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individuals to a given ancestry based on their genetic makeup. Although there are
several tools that implement such algorithms, there is a lack of interactive visual plat-
forms to run a variety of algorithms in one place. Therefore, we developed PopMLvis,

a platform that offers an interactive environment to visualize genetic similarity data
using several algorithms, and generate figures that can be easily integrated into scien-
tific articles.
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Introduction

Population structure can be inferred from Genome-Wide Association Study (GWAS)
data and focuses on the genetic variation within and between populations by investigat-
ing the distributions of alleles and how their frequencies change over time [1]. Sophisti-
cated algorithms implemented in standalone software are often used to infer population
structure. A widely used tool is ADMIXTURE [2], which relies on maximum likelihood
techniques [3]. Many of these software provide complementary results, but, to the best
of our knowledge, there is a lack of a system that seamlessly visualizes the outputs of
multiple software jointly. Another issue is that many softwares such as ADMIXTURE
(2], FASTSTRUCTURE (3], STRUCTURE [4], and STRUCTURESELECTOR [5] rarely
provide graphical outputs. Moreover, users cannot easily exploit existing additional
related information (e.g., sex, disease status, known ancestry, etc.) while analyzing and
interpreting their outputs like ClustVis [6].
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Here, we considered all aforementioned drawbacks and developed an interactive plat-
form, named PopMLvis, which carries out a wide range of tasks that a user may need
to infer population structure using GWAS data. PopMLyvis is flexible as: (1) It supports
a variety of input datasets, i.e., raw genotype data, Principal Components (PCs), and
admixture membership coefficient matrix; (2) It performs dimensionality reduction
using Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embed-
ding (t-SNE), and PC-Air, which is a principlal component analysis that accounts for
relatedness through the genetic relationship matrix (GRM) [7, 8]; (3) It performs vari-
ous clustering algorithms (e.g., K-means and Hierarchical Clustering); (4) It detects out-
liers using Isolation Forest, OneClassSVM, and other metrics; (5) It offers an interactive
and zoomable friendly graphical user interface; (6) It produces publication-ready figures
in various types and resolutions. In addition, PopMLvis allows users to: (7) Download
output files generated within PopMLvis with all required information that are ready for
downstream analysis (e.g., association testing); (8) Link metadata with obtained cluster-
ing results; and (9) Integrate estimated genetic diversity indices generated by genetic
structure programs (e.g., ADMIXTURE) and the clustering results. Since PopMLvis has
a modular design, it is easy to add new modules (e.g., classification) or a new algorithm
to the existing modules (e.g., uniform manifold approximation). PopMLyvis is a secure
web-based platform. Due to potential privacy concerns, we provide an offline version
that can be installed locally. PopMLvis can be easily used without the need to write any
script, which makes it more accessible to researchers.

Implementation
PopMLvis consists of three main panels, each with unique functionalities that the user
can perform as depicted in Fig. 1.
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Fig. 1 PopMLvis pipeline/workflow: (1) Upload and visualize PCA and Admixture results; (2) Dimensionality
reduction: PCA, PC-Alr, t-SNE 2D and 3D; (3) Clustering: K-means, Fuzzy C-means, and Hierarchical Clustering;
(4) Detecting outliers: Isolation Forest, local Outlier Factor, and Statistical measures; and (5) Download
graphical plots and datasheets
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1. Input and Machine Learning (ML) Panel: This panel is composed of three modules:

+ Choose data: The first step, users can choose to use their own data, or example
data, which is provided along with PopMLvis platform. Then, users can specify
the type of data to upload, if they prefer to use their own data, which could be raw
or processed data. For processed data, it includes PCA and/or admixture outputs
(i.e., fraction of ancestral origins as obtained by admixture tools [2—5]. Data will
be immediately reflected on the visualization panel after the upload. For raw data,
it includes genotype data, GRM, projected dataset, and PCA. Here, the user can
perform dimensionality reduction as well. Moreover, PopMLvis supports PCA,
PC-Air, and t-SNE 2D and 3D. Also, t-SNE can be run on top of PCA results to
visualize the data in a more reduced space.

+ Clustering algorithms module: This module includes the K-means, Fuzzy C-means,
and Hierarchical Clustering algorithms. The Fuzzy C-means algorithm is suitable
when admixture exists between individuals, and these individuals can belong to
multiple clusters/ancestries.

« Outlier detection module: PopMLvis integrates outlier detection algorithms based
on statistical metrics (mean, standard deviation, and covariance matrix) and
machine learning techniques such as OneClassSVM, Local Outlier Factor, and

Isolation Forest.

2. Visualization panel: This panel supports three interactive plot types: (1) Scatter plots:
1D, 2D, 3D, zoom in/out, legend and label naming, download, etc.; (2) Admixture bar
charts: the user can investigate the estimated ancestral fraction for each individual
with different certainty values; and finally, (3) Dendrograms to visualize the hierar-
chal clustering of the data. Scatter plots and admixture bar charts are linked together,
so a change in one plot will be reflected in the other plot.

3. Option panel: This panel provides the users with an option to include additional
information on individuals such as sex, age, disease status, etc. This can be reflected
on the plots with color/shape differences. The user has flexibility to define plot name,
labels, resolution, etc. This makes the PopMLvis graphical outputs ready to be inte-
grated in scientific articles.

PopMLvis system architecture
The architecture of PopMLvis consists of three main components (see Fig. 2):

1. Front-End: The front-end is built using React]S. React makes our data visualization
attractive and efficient. All communication with the back-end is achieved through
REST APIs, benefiting from promise based HTTP clients for the browser. The web-
site is compatible with different screen sizes, making the visualization dynamic.

2. Back-End: The back-end on the server side is served as a REST API and was devel-
oped using Flask. We used Gunicorn as a pre-fork worker model, where the master
manages a set of workers. The number of workers corresponds with the number of
concurrent requests that our back-end can handle. Gunicorn should only need 4-12
worker processes to handle hundreds or thousands of requests per second. Python
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Fig. 2 PopMLvis schematic architecture

was used for the machine learning and computational algorithms. Numpy, Pandas,
Matplotlib, Scikit-learn and Scipy are among the libraries that were used. To inte-
grate the PC-Air R package, we needed to add another layer of communication
between Python and R. In this case, Flask would serve as a middle layer, serving the
front-end request to R and waiting for its response, to send it back to the front-end.

. Data layer: PopMLvis can handle several types of data with various file exten-
sions, including plink binary data (.bed,.fam,.bim), pre-computed PCA results,
Genomic Relationship Matrix (GRM), and admixture results. Most of the data
will never be stored on the server. It will be either encrypted inside the body
of the request using HTTPS protocol, or used only on the front-end. The
choose data tab will keep the data in the front-end only. When settings change,
no requests will be made to the back-end. The clustering algorithms and out-
lier detection modules require the data to be sent to the back-end for computa-
tion, but results will be returned back to the user without storing or keeping any
trace of it. Because of various encryptions and file extensions, the dimensional-
ity reduction uploads are stored locally with encrypted filenames, processed, and
results are communicated to the user. All gathered data will be cleaned through a
job scheduler, CRON.

Conclusion

We developed PopMLyvis, an interactive tool that supports many useful features for
researchers to analyze and visualize population structure using genotype data. Our user-
friendly platform offers important functionalities including: supporting a variety of input
datasets, interactive visualization, performing dimensionality reduction, clustering, and
outlier detection. In addition, for privacy purposes, we developed a web-based as well as
a standalone version of the platform.
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Methods
PopMLvis data types

PopMLvis supports different types of input datasets. This gives more flexibility to users

on how this tool can be used.

Genome-wide association study data: This is the standard dataset that is used to test
the association between genetic variables and disease of interest. The data contains
genotypes of subjects and is highly dimensional (thousands of Single Nucleotide Pol-
ymorphisms (SNPs) and subjects).

Correlation/Kinship matrix data: This dataset is NxN dimension, where N repre-
sents the number of subjects. It contains the genetic correlation/ kinship between all
pairs of subjects.

Principal component analysis data: These are pre-computed principal components
by the user using genotype data or other types of data.

Admixture data: This dataset is the result of ADMIXTURE (or similar tools/models),
which contains the admixture fractions of subjects across a predefined number of
clusters.

PopMLvis data format

PopMLyvis accepts multiple file formats:

Comma Separated Value (CSV) file: Common, space, or tab-delimited input files are
accepted. Headers are required and can include:

IID: it represents the ID of a single individual.
PC;: the 1st Principal Component

PC,: the 2nd Principal Component.

PC,: the Nth Principal Component

Metadata information: These are extra columns that could be included in the dataset
(e.g., Ancestry, Age, Sex, Phenotype status, SNPs, etc.).

GWAS data: This is the binary plink format. Three files are required: .bed, .bim, and .
fam. In addition, if users want to run PC-Air, they should provide a correlation/kin-
ship matrix of all pairs of individuals (space- or comma-delimited). This can be com-
puted by many tools such as plink, GCTA, KING, etc. If the kinship matrix is not
provided, PopMLuvis uses the identity matrix by default.

+ Dickle file: 1t is a binary format that can be used to store genetic datasets, including

metadata fields. Pickle is used internally by python to serialize objects. It is a faster
and more flexible format. However, it is not supported by many programs (applica-

tions/softwares).

Page 5 of 14
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Note that many kinship calculators provide outputs in a long format, e.g., in the case
of GCTA [9], the output looks as follows:

11D, IID; Kinship,
11D, IID, Kinship,
11D, IID, Kinship,
etc.

To convert it to our matrix format, users can use the following code in R:

HitHH

fam = read.table("data.fam") # data.fam is the fam file used to compute kinship
grm = read.table("kinship.grm") # the long-formatted kinship

list_self = which(grmSV1 == grm$V2) # self-kinship

grm_noself= grm_noself[-c(list_self ),]

out = matrix(NA , nc=nrow(fam) , nr= nrow(fam))

diag(out) = grm[list_self,4]

out[upper.tri(out)] = (grm_noselfSV4)

out[lower.tri(out)] = t(out)[lower.tri(out)]

write.table(out, "GCTA_matrix",quote=FALSE,row.names=FALSE,col.names=FALSE)
At

Projections (dimensionality reduction algorithms)
PopMLyvis supports multiple dimensionality reduction algorithms, which help visualize
the latent structure in GWAS dataset:

« Principal components analysis (PCA): principal components analysis is a traditional,
well-known, and most used linear transformation technique to visualize the genetic
diversity in a dataset. It focuses on capturing the direction of maximum variation in a
dataset through these principal components.

« Principal components analysis accounting for relatedness between subjects (PC-Air):
It is used to perform a principal components analysis using genome-wide SNP data
for the detection of population structure in a sample. Unlike the standard PCA, PC-
Air accounts for sample relatedness (known or cryptic) to provide accurate ancestry
inference that is not confounded by family structure.

o Linear Discriminant analysis (LDA): 1t is a linear transformation technique, like
PCA, to find a linear combination of features that best explain the GWAS dataset.
It could be categorized as a supervised dimensionality reduction technique, which
could be exploited in classifying the dataset simultaneously.

o t-Distributed Stochastic Neighbor Embedding (t-SNE): It is a non-linear transfor-
mation technique that is well-suited for embedding high-dimensional data for
visualization in a low-dimensional space of two or three dimensions. It tries to
preserve the local structure (cluster) of genetic data and capture outliers simulta-
neously.
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Clustering algorithms

o K-means: It is one of the most popular clustering algorithms. It stores k-centroids,
which are used to define the clusters (ancestry groups). Then, each data point, which
represents an individual, is assigned to the nearest cluster centroid. After that, it cal-
culates the means (updated centroids) of data points in each cluster. This process is
repeated until the assignment of data points no longer changes, which means that
each subject is assigned to a given cluster (e.g., ancestry group).

+ Fuzzy c-means: It is similar to K-means, but instead of assigning each data point (i.e.,
individual) to only one cluster, each data point can belong to many clusters with a
weighting percentage. The weighting percentage increases if data points are close to
the cluster centroid and decreases if they are far from the centroids.

+ Hierarchical clustering: The general strategy is to follow a bottom-up approach
“agglomerative’, where each data point starts in its cluster and pairs of clusters are
merged as one moves up the hierarchy. We end up having only one cluster for the
whole genotype dataset. Then, based on the user’s decision of how dissimilar clusters
should be; a threshold value is applied. A dendrogram “tree-like” is the commonly
used representation for hierarchical clustering.

Admixture analysis

ADMIXTURE software: It is one of the widely used admixture algorithms to estimate
ancestry fractions of each subject. This is a supervised approach, where a predefined
number of clusters should be selected by users before running Admixture.

Outlier detection
PopMLvis provides multiple outlier detection techniques to flag subjects that could be
excluded from downstream analysis:

« Statistical metrics: Using principal components (PCs), deviation from the mean (p) is
used to detect outliers (=30, L=£ 20, etc.), where o is the standard deviation. Users
can define the list of PCs and the standard deviation threshold that can be used for
outlier detection (=% 30 on PC, and PC,; u£ 30 on PC, or PC,; etc.).

+ Isolation Forest: This method identifies anomalies by isolating outliers in the data. It
is based on a decision-tree algorithm, where it recursively generates partitions on the
dataset by randomly selecting a feature and then randomly selecting a split value for
the feature (e.g., PC).

+  Minimum Covariance Determinant: It estimates the mean and covariance matrix for
each subset in the data. Then, it keeps the estimates for the subset whose covariance
matrix has the smallest determinant (the most tightly distributed).

o Local Outlier Factor: The anomaly score of each sample is called the Local Outlier
Factor. It measures the local deviation of the density for a given sample with respect
to its neighbors, where the locality is given by k-nearest neighbors, whose distance is
used to estimate the local density.

Page 7 of 14
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+ OneClassSVM: It is a variation of the SVM classification algorithm. The algorithm
is modeled as one class, which permits the algorithm to capture the density of the

majority class and classifies examples on the extremes of the density function as out-
liers.

Visualization

Main dashboard: The main window of PopMLvis overviews all components of the
application.

As can be seen in Fig. 3, the primary PopMLvis dashboard can be categorized into four
panels:

o Choose data: We designed this panel in an interactive manner with the user. The
users has the choice to either upload their dataset, or utilize the provided datasets.

PopMLVis

N N e Setings | OutputOptons

Descriing Comns.

Mopping 0 Column

dd Metadata
o il selected

Fig. 3 The main window of PopMLvis

Example: Admixed PCA

1000 GENOMES PROJECT (1KG)
HowAN 1GoP

Fig. 4 Input panel of PopMLvis
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This panel also provides the user freedom to choose the dataset type they want,
between the PCA data and/or Admixture results.

For the datasets, we provided two sample datasets: 1000 Genomes Project (1KG) and
Human Genome Diversity Project (HGDP) that can be utilized. There is a separate
visualization for PCA and ADMIXTURE components (see Fig. 4).

+ PCA and Admixture: It is the combination of the PCA data and the Admixture
results. ADMIXTURE will try to cluster the data based on their ancestry, and the
output will be a set of probabilities p;, p,, .. p, where n is the number of clusters.

+ We say a subject s; belongs to cluster k, if
+ py=max (p;, Py - P ---» Pp) and py >alpha; or
¢ px=max (py, Py -+ Pw ---» Pn)> and py - p;> certainty,

where p;=max (p;, Py, --- Pi1» Pt 1> -+ Pn)> 1-€. the second largest probability.

- Here, alpha is a regularization parameter that penalizes intermediate
ancestry proportions, whereas certianty is how certain an individual belongs
to specific ancestry.

- The visualization result is a scatter plot and a bar plot (see Fig. 5).

Fig. 5 aThe effect of alpha and certainty in PCA scatter plot and, b The effect of alpha and certainty in
Admixture bar plot

Select Dimensionality Reduction Method

PCA (USING CORRELATION MATRIX)

[ PC-AIR (USING PLINK FILES AND KINSHIP)

T-SNE 2D (USING PCA DATA) \

l T-SNE 3D (USING PGA DATA)

Fig. 6 Four different examples of dimensionality reduction algorithms. a PCA (expected input: Correlation
Matrix/Genetic Relationship Matrix). b PC-Air (expected input: PLINK files, optional: Kinship). ¢ t-SNE 2D (using
PCA data). d t-SNE 3D (using PCA data)
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In the scatter plot, each subject is colored by the dominant cluster assigned
by admixture, based on alpha/certainty. The greyed out subjects are admixed
(see Fig. 5a).

In the bar plot, each bar of height 100% corresponds to one subject, where
the stacked colors describe the genetic component proportions of the sub-
ject. The greyed out subjects are admixed (see Fig. 5b).

+ Dimensionality Reduction: If the input data consists of a large number of features,
PopMLuvis is compatible with performing dimensionality reduction algorithms.
As shown in Fig. 6, PopMLvis supports four dimensionality reduction algorithms
to make it possible for the user to analyze high dimensional data more efficiently.
All the options have an expected data type input.
. PCA

a. Expected input: Correlation Matrix (NxN).
b. Output: Low Dimensional Data (Nxk, where k is defined by the user).

+ PC-Air:
a.  Expected input:
i. bed (PLINK binary biallelic genotype table).
ii. bim (PLINK extended M AP file).
iii. fam (PLINK sample information file).

iv. Kinship (optional): A symmetric matrix of pairwise kinship coefficients for

every pair of individuals in the sample. If the kinship matrix is not provided, the
result will be a usual PCA.

POPMLViS
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o Add Metadata
- Choose Fle no e selected

Fig. 7: 2D dimensionality reduction of 1000 Genomes Project.
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b.  Output: Low Dimensional Data (Nxk, where k is defined by the user).

« t-SNE 2D:

a.  Expected input: PCA data or Correlation Matrix/GRM.
b.  Output: 2D data, see Fig. 7.

+ t-SNE 3D

a.  Expected input: PCA data or Correlation Matrix/GRM.
Output: 3D data, see Fig. 8.

o Visualization panel: This panel provides the user with different options to
choose from in terms of the number of dimensions (1D, 2D, or 3D) and which
principal components to be viewed (see Fig. 9).
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Fig. 13 a Data excluding outliers. b Including cluster information, and ¢ Including Admix clustering
information

+ Clustering panel: This panel allows the user to apply a variety of clustering
algorithms to the uploaded dataset and visualizes the results spontaneously.
For each algorithm, the user can set the parameters such as the number of
clusters (see Fig. 10).

+ Outlier detection panel: The user can specify which principal component they
want to remove outliers from, and it is up to the user to choose more than one
principal component. Also, the user can select if he/she wants to do “AND” or
“OR” operations when there is more than one principal component. Moreover,
the user has to decide the deviation from the mean (u) to be flagged as an out-
lier (e.g., 1SD, 2SD, etc.) as shown in Fig. 11.

Exporting outputs
After performing the required operations, the user can export the output in a csv file. As
you can see in Fig. 12, the user can download the data with the following options:

+ Removing outliers: As shown in Fig. 13a, the user can exclude outlier samples.

« Include clustering information: As depicted in Fig. 13b, the user can add clustering
information to the exported dataset.

o Include Admix clustering: As depicted in Fig. 13c, the user can add Admix clustering
data to the exported dataset.
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