Nevertheless, the 

Table 3  Target interactions

Relation Interaction types Semantic meaning

Chem/Drug-Protein/gene 
Interaction

CPR:1 PART-OF Part-of

CPR:2 DIRECT-REGULATOR, 
INDIRECT-REGULATOR,
REGULATOR

Regulator

CPR:3 ACTIVATOR, INDIRECT-UPREG-
ULATOR, UPREGULATOR

Upregulator or activator

CPR:4 DOWNREGULATOR, INHIBI-
TOR, INDIRECT-DOWNREG-
ULATOR,

Downregulator or inhibitor

CPR:5 AGONIST, AGONIST-ACTIVA-
TOR, AGONIST-INHIBITOR

Agonist

CPR:6 ANTAGONIST Antagonist

CPR:7 MODULATOR, MODULATOR-
ACTIVATOR, MODULATOR-
INHIBITOR

Modulator

CPR:8 COFACTOR Cofactor

CPR:9 SUBSTRATE, SUBSTRATE_
PRODUCT-OF, PRODUCT-OF

Substrate or product-of

CPR:10 NOT Non-interacting entities

Drug-Drug Interaction DDI-Mechanism a pharmacokinetic interaction 
mechanism

DDI-Effect the effect of an interaction

DDI-Advice a recommendation or advice 
regarding the concomitant use 
of two drugs

DDI-Int the sentence mentions that 
interaction occurs and does 
not provide any detailed infor-
mation about the interaction

DDI-False Non-interacting entities

Chem/Drug-Disease Interac-
tion

Potential the case where certain type of 
interaction is expected

NOT Non-interacting entities
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ChemProt and DrugProt training datasets are widely recognized as Gold Standard 
datasets due to their comprehensive coverage and manually annotation by experts. 
For more details, please refer to the study [9]. The target interaction types considered 
in this work are presented in Table 3.

For the CDR task, the training dataset available for the T5slim_dec transformer model 
is extremely limited. The datasets for the BioCreative V Chemical-Disease Relation 
(CDR) task [27] comprised 1,500 PubMed abstracts, which were equally divided 
into 500 each for training, development, and testing, and were focused on chemical-
induced disease (CID) relations. At the current stage, in case of CDR, only potential 
interactions are recognized, due to the insufficient datasets for training more detailed 
and specific interaction types.

Fig. 2  Database contents

Fig. 3  Some interactions associated with ‘calcium’
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Consequently, from 226,241 abstracts, 85,006 diseases, 167,804 chemical compounds/
drugs, 143,042 proteins/genes were recognized. Additionally, 663,732 (CPR), 151,193 
(DDI), and 302,091 (CDR) pairs were ultimately identified from 2.12 million sentences 
as exhibiting specific interactions between the entities after excluding recognized false 
interactions such as ‘NOT’ in CPR and ‘DDI-false’ in DDI, as shown in Fig. 2.

Figure 3 shows various interactions associated with ‘calcium’ including ‘POTENTIAL’, 
‘REGULATOR’, ‘DDI-effect’, ‘DDI-mechanism’, ‘SUBSTRATE/PRODUCT-OF’ and so on. 
Additionally, specific entities that interact with ‘calcium’ are identified. It has ‘REGULA-
TOR’ relationships with proteins such as ‘calmodulin’, ‘parathyroid hormone (pth)’, ‘alka-
line phosphatase’, ‘insulin’, ‘albumin’ and others.

Indexing module

The indexing process makes it easier to access the content related to each entity. As 
stated earlier, the associated terms covered by our search engine include gene/protein, 
chemical compound, disease entities and MeSH terms. For efficient retrieval in entity 
and relation searches, three distinct types of index tables are employed: (1) an entity–
entity inverted index table, designed to find associated terms for each entity, (2) an 
entity-relation index table to discover associated interaction for each entity, and (3) an 
entity-relation-entity inverted index table which facilitates the identification of associ-
ated terms for a given entity and interaction, as detailed in Table 4. In a given document, 
if interactions between the same entities occur in multiple sentences and belong to the 
same interaction category, they are indexed only once and counted as one.

Table 4  Indexing structure for entity and relation database

Entities Associated entites Freq Doc List

(1)

Calcium nifedipine 643 D1, D2, …

Calcium acetylcholine 613 D1, D101, …

Calcium pkc 158 D15, D26, …

Calcium insulin 140 D2, D64, …

Entities Relations Freq

(2)

Calcium SUBSTRATE/PRODUCT_OF 739

Calcium DDI-effect 1578

Calcium DDI-mechanism 779

Calcium REGULATOR 1815

Entities Relations Entities Freq Doc List

(3)

calcium SUBSTRATE endothelin 11 D1, D2, …

calcium SUBSTRATE calcitonin 11 D1, D101, …

calcium SUBSTRATE ryr (ryanodine receptor) 11 D15, D26, …

calcium SUBSTRATE trpv6 9 D2, D64, …

(1) Entity–entity inverted index table (entity, association entity, frequency, doc list)

(2) Entity-relation index table (entity, relations, frequency)

(3) Entity-relation-entity inverted index table (entity, relation, association entity, frequency, doc list)
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As a result, the index size is substantial as all entity pairs and entity-relation-entity 
triples are stored with their associated document information in the database. The size 
is expected to increase significantly as more documents are added. To efficiently han-
dle this expanding volume of data, we employ Hadoop Distributed File System and a 
Hadoop-based NoSQL database, HBase [28].

Search and answer generation module

We provide answers derived from papers in response to natural language queries based 
on the Retrieval Augmented Generation (RAG) method [16]. It initially retrieves articles 
likely to contain relevant information, and then generates prompts based on the query 
and retrieved passages, rather than merely extracting documents containing query key-
words. Finally, large language model generates answers by using the prompts.

To retrieve abstracts, we adopt a hybrid method combining neural search with key-
word-based probabilistic retrieval model BM25 for passage retrieval, as shown in Fig. 4. 
This can leverage the strengths of both approaches: neural search retrieves documents 
containing answers to natural language queries by identifying semantically related texts 
through embedding vectors, while BM25, a keyword-based model, emphasizes impor-
tant keywords in documents relevant to the query. In the neural search, both documents 
and queries are converted into vector embeddings, and answers are located based on the 
vector relatedness by comparing the query and the document embeddings [15]. The sys-
tem indexes the text with its vector embeddings in a vector index.

To this end, we utilize RoBERTa model [29], where text is first tokenized by Byte 
Pair Encoding (BPE). It begins by splitting the text into individual characters and then 
progressively merges the most frequently occurring pairs of characters or character 
sequences. Consequently, it creates a vocabulary of the most common character com-
binations which consist of whole words and subwords. This method is particularly 
effective in handle rare words and out-of-vocabulary terms. The tokenized text is trans-
formed into vectors through embedding. The RoBERTa model combines token embed-
dings, which capture the semantic meanings of words, with positional embeddings that 
highlight their order and position in the sequence. This allows the model to effectively 
understand the context, semantics, and structural relationships of tokens within a docu-
ment, thereby enhancing the relevance and accuracy of the search results.

Fig. 4  System flow for Retrieval Augmented Generation
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To generate answer for a given natural language query, the ChatGPT model [3] is 
adopted as the LLM. By combining search capabilities with the LLM, we can mitigate 
the hallucination problem, which is one of major issues in LLMs. By conditioning on 
retrieved relevant documents, the RAG architecture can generate more accurate and 
contextually appropriate answers, especially for questions requiring factual knowledge. 
Furthermore, this integration enhances a comprehensive understanding of the contents 
within the search results from papers rather than simply presenting them in a list.

Utility and discussion

In this section, we describe user interface and the intended uses of the database. In addi-
tion, we introduce the benefits of functionality on provisioned module and improvement 
of similar existing databases. A case study of the use of the database and future plan are 
also presented.

User interface and utility

This database supports three types of search. As shown in Fig.  5, it offers functional-
ity for both keyword and entity searches. It can invoke a search filter function to either 
include or exclude specific keywords and a result filter to limit the types of associated 
entities for a given query. The figure displays entity search results related to ’leptin’. It 
identifies ’obesity’ as the most closely related disease and presents links to related publi-
cations, along with their abstracts, on the right-hand side.

Figure  6 presents the results of a relation search related to ‘leptin’. As shown in the 
figure, if the relation-centered filter option is selected, it lists associated interactions and 
then displays the entities related to any chosen interaction. For instance, chemical com-
pounds like ‘glucose’, ‘cholesterol’, ‘fatty acid’, ‘nitric oxide’, ‘triglyceride’, and ‘plasminogen’ 
are identified as having regulatory interactions with ‘leptin’. Documents related to these 
regulatory interactions are then collectively displayed on the right side of the interface. 
Conversely, when the entity-centered button is selected, interactions involving leptin are 
displayed with a focus on the entity.

Figure  7 shows the system returns a response to a natural language query, ‘What is 
leptin and how is it related to glucose?’. It presents the search results similar to general 
search engines. The key differences are: (1) the documents, that are likely to contain 
answers to the question, are retrieved not just because they include keywords in query, 

Fig. 5  Keyword and entity search
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Fig. 6  Relation search

Fig. 7  Search and summary with natural language query
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and (2) the LLM generates the response based on the retrieved results. It summarizes 
the contents of retrieved results as “leptin is a hormone secreted by fat cells that exerts 
significant effects on the brain, glucose metabolism, and muscle cells. It has insulin-like 
properties, enhancing glucose uptake and metabolism in muscle cells. Additionally, lep-
tin increases glucose uptake and stimulates the synthesis of glycogen, akin to insulin’s 
effects”. Furthermore, references to the abstracts related to the generated summary are 
included.

Comparison with other databases and text mining systems

In this section, we first compare our database with other database search systems such 
as PubMed and CTD [17, 18]. Figure  8 shows PubMed’s search results for ‘leptin’. To 
control the results, PubMed offers filters related to text availability (such as abstract, free 
full text, full text), article attributes, article types, and publication dates. Additionally, 
there is an option to display the abstracts of the retrieved documents. There is no fur-
ther enriched information related to the keyword. On the other hand, CTD supports 
improved information about ‘leptin’ as shown in Fig. 9. It displays top-ranked interacting 
chemicals. CTD integrates data from diverse resources such as BioGRID, ChemIDplus, 
CL, GO, KEGG, MeSH, and PubMed, providing manually curated data relating chemical 
exposures with their genetic, molecular, and biological outcomes.

Some curation application tools for data entry invoke functions with automatic qual-
ity control to help annotations of CTD biocurators and interactions are translated into 
readable sentences. For example, structured interaction notation such as ‘C1/n + act 
G1/p’ is displayed as “bisphenol A analog results in increased activity of ESR1 protein” 
by conjoining terms from vocabularies, MeSH, 4 chemical qualifiers, 4 action term 
degrees, 55 action terms, NCBI gene symbol and gene qualifiers. Figure 9 shows interac-
tion sentences between ’leptin’ and ’dietary fat’. However, these expressions tend to be 

Fig. 8  PubMed search results for ’leptin’. This figure shows the search result from PubMed (https://​pubmed.​
ncbi.​nlm.​nih.​gov/?​term=​leptin). Permission to use the screenshot has been granted by the PubMed team

https://pubmed.ncbi.nlm.nih.gov/?term=leptin
https://pubmed.ncbi.nlm.nih.gov/?term=leptin
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overly rigid and lack contextual depth, resulting in evidence sentences that are so struc-
tured they limit their ability to provide unique insights.

Our system has discovered that ’glucose’ interacts with ’leptin’ most frequently, act-
ing as a “regulator”. Moreover, chemical compounds such as ‘glucose’, ‘atp (adenosine 
triphosphate)’, ‘cholesterol’, ‘k + (potassium ion)’, ‘nitric oxide’, and ‘fatty acid’ are iden-
tified as having relationships with ‘leptin’. Figure  10 shows the interacting chemical 
compounds or drugs with ‘leptin’. Their interactions are quantified based on individual 
sentences instead of on a document level to facilitate comparison. ‘Leptin’ often regu-
lates ‘k-atp channel’, ‘k + ’, ‘k(atp)’, and ‘atp’.

Although the database has yet to accumulate a large quantity of publication docu-
ments, it is noticeable that it has discovered quite new interesting findings not present 
in the Comparative Toxicogenomics Database (CTD) such as the inhibition of ‘leptin’ 

Fig. 9  CTD search results for ’leptin’. a This figure shows the search results from Comparative Toxicogenomics 
Database (https://​ctdba​se.​org/​detail.​go?​type=​gene&​acc=​3952). Permission to use the screenshot has been 
granted by the CTD team. b This figure shows the search results from Comparative Toxicogenomics Database 
(https://​ctdba​se.​org/​detail.​go?​type=​gene&​acc=​3952&​view=​ixn&​chemA​cc=​D0040​41). Permission to use 
the screenshot has been granted by the CTD team

https://ctdbase.org/detail.go?type=gene&acc=3952
https://ctdbase.org/detail.go?type=gene&acc=3952&view=ixn&chemAcc=D004041
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secretion by ‘vitamin C’ and its impact on glucose levels, the reduction in ‘5-FU (fluo-
rouracil)’ cytotoxicity through leptin treatment, and the activation of ‘ATP’-sensitive 
‘K + channels’ by ‘leptin’. Moreover, the interaction types are more sophisticated as 
shown in the figure. Figure 11 displays common interacting chemicals of both CTD and 
our database such as ’glucose’, ’cholesterol’, ’fatty acids’, ’acarbose’, ‘diazocide’, ’nitric oxide’, 
’tempol’, and so on. CTD contains data on 474 chemical compounds interacting with 
‘leptin’, which is a substantial volume compared to our system that found a total of 99 
interacting entities. Figure 12 shows some example sentences that convey interactions 
between ‘leptin’ and chemical compounds/drugs. As seen in the figure, interaction sen-
tences encompass a wide range of contexts, making it important to provide accompany-
ing literature information for the specific interaction of interest.

Currently, CTD [18] consists of 17,117 chemicals, 54,355 genes, 6,187 phenotypes, 
954 anatomical terms, 7,274 diseases, 202,000 exposure statements, and over 3.4 million 
evidence-based, manually curated interactions including chemical–gene, chemical–phe-
notype, chemical–disease, gene–disease, and chemical–exposure interactions. Addi-
tionally, it generates over 31 million inferred gene-disease interactions and 2.9 million 
statistically ranked chemical-disease predictive interactions from the internal integra-
tion of curated direct interactions. External integration with imported annotations from 
other databases produces an additional 13 million inferences. In CTD, if chemical A 
interacts with gene C, and gene C is associated with disease B, then interaction between 
chemical A and disease B are inferred to be related via gene C. In total, CTD includes 
over 50 million toxicogenomic relationships for computational analysis and hypothesis 
development. Our system identified 167,804 chemical compounds/drugs, 143,042 pro-
teins/genes, and 85,006 diseases from 2.12 million sentences, which encompass a sig-
nificantly broader range of entities than those covered by CTD. However, as illustrated 
in Fig. 13, the number of recognized interactions is significantly smaller than in CTD 
because CTD includes inferred interactions, and we only consider abstracts, not the full 
texts of publications.

In practice, even with a large collection of papers, some crucial knowledge may 
only be mentioned in a very few papers, making it difficult to discover. Thus, there are 

Fig. 10  Interacting chemicals with ‘leptin’ and their interaction types
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inherent limitations in relying solely on research papers to extract important knowledge. 
This highlights the importance for human-curated databases to complement the gaps 
in knowledge extraction from academic literature. Furthermore, to ensure accuracy, all 
data entry must be carefully verified.

Nevertheless, the development of such automatic knowledge construction and mining 
systems should proceed simultaneously with the creation of curated databases. In this 
context, even if our database lacks completeness, users are still capable of discovering 
new insights, provided that a range of relevant information is available. The most signifi-
cant benefit of our system is that it can also perform QA and summarization for more 

Fig. 11  Comparison of the top-50 ranked interacting chemical compounds/drugs
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extensive information through natural language queries, even at the level of relation and 
interaction.

We also compared our system with other text mining systems like DrugCentral 2023 
[30], DrugBank [22], DigSeE [31], and Drugs.com [32]. Figure 14 shows the results from 
searching for ’leptin’ in DrugCentral 2023 [30], which identified only two related drugs, 
’metreleptin’ and ’setmelanotide’. The results provided by DrugCentral are limited. In our 
system, when querying how each drug is related to leptin, information on ’metreleptin’ 
was provided from TTD’s target function documents and a related paper on ’setmelano-
tide’ was also found, as shown in Fig.  15. In the case of DrugBank, no interaction for 
leptin was found.

Figure 16 shows the results of DiGSeE (disease gene search engine with evidence sen-
tences) [31] regarding the association between ‘leptin (LEP)’ and ‘insulin resistance,’ 
which corresponds to frequent interacting pair in our system. It retrieved only one rel-
evant document. DiGSeE identifies biological events such as gene expression, regulation, 

Fig. 12  Evidence sentences for interactions

Fig. 13  Resource comparisons with CTD
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Fig. 14  Drugs related to ’leptin’ in DrugCentral 2023. This figure shows the search results from DrugCentral 
2023 (https://​drugc​entral.​org/?q=​lepti​n&​appro​val =). Permission to use the screenshot has been granted by 
the DrugCentral team

Fig. 15  Relations related to ’leptin’ in our system

https://drugcentral.org/?q=leptin&approval
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phosphorylation, localization, and protein catabolism in the development of diseases 
to understand the associations between diseases and genes. The performance seems 
to require further improvement, as it primarily utilized the Turku event extraction sys-
tem [33] to locate biological events, which achieved an F-measure of 52.86% (precision 
58.13% and recall 48.46%).

Furthermore, to investigate how well our system summarizes in response to ques-
tions, we compared interaction descriptions from DrugBank [22], as shown in Fig. 17. 
As shown in the example, the information on drug interactions provided by DrugBank 
is concise, often limited to a single sentence and mainly related to increases or decreases 
in interactions. The description patterns are typically phrases like “A may decrease the 
excretion rate of B, which could result in a higher serum level,” or “The metabolism of 
A can be increased when combined with B.” While these descriptions are concise, they 
may need to elaborate on the complex mechanisms of actual drug interactions, requiring 

Fig. 16  CDR comparison. b and c This figures show the search results and retrieved document from DiGSeE 
(http://​210.​107.​182.​61/​geneS​earch/ Gene Query = lep and Disease Query = Insulin Resistance).Permission to 
use the screenshot has been granted by the DiGSeE team

http://210.107.182.61/geneSearch/
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more detailed information, especially for research or scientific analysis. Additionally, we 
investigated the interaction between ‘pravastatin’ and ‘paroxetine’ using the interaction 
checker on Drugs.com [32]. The description is likely intended as medication advice for 
patients, as follows: Taking pravastatin with paroxetine may increase blood glucose lev-
els, especially in patients with diabetes. Consult your doctor about your medication use. 
In contrast, our system’s summarized answer further explains the mechanism of how the 
two drugs interact, detailing the effects on their activity.

Finally, to evaluate RAG-based summarization, we used the BioASQ Task B datasets 
[34], excluding the cases where our system answered ‘no papers exist with information 
that matches your question.’ We used 258 questions from the Task11B-GoldenEnriched 
dataset (330 questions) of BioASQ Task B on Biomedical Semantic QA without adding 
the PubMed articles for the task. The task uses benchmark datasets containing develop-
ment and test questions in English, along with gold standard (reference) answers con-
structed by a team of biomedical experts. Participants have to respond with relevant 

Fig. 17  Comparison of interaction description/summarizaiton between ‘Pravastatin’ and ‘Paroxetine’. (a) 
The figure shows the search results from DRUGBANK online (https://​go.​drugb​ank.​com/​drugs/​DB001​75 
Interaction Drug = paroxetine).Permission to use the screenshot has been granted by the DRUGBANK team

https://go.drugbank.com/drugs/DB00175
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concepts, articles, snippets, and RDF triples from designated resources, as well as exact 
and ’ideal’ answers. We utilized ideal answers as references and our system’s answers as 
candidates.

To assess the text summarization quality for questions, two widely used metrics, BLEU 
(Bilingual Evaluation Understudy) and ROUGE (Recall-Oriented Understudy for Gisting 
Evaluation) were adopted. The BLEU score measures the similarity between a generated 
text and a reference text based on the precision of n-grams. A higher BLEU score indi-
cates a higher degree of similarity, reflecting that the generated summary accurately cap-
tures the content of the reference summary. ROUGE compares the overlap between the 
generated summary and the reference summary. ROUGE-1, ROUGE-2, and ROUGE-
L measure the overlap of unigrams, bigrams and the longest common subsequences, 
respectively. Our system demonstrates high QA performance with a ROUGE-1 score 
of 0.912 (F-score) and a BLEU score of 0.795 using only the 2023 PubMed baseline, as 
shown in Fig. 18. This means that we can, to some extent, prevent the potential harm of 
drug associations, which can arise from incorrect interpretations of the summarizations, 
since the information is based solely on the given publications.

Discussion and further improvements
The 2023 annual baseline of 219,317 and 6,924 daily update abstracts from PubMed 
might not provide comprehensive, high-quality information that we need. In addition, 
consistently updating with the most current and relevant information is to provide dis-
tinctive features that enable scientists to discover new and novel findings. PubMed’s 
annual baselines contain many older papers, indicating that a significant portion of 
information may already be well-known to users. In order to incorporate the latest rel-
evant studies, we integrated PubMed daily update files.

However, we found that half of these were already included in the annual baseline. 
The volume of new information is also quite small. To address this issue, we intend to 

Fig. 18  Summarization Performance (our system)
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further expand our dataset by utilizing arXiv6 which is a free distribution service and an 
open-access archive containing nearly 2.4 million scholarly articles in the various fields. 
Additionally, publicly accessible abstracts will be collected using the PubMed platform’s 
‘E-utilities’ API.

We will enhance neural search by incorporating filters like citation counts, journal 
prestige and impact factor to assess the retrieved papers, which provide indications of 
their relevance, significance, and recency. For future development, additional named 
entities such as cell lines, cell types, species, biological process and body parts should 
be considered as well as different interaction types especially in CDR. Our system’s 
expansion will include extracting other important interactions such as Gene–Gene 
Interactions, Protein–Protein Interactions, Gene-Disease Associations, Protein-Disease 
Associations or Drug-Metabolite Interactions. The performance of relation extraction 
depends on the improvement of learning algorithms but, more crucially, on the availabil-
ity of well-constructed and sufficient training data. Thus, it is essential to secure high-
quality training data in future research efforts. We also plan to visualize the interactions 
related to entities as an additional functionality. Further research on NE tagging and 
relation extraction is also required for more accurate relation search.

Conclusions
In this work, we introduced a novel biomedical search system that incorporates biomed-
ical entity and relation extraction. It provides an efficient way to find biomedical entities 
and relations associated with a specific entity from scientific literature. In addition, the 
system gives an answer for a natural language query through neural search and sum-
marization by RAG (retrieval augmented generation) and LLM. This enables researchers 
or curators to quickly grasp the research findings of interest within a large collection of 
research papers.

We performed emerging technologies such as transformer-based pretrained deep 
learning for relation extraction, neural search, LLM model and RAG for language gen-
eration that enhances the performance and capabilities of biomedical text mining sys-
tems. We also emphasize the significance of biomedical text mining and sophisticated 
search techniques in discovering valuable information from the vast amount of unstruc-
tured text data generated in biomedical research. This research contributes to the rapidly 
evolving biomedical field by introducing a new service to access relevant knowledge.
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