
MSH‑DTI: multi‑graph convolution 
with self‑supervised embedding 
and heterogeneous aggregation for drug‑target 
interaction prediction
Beiyi Zhang1, Dongjiang Niu1, Lianwei Zhang1, Qiang Zhang1 and Zhen Li1* 

Introduction
The development of new drugs has become increasingly challenging, from finding new 
candidate compounds, to hierarchical experiment approval, which often takes more 
than a decade and requires significant financial investment, exceeding $2.5 billion [1, 2]. 
In drug discovery and design, accurate prediction of drug-target Interactions (DTI) is 
of great significance for drug development. By utilizing the target information of drug 
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molecules, we can discover their relevant pharmacological and pharmacodynamic prop-
erties with the development of machine learning method. In addition, the prediction 
of DTIs is also important in drug repositioning. Drug repositioning offers a promising 
alternative by discovering new uses for existing drugs, identifying new drug-disease rela-
tionships, which could skip the early stages of drug discovery, reducing time and cost 
while minimizing risk, and making the development process more efficient. However, 
due to the high cost of large-scale in vitro and in vivo experiments, with the develop-
ment of machine learning method, computer-aided methods for predicting DTIs are 
gaining increasing attention [3, 4].

Existing DTI prediction methods can be divided into three categories: structure-based 
method [5], ligand-based method [6], and network-based method. The structure-based 
prediction method predicts DTI by analyzing the three-dimensional structural features 
of target proteins. Prava et al. [7] used proteomics and protein–protein interaction net-
work data to predict new targets for a variety of leishmania strains. They developed 3D 
structural models of multiple hub proteins and docking experiments were done with 
some ligands. However, the structure-based method requires 3D structural information 
of both the drug and target, which is not always available since the 3D structure of some 
proteins has not been determined, thus limiting the applicability of this method [8]. The 
ligand-based prediction method predicts potential targets based on the similarity prin-
ciple [9]. Woo et al. [10] developed a ligand structure similarity-based strategy to predict 
potential repurposed drugs that inhibit SARS-CoV-2 by comparing structure similarity 
and interaction similarity of drugs [11].

The relationships between drugs and targets are complex [12]. The emergence of net-
work pharmacology [13]has activated the adoption of network-based methods for DTI 
prediction. IMCHGAN [14] uses a two-level neural attention mechanism to extract 
features of drugs and targets from the DTI heterogeneous network, which are fed into 
an inductive matrix completion (IMC) model to calculate the DTI scores. Cai et al. [15] 
used heterogeneous graph attention networks to enhance learning of the graph structure 
from both intra- and inter-layer perspectives, providing efficient connections between 
nodes, improving the effectiveness of message propagation from important nodes. 
HampDTI [16] extract features from drug molecular graphs and target sequences, and 
automatically learns meta-paths between drugs and targets using the heterogeneous 
graphs. The learned drug and target features are represented as nodes in the meta-path 
graphs, and graph convolution is applied for node embedding. The embeddings of all 
meta-path graphs are integrated for DTI prediction. MdDTI [17] predicts drug-target 
interactions (DTI) by constructing spatial feature representation based on Cartesian 
coordinates of heavy atoms (excluding hydrogen atoms) in drugs. These 3D spatial fea-
tures are combined with 2D substructure features to provide a multidimensional rep-
resentation of drug features. MINN-DTI [18] combines an Interacting-Transformer 
module (Interformer) with an improved Communicative Message Passing Neural Net-
work (Inter-CMPNN). This hybrid approach aims to use molecular graphs of drugs and 
distance maps of targets to capture the bidirectional effects between drugs and targets. 
PGraphDTA [19] improves DTI prediction accuracy by integrating three-dimensional 
structural information of targets. However, existing network-based approaches focus 
on the relationship between drug and targets, and do not fully leverage the structural 
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information of drug molecules and the sequence information of targets, which play an 
important role in DTI prediction [20].

In addition, to effectively utilize information from multiple networks [21, 22], GCHN-
DTI [23]integrates information from drug-target interactions, drug–drug interactions, 
drug similarities, target–target interactions, and target similarities to generate het-
erogeneous networks. The heterogeneous network is then fed into graph convolution 
operation to obtain node embeddings for drugs and targets. EEG-DTI [24] constructs 
heterogeneous network including drugs, proteins, diseases, and side effects. During the 
embedding generation process, the features of neighboring nodes with different types 
are considered to derive the final features for drugs or proteins. However, for DTI pre-
diction, the training model often struggles to balance the weights [25] between drugs 
and targets. Moreover, by introducing multiple networks, how to effectively and reason-
ably fuse the information of different sources is another issue to be solved [26].

Inspired by recommender-based systems [27], a MSH-DTI framework is proposed in 
this paper for DTI prediction. First, self-supervised learning methods [28, 29] are uti-
lized to extract features of drugs and targets. Multiple graphs are then constructed based 
on the dataset to capture complex associations between drugs and targets. A Hetero-
geneous Interaction-enhanced Feature Fusion Module(HIFFM) is proposed to enriches 
the feature of drugs and targets. The graph convolutional network is applied to differ-
ent graphs to aggregate multi-layer information for a better understanding of the DTI. 
Finally, an attention mechanism is introduced to obtain more accurate prediction results 
by weighting the feature of drugs and targets. The comparative experiments demonstrate 
that the MSH-DTI outperforms other baseline models in DTI prediction.

In summary, the main contributions of this paper are listed as below: 

(1)	 Introducing self-supervised learning methods into the heterogeneous graph to 
obtain high-level feature of drugs and target.

(2)	 Constructing multiple types of graphs and introducing the HIFFM to fuse the 
information from multiple graphs.

(3)	 Multiple attention mechanisms are constructed to aggregate drug or target feature 
in different graphs by assigning higher weights to important part of features.

Methods
The overall framework of MSH-DTI is shown in Fig. 1. Firstly, the initial features of drug 
and target are obtained using the pre-trained self-supervised learning models, Info-
Graph [28] and CPCPro [29], respectively. Next, three graphs including protein–pro-
tein interaction (PPI), drug–drug interaction (DDI) and drug–drug similarity (DDS) are 
constructed based on the drug and target initial features. In addition, another hetero-
geneous graph, protein-drug interaction (PDI), is constructed using multi-source data 
by a HIFFM, which could extract more comprehensive features in DTI. Next, multilayer 
graph convolutions are applied on four graphs to obtain the corresponding target fea-
tures pe , pc and drug feature de , dc and ds . Final target and drug feature are fused by the 
attention mechanism independently, which are multiplied together for DTI prediction.
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Datasets

The DTINet dataset [30] is used in MSH-DTI from model training and test. The data-
set consists of 708 drugs and 1512 targets, totaling 1923 drug-target associations, 
10036 drug–drug associations, 7363 target–target associations. Among them, they 
extracted drug nodes, DTIs and drug–drug interactions from Drugbank 3.0 [31], 
and extracted target nodes and protein–protein interactions from HPRD [32]. The 
SMILES representations of drug are identified using DrugBank IDs, while the amino 
acid sequence are acquired according to the UniProt IDs of each target.

In addition, the ratio of negative to positive samples in the DTINet dataset is 
remarkable. The percentage of positive sample is 0.18%, and the percentage of nega-
tive samples is 99.82%.

Self‑supervised feature extraction module

To fully utilize the structural information of drugs and targets, two self-supervised 
learning methods including Infograph and CPCProt are introduced to obtain more 
comprehensive representation for drug and target respectively.

However, it is important to note that self-supervised learning methods typically 
have higher computational complexity than traditional feature extraction approaches. 
Traditional methods often rely on hand-crafted feature extractors, which have rela-
tively low computational costs, but may not capture the comprehensive intricate 
relationships within the data. Self-supervised learning methods, on the other hand, 
require more computational resources, more model training time and large-scale 
training data, which can involve more iterations and complex optimization processes.

10K molecules are used drug feature pre-training, which take about 0.07 h for each 
epoch, and 14 h in total. The protein feature pre-training process also need 1.5 h for 
each epoch on 5k protein sequences. However, through the pre-trained model, it only 
takes about 5 s to extract features of each drug and protein in the down-stream task.

Fig. 1  Overall framework. a Feature extraction of drug and target using self-supervised learning method. b 
Construction of multiple graphs with HIFFM. c Multilayer graph convolution module. d Feature aggregation 
and result prediction with attention mechanism
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Feature extraction of drug

The InfoGraph is an self-supervised learning model that utilizes graph neural net-
works to learn node and graph representations from graph data. By maximizing the 
mutual information between the graph representation and the patch representation, 
the InfoGraph model obtains an effective graph representation.

The SMILES strings of all drugs in the dataset are converted into molecular graphs 
using the RDKit [33], where each atom serves as a node and each bond serves as an 
edge. The generated drug molecular graph can be fed into the InfoGraph model which 
is pretrained on QM9 dataset [34]to extract structural features of the drug.

Feature extraction of target

To extract the structural features of the target, the CPCProt model is used, which is 
a self-supervised learning method by maximizing mutual information between both 
local and global information of protein sequence to obtain representation of the pro-
tein. The CPCProt model first divides the target sequence into fixed-size fragments 
and distinguishes between subsequent fragments from the same protein and frag-
ments from random proteins using autoregressive modeling. Each fragment is then 
processed by the encoder to generate a feature. All features are concatenated to form 
the feature of protein.

In our model, all target sequences in the dataset are fed into the CPCProt which 
are already pre-trained on Pfam dataset [35] to extract the structural feature for each 
target.

To unify the dimensions of the target and drug features, both initial features of drug 
and target are transformed into the 128 dimension and fed into the proposed model. 
The target feature is denoted as p, while the drug feature is denoted as d.

Multiple graphs construction with heterogeneous interaction‑enhanced feature fusion 

module

Multiple graphs construction

Once the self-supervised features have been extracted, they can be used to construct 
multiple graphs. For each graph, the self-supervised features of protein or drug are used 
as the feature each node in the graph. The relationship between each node according 
to the types of graphs. To capture the correlations between drug and target, multiple 
graphs are introduced into the model which capture different interaction information 
in each view. The first one is the drug–drug interaction graph (DDI), where the edges 
between drugs indicate their interaction relationships. The second one is the drug–drug 
similarity graph (DDS), where the edges between drugs indicate their similarity relation-
ships. The similarity scores are Tanimoto coefficient calculated by extracting Morgan 
fingerprint [36] for each drug molecule. The other two graphs are protein–protein inter-
action graph (PPI) and protein-drug interaction graph (PDI) generated from the dataset.

Heterogeneous interaction‑enhanced feature fusion module

The feature matrix of DDI, DDS and PPI are constructed by initial feature of drug or 
target. In PDI, the types drug node and target node are different. When aggregating 
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node features from its neighborhood, it is helpful to incorporate information from 
other relationship into the feature aggregation process. Therefore, a Heterogeneous 
Interaction-enhanced Feature Fusion Module (HIFFM) is proposed to updated node 
feature in PDI through the other three graphs. The specific process is shown in Fig. 2.

The nodes encoding of the three homogeneous networks, PPI, DDI, and DDS, are initially 
obtained based on features from their 1-hop neighborhood nodes through Eqs. 1 and 2.

where NPPI (m),NDDI (i) and NDDS(i) are the set of neighbors of node in corresponding 
graph, and p∗m and d∗i  are the homogeneous feature of the target and drug respectively.

Next, features of each node in PDI aggregate their 1-hop heterogeneous neighboring 
node as the Heterogeneous Aggregation (HA) feature to enrich the target and drug repre-
sentation, as Eqs. 3 and 4.

(1)p∗m =
1

|NPPI (m)|

∑

n∈NPPI (m)

pn

(2)d∗i =
1

|NDDI (i)|

∑

j∈NDDI (i)

dj +
1

|NDDS(i)|

∑

j∈NDDS(i)

dj

(3)p∗∗m =
1

|NPDI−H (m)|

∑

n∈NPDI−H (m)

d∗n

(4)d∗∗i =
1

|NPDI−H (i)|

∑

j∈NPDI−H (i)

p∗j

Fig. 2  Firstly, the homogeneous features of each drug and target are aggregated through the initial features 
of the 1-hop neighbors in the PPI, DDI and DDS respectively, then the HA features of drug and target are 
aggregated by their 1-hop heterogeneous neighbors respectively, and the final fusion feature is obtained by 
the initial features and HA features of the drug and target respectively
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where NPDI−H (m) and NPDI−H (i) is set of 1-hop heterogeneous neighbor nodes of m 
and i, p∗∗m  and d∗∗i  are the HA features of the target and the drug.

Considering the different contributions of the initial features and HA features, the 
final fusion features of the target and the drug are calculated by combining with initial 
features and HA features by assigning different weights through Eq. 5. The feature p∗∗m  
processed by the HIFFM module is added to the original feature pm . The original feature 
pm retains a large part of the original information, while the feature p∗∗m  contains more 
interaction information. Combining the two allows the model to obtain more compre-
hensive and enriched information.

where α and β are initialized weights, and α + β = 1.

Multilayer graph convolution module

After obtaining the feature of each node in the four graphs, the graph convolutional 
neural networks (GCN) is used to capture the relationships between nodes. Due to the 
complex and highly correlated structure of the interaction network, traditional machine 
learning methods often struggle to capture the intricate patterns and correlations 
within it. However, GCN uses the connectivity between nodes to propagate information 
throughout the network and aggregate features from neighboring nodes. This approach 
preserves the global structure while capturing local features and relationships. There-
fore, GCN is appropriate for updating node features. The core idea of GCN is to aggre-
gate and update node features by exploiting the connectivity between nodes. Through 
iterative convolution operations and feature aggregation, each node can obtain more 
comprehensive information, improving the learning ability of graph data.

Take the target-centered PDI as an example, the initial features p of the targets and 
the fusion features df  of the processed drugs from the previous section are fed into the 
GCN. Through multi-layer graph convolution operations, higher-order node informa-
tion can be gradually passed and integrated. To effectively utilize the feature repre-
sentations from each layer and improve the comprehensiveness of each node, features 
obtained from different layers are aggregated by mean pooling to obtain the final feature 
of each node.

For PDI, two GCNs are implemented to obtain the features of target and drug respec-
tively. The first GCN uses the initial feature of drug and fusion feature of target as input 
to extract the target-centered PDI feature pe . The second GCN use the initial feature of 
target and fusion feature of drug as input to extract the drug-centered PDI feature de.

For PPI, DDI, and DDS, only the initial features of the drug and target are used as 
inputs. The target PPI feature pc and drug DDI feature dc and DDS feature ds are 
obtained.

Feature aggregation and result prediction

After obtaining multiple features, a simple concatenation operation of them as the 
final feature for prediction is not sufficient to adequately express the various rela-
tionships between drug and target. To better capture the association information 

(5)p
f
m = α ∗ pm + β ∗ p∗∗m d

f
i = α ∗ di + β ∗ d∗∗i
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and improve the accuracy of the model, inspired by Neural Attentive Item Similarity 
model(NAIS) [27],an attention-based weighted summation mechanism is introduced 
for feature representation of drugs and targets, The core principle of attention mecha-
nism is to dynamically adjust the weights of each feature based on its importance to 
better capture associative information. The attention mechanism allows the model to 
be more flexible and accurate in handling feature representations of drugs and tar-
gets. Through computation, the attention weights for each feature are automatically 
adjusted according to its task relevance. As a result, during the feature weighting and 
summation process, the model is better equipped to capture the intricate associative 
information within the network, which is described as Eq. 6.

where zα , zβ , wα , wβ , bα and bβ are trainable weight parameters, and RELU denotes the 
activation function. After obtaining αp and βp , the softmax activation function is used 
for normalization to calculate the final target feature p′:

Similarly, based on the three features de , dc and ds of the drug, the final drug feature d′ is 
calculated in the same way.

After obtaining the final feature representations of the target and drug, the inner 
product operation is used to predict the drug-target interaction through Eq.  9. The 
inner product of the drug feature d′i and target feature p′m could be represented as 
the relationship between drug and target, since the inner product of two vectors is 
defined to be the amount that a vector is pointing in the same direction as the other 
vector. A larger inner product indicates that they are more similar or correlated.

y′im denotes the label predicted by the model. Finally, the loss function is used to opti-
mize the model:

µ is the weight parameter, Nd is the number of drugs, Np is the number of targets, yij 
is the true value of drug i and target j, y′ij is the predicted value of drug i and target j. ⊙ 
denotes element-by-element multiplication, ‖‖2 is the squared Frobenius norm. Figure 3 
shows the entire feature variation process.

(6)αpm = zαRelu(wαp
e
m + bα) βpm = zβRelu(wβp

c
m + bβ)

(7)α̃pm =
exp(αpm)

exp(αpm)+ exp(βpm)

(8)p′m =α̃pmp
e
m + (1− α̃pm)p

c
m

(9)y′im = sigmoid(d′ip
′T
m )

(10)

L = (1− µ)

Nd∑

i=1

Np∑

j=1

� yij ⊙ (yij − y′ij) �
2

+µ

Nd∑

i=1

Np∑

j=1

� (1− yij)⊙ (yij − y′ij) �
2
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Results
In order to address the issue of data imbalance, a 1:1 ratio of positive to negative sam-
ples were chosen. Specifically, to match the number of positive samples, equal number 
of negative samples were randomly selected to construct the training set, which ensures 
that the model utilizes equal number of positive and negative samples during training, 
thereby mitigating bias towards either class. The known drug target pairs in the dataset 
are considered as positive samples, while the rest of the unknown drug target pairs are 
considered as negative samples. Specifically, 10% of the positive samples and the same 
number of negative samples were used as the test set and the remaining samples are used 
as the training set. Moreover, 10-fold cross-validation is utilized to assess the model’s 
performance. This method partitions the dataset into ten equal subsets, with nine sub-
sets used for training during each iteration and the remaining subset used for validation.

The data imbalance is a big issue due to significantly fewer positive samples than nega-
tive samples in the dataset. To better evaluate the performance of model on the imbal-
ance dataset, AUROC (Area Under the Receiver Operating Characteristic Curve) and 
AUPR (Area Under the Precision versus Recall Curve) are chosen as evaluation met-
rics, which are widely used for evaluating binary classifiers. AUROC and AUPR are two 
commonly used evaluation metrics to assess the performance of classification models in 
predicting drug-target interactions. AUROC reflects the ability of the model to correctly 
identify drug-target interactions by considering both the true positive rate and the false 
positive rate.

To better demonstrate the superiority of the MSH-DTI, several baselines are used 
for performance comparison, including DTINet [30], IMCHGAN [14], HAS-DTI [37], 
EEG-DTI [24], and MultiDti [22]. DTINet [30] integrates a heterogeneous network to 
predict novel drug-target interactions. IMCHGAN [14] uses a two-level neural atten-
tion mechanism on the DTI heterogeneous network to extract drug and target features 
to calculate DTI scores. HAS-DTI [37] create multi-view graphs by sampling diverse 
neighbors and ensures consistency through graph contrastive optimization, integrating 

Fig. 3  The workflow of feature processing
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information from drug-side-effect networks, drug structures, drug-disease network 
and target-related networks for prediction. EEG-DTI [24] constructs a heterogeneous 
network by integrating features from diverse neighboring nodes to generate drug and 
protein embeddings. MultiDTI [22] integrates heterogeneous network interactions with 
drug and target sequence data to predict interactions for new chemical entities based on 
their structures and the learned representation of the network.

Performance comparison between MSH‑DTI and other baseline methods

The evaluation results of MSH-DTI in comparison with baselines are shown in Table 1. 
The AUROC and AUPR of MSH-DTI are 0.9620 and 0.9605 respectively. MSH-DTI 
outperforms other baseline methods on AUROC, and obtains the second best result on 
AUPR. EEG-DTI outperformed MSH-DTI in terms of AUPR by 0.4%, probably due to 
the introduction of additional data. Unlike MSH-DTI, EEG-DTI incorporates additional 
information such as drug-side effect associations and drug-disease interactions, which 
are connected with the drug-target interaction networks. These additional sources of 
data are likely to provide EEG-DTI with a more comprehensive understanding of the 
DTI. However, the proposed MSH-DTI solely on drug-target interaction networks could 
also achieve the similar AUPR value and the best AUROC value, which also demonstrate 
its scalability and practicality, making it applicable to a wider range of scenarios. The 
introduction of self-supervised pre-trained models is helpful to extract more compre-
hensive information from drug and target. In addition, MSH-DTI can construct and 
utilize multiple types of graphs to capture drug-target interactions from different per-
spectives, thereby improving the ability of the model to capture relevant features and 
patterns. For example, drug-drug interaction netwokrs could extract complex informa-
tion of drug [38, 39]. With the help of the attention mechanisms, the model can effec-
tively capture key information related to drug-target interactions.

Hyperparameter experiments

Hyperparameter configurations are crucial for model performance and generalization. 
A series of experiments were implemented to find the optimal hyperparameters, includ-
ing the dimensions of hidden layers of feature, and the number of convolutional layers of 
GCN. The hyperparameters in this study is given in Table 2.

Firstly, the dimension of hidden layers ranging from 64 to 512 are tested to analyze 
the performance of model, as shown in Fig. 4a. The AUROC value exhibit an increasing 
trend until reaching the peak at 128 dimensions, after which it declines with dimension 
increase. The lower dimension of hidden layers may struggle to capture the complex-
ity of node. Conversely, higher dimension of hidden layers may result in the overfitting 
problem. Finally, the number of convolutional layers are evaluated as Fig. 4b. The best 

Table 1  Performance comparison between our method and baselines on the DTINet dataset

Bold indicates the best result among all models listed

DTINet IMCHGAN HAS-DTI EEG-DTI MultiDTI MSH-DTI

AUROC 0.9308 0.9571 ± 0.021 0.9450 0.9559 ± 0.02 0.9610 0.9620 ± 0.016
AUPR 0.9504 0.9036 ± 0.021 0.9380 0.9645 ± 0.025 0.9470 0.9605 ± 0.024
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prediction results are achieved with 6 convolutional layers. More or less layers may 
result in information loss or over smoothing of the model.

Ablation experiments

To further investigate the importance of individual components proposed in this paper, 
several variants are considered in this section for ablation experiments. The first step 
is to determine the contribution role of the initial features extraction method of drug 
and protein through self-supervised pre-training including InfoGraph and CPCProt. 
Three variants are used for comparison, the first one is ECFP+FOAA. Two hand-craft 
feature extraction method are used for drug and protein. The ECFP [36] is a Circular 
fingerprint for drug and FOAA [40] analyzing the frequency of occurrence of different 
amino acids in the protein sequence to generate the protein feature. The second one is 
GNN+LSTM. The GNN is used for extracting drug features through molecular graph 
and the LSTM is used for extracting protein features through sequence. The last one is 
Morgan+CPCProt, which uses the Morgan fingerprint method to extract drug features, 
and radius is set as 2 to consider the local environment of the molecule. At the same 
time, the CPCProt method is used to process protein sequences.

The results are shown in Fig. 5. Specifically, the AUROC is improved by 3.17% and the 
AUPR is improved by 1.87% of MSH-DTI compared to the Morgan+CPCP algorithm, 
while the results of ECFP+FOAA is close to that of GNN+LSTM. The results indicate 
that the feature representations obtained through self-supervised models play a positive 

Table 2  Hyper-parameters settings

Hyper-parameters Values

Learning rate 1e-5

Activation function Sigmoid and 
Softmax and 
Relu

Epochs 200

GCN layers 6

Optimizer Adam

Weight initialization Xavier

Fig. 4  Performance analysis of MSH-DTI model hyperparameter configurations
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role in improving model performance, which could be pre-trained with large-scale unla-
beled data, and the model can learn a more robust and generalized representation based 
on large-scale data.

In addition, to evaluate the contribution of the HIFFM and the attention mechanism 
in the model, three variants are set up.

MSH-NS: The similarity network is removed in the model. MSH-NN: The HIFFM 
is removed in the model, which utilized multiple graphs to construct fusion features. 
MSH-NA: The attention mechanism is removed in the model.

The performance of the three variants of the model and the proposed model are 
shown in Fig. 6, all variants exhibit a slight reduction in performance compared to the 
proposed model, which suggests that the similarity network, HIFFM and the attention 
mechanism play important roles in enhancing feature transfer and aggregation between 

Fig. 5  Comparison of different feature extraction methods

Fig. 6  Comparison of the three variants with the proposed model
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drugs and targets. Through the utilization of a similarity network, the model is encour-
aged to acquire more meaningful features, thereby improving its ability to comprehend 
the input data. Furthermore, the HIFFM provides an effective mechanism for guiding 
the model to learn relationships between nodes and facilitate feature propagation. The 
attention mechanism enables the model to focus on key aspects of the final features and 
assign varying weights to different output features, thereby better capturing the impor-
tant features of the input data.

SHAP analysis

SHAP (SHapley Additive exPlanations) analysis is a method used to interpret the predic-
tions of machine learning models, which provides explanations by calculating the contri-
bution of each feature to the model predictions. It is an intuitive and interpretable way to 
understand the basis of model decisions. Figure 7 shows the results of the SHAP analysis 
and the top 15 features ranked by their contributions are selected, with red representing 
high value and blue representing low value.

In Fig.  7, it can be observed that Feature103 has positive SHAP values (becoming 
increasingly red towards the right) when its value is higher, and negative SHAP values 
(becoming increasingly blue towards the left) when its value is lower. The red points of 
Features 103, 34, 231, 167, 203, 51 are clustered to the right of the x-axis respectively, 
indicating that higher values of these features have positive effects on the prediction 
results. Conversely, the red points of Features 150, 87 are clustered to the left of the 
x-axis respectively, indicating that at higher values of these features, the model tends to 
predict the absence of DTIs.

Fig. 7  The importance of features to prediction results
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Case study

In this section, the ability of MSH-DTI applied in the real scenario is evaluated. We 
selected one drugs and one target from the DTINet dataset in order to predict their 
potential targets and drugs to validate the performance of the model, which are Cefa-
zolin and Muscarinic acetylcholine receptor M2. Cefazolin, a broad-spectrum cepha-
losporin antibiotic, is predominantly indicated for the treatment of skin infections and 
moderate to severe infections affecting the respiratory system. On the other hand, Mus-
carinic acetylcholine receptor M2 is a receptor protein that can interact with neuro-
transmitters such as acetylcholine and plays an important role in the nervous system.

For testing drug, all known associations in the dataset were utilized to train the 
model, and unknown associations between all targets in the dataset with testing drug 
were predicted by the model. The top 10 candidate targets were selected according 
to their prediction scores, and relevant literature was consulted to verify the validity 
of the prediction, which are shown in Table 3. Similarly, the top 10 candidate drugs 
for Muscarinic acetylcholine receptor M2 were selected according to their prediction 
scores, which are shown as Table 4.

For Cefazolin, the Glucocorticoid receptor owns the highest prediction score, sug-
gesting a potential interaction with Cefazolin, which is consistent with reports [41] 

Table 3  The top 10 predicted candidate targets for Cefazolin

Drug Target name Evidence

Cefazolin Glucocorticoid receptor PMID:1818283 [41]

Tubulin beta chain None

Fibroblast growth factor 2 PMID:21901987 [42]

Atrial natriuretic peptide receptor 1 None

Interleukin-2 DrugBank

Pro-epidermal growth factor None

Prothrombin PMID:18436729 [43]

Dihydrofolate reductase PMID:25418905 [44]

Fibrinogen alpha chain None

Fibrinogen beta chain None

Table 4  The top 10 predicted candidate drugs for Muscarinic acetylcholine receptor M2

Target Drug Name Evidence

Muscarinic acetylcholine receptor M2 Polidocanol None

Olanzapine PMID:15627430 [45]

Benzonatate None

Sucralfate None

Lidocaine PMID:12616344 [46]

Gefitinib PMID:32735911 [47]

Chloroquine PMID:10731045 [48]

Verapamil PMID:29987243 [49]

Sunitinib None

Tolvaptan None
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that Glucocorticoid receptor interacts with Cefazolin by modulating the inflamma-
tory response and immune function. The Fibroblast growth factor 2 is the second 
predicted drugs. It is reported that Cefazolin could potentially affect fibrinogen con-
centrations and basic fibroblast growth factor (bFGF) levels in  vivo, which exhibits 
anti-angiogenic activities [42].

For Muscarinic acetylcholine receptor M2 (M2 receptor), Olanzapine and Lido-
caine are shown to interact with M2 receptor. Among them, Olanzapine increases the 
release of acetylcholine by antagonising the M2 receptor, which could can affect the 
function of nervous system, including cognition and mood [45]. According to the lit-
erature [46], when used in combination with muscarinic receptor agonists (such as 
methylcholine), Lidocaine enhances the atrial natriuretic peptide (ANP) relaxation 
response in bovine tracheal smooth muscle by interacting with the M2 receptor.

In summary, over half of the top 10 interactions predicted by the MSH-DTI for the 
two entities have been well verified in the literature, which further demonstrated the 
generalization performance of MSH-DTI in the real scenario.

Cold‑start experiment

In order to demonstrate the applicability of the proposed method in real-world sce-
nario, a cold-start experiment which excluding repetitive drugs from the training set 
is conducted to evaluating the generalization ability of the model facing unseen data.

First, from all positive drug-target interaction samples, 10% of the drugs are selected 
as new drugs, along with an equal number of negative samples, to form the test set. 
Next, we remove all known associations between these drug candidates and targets 
from the drug-target interaction network. The remaining positive samples involving 
other drugs, along with an equal number of negative samples, are used as the training 
set to train the MSH-DTI. This method aims to evaluate the ability of the model to 
predict potential associations for new drugs, which is crucial for assessing the ability 
of the model to handle unknown data in practical applications.

As shown in Table 5, MSH-DTI showed a significant improvement over EEG-DTI in 
the cold start experiment. This improvement can be attributed to the superior feature 
representation capability of MSH-DTI, which uses advanced pre-trained models to 
capture deeper and more complex relationships within the data. In addition, the pre-
trained features enable MSH-DTI to better generalize to new and unseen data, mak-
ing it particularly effective in cold-start scenarios.

Table 5  Results of cold-start experiments

Bold indicates the best result among all models listed

EEG-DTI MSH-DTI

AUROC 0.9060 ± 0.011 0.9121 ± 0.016
AUPR 0.9036 ± 0.016 0.9097 ± 0.019
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Discussion
In this paper, two self-supervised learning methods are utilized to represent drug 
molecules and target sequences, which are InfoGraph and CPCProt. The core idea 
of InfoGraph is to learn the representation of nodes by utilizing local and total infor-
mation in graph data, while CPCProt is a self-supervised learning framework for 
protein sequences. With the help of self-supervised learning, effective representa-
tions can be learned from large-scale unlabeled molecular data and protein sequence 
data to improve the comprehensiveness and robustness of the features of molecule 
and protein, which can achieve better performance in property prediction and drug 
discovery.

Secondly, the introduction of multiple source information to the graph convolution 
process improves the model to extract useful information from graph data more effi-
ciently. In addition, the HIFFM proposed in this paper could take advantage of con-
nectivity in multiple homogeneous and heterogeneous graphs, and the feature of each 
node could be aggregated by multiple source data, thereby facilitating a better repre-
sentation of the relationships between nodes in the graph.

Finally, it is observed that the performance the model is improved by applying 
the attention mechanism to DTI. This may be attributed to the fact that through 
the attention mechanism, the model could dynamically adjust the attention weights 
between the drug and the target, which improves the accuracy of the prediction.

Conclusion
The MSH-DTI, a deep learning framework for drug target interaction prediction 
is proposed in this paper. Two self-supervised learning methods are introduced to 
extract the initial feature of drugs and targets. By combining multiple graphs, the het-
erogeneous aggregation features are constructed to learn effective feature of node. 
The attention mechanism is then employed for feature aggregation, improving over-
all performance. Experimental results demonstrate that MSH-DTI outperforms other 
prediction methods. Moreover, MSH-DTI could be extended to the prediction of 
drug–drug and target–target interactions.
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