
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo‑
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Lee et al. BMC Bioinformatics          (2021) 22:638  
https://doi.org/10.1186/s12859-024-05911-6

BMC Bioinformatics

Mild cognitive impairment prediction based 
on multi‑stream convolutional neural networks
Chien‑Cheng Lee1*   , Hong‑Han (Hank) Chau1, Hsiao‑Lun Wang1, Yi‑Fang Chuang2,3 and Yawgeng Chau1 

From International Conference on Biomedical Engineering Innovation 2019 
Kaohsiung, Taiwan. 15-19 November 2019. 

Abstract 

Background:  Mild cognitive impairment (MCI) is the transition stage 
between the cognitive decline expected in normal aging and more severe cognitive 
decline such as dementia. The early diagnosis of MCI plays an important role in human 
healthcare. Current methods of MCI detection include cognitive tests to screen 
for executive function impairments, possibly followed by neuroimaging tests. However, 
these methods are expensive and time-consuming. Several studies have demonstrated 
that MCI and dementia can be detected by machine learning technologies from dif‑
ferent modality data. This study proposes a multi-stream convolutional neural network 
(MCNN) model to predict MCI from face videos.

Results:  The total effective data are 48 facial videos from 45 participants, including 35 
videos from normal cognitive participants and 13 videos from MCI participants. The 
videos are divided into several segments. Then, the MCNN captures the latent facial 
spatial features and facial dynamic features of each segment and classifies the segment 
as MCI or normal. Finally, the aggregation stage produces the final detection results 
of the input video. We evaluate 27 MCNN model combinations including three ResNet 
architectures, three optimizers, and three activation functions. The experimental results 
showed that the ResNet-50 backbone with Swish activation function and Ranger 
optimizer produces the best results with an F1-score of 89% at the segment level. How‑
ever, the ResNet-18 backbone with Swish and Ranger achieves the F1-score of 100% 
at the participant level.

Conclusions:  This study presents an efficient new method for predicting MCI 
from facial videos. Studies have shown that MCI can be detected from facial videos, 
and facial data can be used as a biomarker for MCI. This approach is very promising 
for developing accurate models for screening MCI through facial data. It demonstrates 
that automated, non-invasive, and inexpensive MCI screening methods are feasible 
and do not require highly subjective paper-and-pencil questionnaires. Evaluation of 27 
model combinations also found that ResNet-50 with Swish is more stable for differ‑
ent optimizers. Such results provide directions for hyperparameter tuning to further 
improve MCI predictions.
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Background
Mild Cognitive Impairment (MCI) is a transition from normal aging to dementia, and 
about 50% of patients with MCI progress to Alzheimer’s disease (AD) within 5 years [1]. 
AD is a neurodegenerative disorder characterized by cognitive decline with loss of mem-
ory. Once MCI enters the dementia stage, caring for these patients becomes complicated 
and costly. Early identifying patients with MCI and timely applying treatment can delay 
the progress of the MCI to AD [2]. However, the symptom of MCI is often neglected 
due to inconvenient, expensive, and/or time-consuming methods for its early detection. 
Therefore, the early diagnosis of MCI plays an important role in human healthcare.

Current methods of MCI detection include cognitive tests to screen for executive 
function impairments, possibly followed by neuroimaging tests. Two common cogni-
tive screening tests for MCI are the Mini-Mental State Examination (MMSE) [3] and 
the Montreal Cognitive Assessment (MoCA) [4]. Cognitive tests are not completely 
objective and may be influenced by the conducting physician or the patient’s age and 
educational background [5]. Furthermore, neuroimaging methods are expensive and 
time-consuming, making them unsuitable for screening large populations. These neu-
roimaging techniques typically include positron emission tomography (PET), single-
positron emission computed tomography (SPECT), and functional magnetic resonance 
imaging (fMRI). Consequently, a non-invasive, cost-effective, and easy-to-use screening 
method is critical for detecting MCI.

Several studies have demonstrated that MCI and dementia can be detected by machine 
learning technologies from different modality data, such as naturalistic driving data [6], 
speech data [7–9], and facial data [10]. Traditional machine learning consists of two 
steps: feature extraction and classification. These two steps are closely related. If feature 
extraction produces bad results, classification has to work hard for better performance. 
The intrinsic properties of the modality often affect feature extraction, and some latent 
features are difficult to be extracted and tracked by humans.

The use of facial data to detect MCI and dementia has attracted the attention of 
many researchers because of its easy availability. Most of them use static facial images 
to extract facial expressions and features such as action units [11], eye gaze [12], and 
lip activity [13]. However, static images only represent spatial features and lack tempo-
ral variation. Changes in faces over time should contain more information than static 
images. In other words, more complete facial features include not only spatial features, 
but also motion features when people respond to certain questions. We believe that the 
combination of spatial and motion features can provide better facial representation and 
improve MCI detection. Thus, capturing and modeling the spatial and motion features 
are essential for MCI detection through facial data.

Convolutional neural networks (CNNs) are able to automatically extract features from 
large amounts of data, rather than traditional machine learning using handcrafted fea-
tures. The success of CNNs in object classification has recently prompted researchers 
to leverage their feature learning capabilities to solve many computer vision problems 
through variants of CNNs. Among them, a two-stream architecture is the basis of most 
current models for behavior recognition and emotion recognition problems [14–17]. 
The architecture contains two CNNs: a spatial network that processes a static image, and 
a temporal network that processes motion information, most commonly represented by 
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the optical flow. It can simultaneously learn spatial and motion features, especially low-
level short-term facial motion features in the temporal stream.

Inspired by this, this study proposes a multi-stream CNN (MCNN) model to predict 
MCI from face videos. A face video is divided into several segments. For each segment, 
MCNN extracts and learns facial features representing spatial features from RGB image 
frames and motion features from motion vector sequences. In this way, the latent static 
facial features and smaller micro-motion features can be captured. Then, the fusion stage 
combines the spatial and temporal features to form feature vectors, and the classification 
stage predicts the MCI detection results for each segment. Finally, the aggregation stage 
produces the final detection results of the input video. We evaluate the performance of 
our method on 48 videos from 45 participants. The test results show that the proposed 
method achieves the best results at segment level and participant level with F1 scores of 
89% and 100%, respectively. It shows that an automatic, non-invasive, and inexpensive 
MCI screening method from facial videos is feasible, without the requirement for highly 
subjective paper-and-pencil questionnaires. Our key contributions are as follows:

•	 We combine spatial and motion features to provide better facial representation and 
improve MCI detection.

•	 We demonstrate the effectiveness of the MCNN model based on spatial and motion 
features to detect MCI.

•	 We investigate the impact of different optimizers and activation functions on the 
performance of different deep residual network (ResNet) [18] architectures and pro-
vide direction for hyperparameter tuning.

Literature review
MCI detection is an active topic of research. Some biomarkers are commonly used to 
detect MCI, such as cognitive tests, electroencephalogram (EEG), speech, facial images, 
and neuroimaging tests. De Jager et al. [19] evaluated whether the computerized cog-
nitive test battery, CogState, was as sensitive to MCI as two well-validated ‘paper-and-
pencil’ tests, the Hopkins Verbal Learning Test (HVLT) [20] and the MMSE. Biomarkers 
recorded from EEG such as event related potentials (ERPs) have been used extensively in 
observing electrophysiological activities in MCI and AD populations. White et al. [21] 
combined EEG biomarkers into a multidimensional feature space allowed for differentia-
tion between healthy and MCI participants based on their respective MoCA scores. Rut-
kowski et al. [22] proposed a machine learning-based MCI detection using behavioral 
responses. The classifier input features included emotional valence and arousal recogni-
tion responses in older adults, as well as reaction times.

Over the past decade, several results have been published in the particular domain 
of speech-based cognitive impairment (CI) detection [7, 8]. Speech reveals multidimen-
sional information about the speaker (e.g., age, gender, sociolinguistic characteristics, 
physiological condition) and can function as a fingerprint that identifies patients with 
MCI from healthy controls. Themistocleous et al. [9] investigated whether voice quality 
and speech fluency distinguish patients with MCI from healthy individuals to improve 
diagnosis of patients with MCI. Their findings provide objective measures of voice qual-
ity that can distinguish MCI patients from healthy controls. At the same time, they point 
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to the importance of phonation and speech fluency as diagnostic measures. Remote-
automated cognitive impairment monitoring has the potential to facilitate the care of 
the elderly with mobility restrictions. Yu et al. [23] proposed a speech-based CI detec-
tion from remotely-collected cognitive test audio to improve remote cognitive health 
monitoring.

One of the most important and useful biomarkers is neuroimaging test. In recent work, 
deep learning techniques have been widely used for medical image analysis. Yang et al. 
[24] proposed a neuroimaging method to identify MCI using a deep learning method 
and functional near-infrared spectroscopy (fNIRS). Hedayati et al. [25] used a set of pre-
trained autoencoder-based feature extraction modules to generate image features from 
3D input images, and then used a CNN to diagnose AD. Resting-state functional mag-
netic resonance imaging (rs-fMRI) using blood-oxygen-level-dependent (BOLD) signals 
as neurophysiological indicators has been widely applied to identify neurodegenerative 
diseases, especially for MCI and AD [26]. Current studies focus on using dynamic func-
tional connectivity (dFC) to identify brain disorders [27, 28]. Li et al. [29] developed a 
novel adaptive dFC model, aided by a deep spatial–temporal feature fusion method for 
MCI identification.

More recent approaches have aimed to use computer vision techniques to detect MCI/
dementia through facial data [30]. Tanaka et al. [31] proposed a method to automatically 
detect dementia from a human face. They identified various contributing features, such 
as action units, eye gaze, and lip activity. Wang et al. [32] compared different deep learn-
ing methods for assessing facial dynamics such as talking, singing, neutral and smiling in 
AD-patients. These methods include 3D CNNs, two-stream CNNs, as well as improved 
dense trajectories. The two-stream CNNs in combination with ResNet-152 obtains the 
best performance on their dataset. The artificial intelligence-based facial expression rec-
ognition systems are also used to predict neuropsychiatric symptoms of persons with 
dementia and screen people with cognitive impairment [10, 33].

Materials and methods
Data collection

All participants gave their informed consent for inclusion before they participated in the 
study. The study was conducted in accordance with the Declaration of Helsinki, and the 
protocol was approved by the Far Eastern Memorial Hospital Research Ethics Commit-
tee (105147-F) and the Institutional Review Board of the National Yang-Ming University 
(YM108110E). There are 45 participants in this study, 32 are cognitively normal (median 
age 69  years, IQR 67–73  years, 9 males, 23 females) and 13 are diagnosed with MCI 
(median age 75 years, IQR 71–78 years, 6 males, 7 females). Table 1 and Fig. 1 show the 
gender and age distribution of the participants. In order to collect realistic and reason-
able data from participants without stress or embarrassment, participants recorded vid-
eos while participating in the MMSE.

The total effective data are 48 facial videos from 45 participants, including 35 vid-
eos from normal cognitive participants and 13 videos from MCI participants. Several 
types of resolutions are used in the original videos, such as 1920 × 1080, 1280 × 720, and 
640 × 480. The video frame rate is 29.97 frames per second (fps). Video lengths range 
from 3 to 30 min, and the average length is 14.5 min. To reduce the spatial and temporal 
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redundancy before processing, the frame resolution was also resized to 640 × 480, and 
the video frame rate was down-sampled to 5 fps.

MCI prediction model

We proposed an MCI prediction model based on MCNNs to predict whether a partici-
pant video is MCI, as shown in Fig. 2. First, a participant video is divided into several 
segments. Then, we generate spatial and motion data streams as input to MCNN for 
each segment. MCNN captures latent spatial and motion features from the data streams 
to extract facial representations during MMSE testing, and classifies segments as MCI 
or normal based on these facial features. Finally, the aggregation stage produces the final 
detection results of the input video.

We randomly sample a frame from each segment to generate the spatial data stream. 
The frame is an RGB image that contains the participant’s face, which can be used to 

Table 1  Gender distribution of participants

Female Male Total

Normal 23 9 32

MCI 7 6 13

Total 30 15 45

Fig. 1  Age distribution of participants

Fig. 2  Overview of the MCI prediction model
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represent static facial spatial information. During the MMSE test, the participants’ facial 
responses are also important. To capture the facial dynamics, the motion data stream 
is generated from segment frames using optical flow techniques [34]. Optical flow is 
used in computer vision to obtain the motion field on individual pixel basis between 
two image frames. It is widely used in a variety of biomedical applications for tracking 
changes over time [35, 36]. The stacked optical flow fields with x and y directions are 
calculated to represent facial motion information. In this study, we choose the TVL1 
optical flow algorithm [37] implemented by OpenCV with CUDA.

Inspired by two-stream CNNs [14, 17], our MCNN mainly consists of three CNNs, 
a fusion mechanism, and a fully connected layer as a classifier, as shown in Fig. 3. The 
three CNNS are spatial CNN, x-motion CNN, and y-motion CNN. It receives the spatial 
and x, y motion streams from a segment as inputs, and uses the three CNNs to extract 
facial spatial and motion features. The spatial features, x-motion features, and y-motion 
features are then concatenated to form a one-dimensional vector. Finally, the fused fea-
ture vector is classified as MCI or normal through a batch normalization (BN) layer and 
a fully connected (FC) layer.

MCNN acts as a segment classifier in the MCI prediction model. For each segment, 
each MCNN classifier produces a unique decision regarding the identity of the segment. 
Finally, a majority voting scheme [38] is used as an aggregation of classifiers. In aggregat-
ing the decisions of the n MCNN classifiers, the input video is assigned to the MCI class 
when at least k MCNN classifiers agree, where

The MCNN is a general and flexible model at the segment level. Several modern 
CNN models can be used as the backbone of MCNN. In order to train our MCNN to 
perform optimally, we choose ResNet as the backbone, after considering its balance 
between accuracy and efficiency. Meanwhile, most CNN models provide pre-trained 
models based on working with the public ImageNet dataset [39]. The transfer learn-
ing allowed building a high-quality classification model for new data, based on a small 
amount of newly labeled data. Therefore, we used the transfer learning to fine-tune the 
pre-trained CNNs to expedite training and to increase accuracy. In the transfer learning, 
we unfreeze and train the last convolutional block of the pre-trained model, as well as 

(1)k =

{ n
2 + 1 if n is even
n+1
2 if n is odd.

Fig. 3  Architecture of MCNN model
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the top-layer classifier (FC layer). In this way, we retain the generic features learned from 
the ImageNet dataset, while learning domain knowledge from the facial video data.

MCNN exploration

Although MCNN captures and learns spatial and motion features to predict MCI from 
video segments, the accuracy of MCI prediction also depends on the model architec-
ture. Therefore, exploring different types of model architectures is necessary to devise a 
robust solution. To further attempt to improve model accuracy, we explored and com-
pared the following model settings and their combinations:

1.	 ResNets with different numbers of layers, namely ResNet-18, ResNet-34, and 
ResNet-50.

2.	 ReLU, Swish, and Mish activation functions [40, 41] in ResNets.
3.	 SGD, Adam, and Ranger [42] optimizers in model training.

The activation function plays an important role in neural network training. In the early 
era of the neural network, sigmoid function was the most used activation function in 
neural networks. However, its small derivative may cause the vanishing gradient prob-
lem, so ReLU is more suitable and widely used in deep learning because it has a deriva-
tive of one for every positive input. Nevertheless, if the weights in the network always 
lead to negative inputs into a ReLU neuron, the neuron output is zero and it is dead. 
This phenomenon is called the dying ReLU problem. Several variants of ReLU have been 
proposed that perform as well or better than ReLU. Unfortunately, none of them have 
achieved the same popularity as ReLU due to its simplicity [43].

Swish is a smooth non-monotonic activation function, similar to ReLU. The Swish 
activation function is defined as follows [40]:

The simplicity of Swish and its similarity to ReLU means that replacing ReLUs in any 
network is just a simple one line code change. Even this simple, empirical performance 
shows that Swish consistently outperforms ReLU and other activation functions. Mish is 
a new activation function with similar shape and properties to Swish, defined as follows 
[41]:

The graphs of ReLU, Swish, and Mish are shown in Fig. 4. As shown in Fig. 4, the main 
difference is the concave part of the function. Mish keeps improving ReLU and Swish 
at the cost of more computation. In this study, we compare the performance of ReLU, 
Swish, and Mish in ResNets to find the best model architecture.

Optimizers are critical to the performances of neural networks. While a large number 
of optimizers are proposed, most of these publications provide incremental improve-
ments to existing algorithms. We adopted the current state-of-the-art optimizer Ranger 
to improve model training. The Ranger optimizer combines two emerging works from 
RAdam and Lookahead to build a set of optimizers for deep learning. RAdam uses a 

(2)Swish(x) =
x

1+ e−x

(3)Mish(x) = xtanh
(

log
(

1+ ex
))
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dynamic rectifier to adjust Adam’s adaptive momentum based on variance and effec-
tively provides an automatic warm-up mechanism. LookAhead can provide strong and 
stable breakthroughs throughout the training process. Therefore, the inventor of the 
Ranger claim that combining the two can achieve higher accuracy. This study also com-
pares the performance of SGD, Adam, and Ranger optimizers in model training.

Generating training and test segments

In the MCI prediction mode, only the MCNN needs to be trained. Therefore, we divide 
each participant video into several segments to generate the training and test segments. 
In this study, considering the video length, and because the number of MCI videos is 
smaller than the number of normal videos, we evenly extract 200 segments from MCI 
videos, and 100 segments from normal videos to balance MCI and normal classes. In the 
end, a total of 5154 segments are extracted from 48 videos, some of which are too short 
to extract enough segments. Each segment contains 10 frames, and a segment is consid-
ered a processing unit of the MCNN.

To generate the training and validation segments, we need to split all segments into 
training and validation sets. However, we cannot directly split the segments because 
they may come from the same participant. During the training process, the validation 
data should not be visible. If the training and validation segments come from the same 
participant, it means that data has been learned during the training. Therefore, this study 
uses a two-stage approach to generating the training and validation segments.

First, all participants are randomly grouped into training and validation groups in a 
ratio of approximately 8:2. We use the stratified K-fold cross-validation implemented by 
scikit-learn library [44] to split the participants into groups with roughly the same pro-
portions of classes in the original data. Then, after the participant grouping, all segments 
are divided into training and validation sets according to their corresponding participant 
IDs in the training or validation groups. Table 2 shows the numbers of training and vali-
dation sets. There are 4237 segments (36 participants, 39 videos) in the training set and 
917 segments (9 participants, 9 videos) in the validation set. MCI segments are marked 
as positive and normal segments are marked as negative. Because there are not many 
video data, we do not have a separate test set. The verification set will be used in the 

Fig. 4  Graphs of ReLU, Swish, and Mish activation functions



Page 9 of 16Lee et al. BMC Bioinformatics          (2021) 22:638 	

model testing phase to evaluate the model testing performance. The gender and age dis-
tributions of the segmented training set and validation set are shown in Fig. 5.

Experimental results
Implementation details and settings

We conducted all experiments on a computer with Intel(R) Xeon Silver 4110 CPU 
and NVIDIA Tesla V100-32 GB GPU. The PyTorch deep learning framework is used 
to implement our model. We initialize the spatial CNN weights using the pre-trained 
model from ImageNet. At the same time, we compute the average weights of the RGB 
channels of the pre-trained model and initialize the weights of the motion CNNs with 
these average weights. Regarding data augmentation, we use the techniques of multi-
scale cropping and random horizontal flipping.

As mentioned earlier, to further improve model accuracy, we explored and compared 
the model settings and their combinations, including different architectures, activation 
functions, and optimizers in ResNet training. Among them, we uniformly set the initial 
learning rate to 0.001, the batch size to 25, and the training epoch to 30, respectively. An 

Table 2  Numbers of training and validation sets

Training set Validation set

Participants Videos Segments Participants Videos Segments

Normal 26 29 2631 6 6 450

MCI 10 10 1606 3 3 467

Total 36 39 4237 9 9 917

Fig. 5  The gender and age distributions of the segmented training set and validation set. a Gender 
distribution of the segmented training set. b Age distribution of the segmented training set. c Gender 
distribution of the segmented validation set. d Age distribution of the segmented validation set
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exponential learning rate decay is also used in model training. The best mode during the 
training will be stored and used for testing.

Four metrics are employed to measure the quantitative impact of prediction results 
between different model settings. These metrics are precision, recall, accuracy, and 
F1-score, as follows:

where TP, TN, FP, and FN represent the true positive, true negative, false positive, and 
false negative, respectively. Accuracy is defined as the ratio of true positives and true 
negatives to all instances. In other words, it is the fraction of correct predictions. Preci-
sion quantifies the number of positive class (i.e., MCI) predictions that actually belong 
to the positive class. Recall quantifies the number of positive class predictions made out 
of all positive instances in the dataset. There is a trade-off between precision and recall 
according to their definitions. F1-score provides a way to combine both precision and 
recall into a single measure that captures both properties. Precision, recall, and F1-score 
provide better insights into predictions than accuracy.

Model architecture evaluation

To better build an accurate prediction model suitable for our dataset, we use ResNet-18, 
ResNet-34, and ResNet-50 as the MCNN backbones to build MCI prediction models, 
respectively. In each ResNet, we further analyze the performance using three different 
optimizers (SGD, Adam and Ranger) and three different activation functions (ReLU, 
Swish and Mish). Figure  5 shows the F1-score of the test results for different model 
combinations at the segment level. The three columns of Fig. 5 show the test results of 
MCNN using ReLU, Swish, and Mish activation functions in ResNets. The three rows of 
Fig. 5 show the test results of the MCNN trained by Adam, Ranger, and SGD optimizers.

Figure  6 shows that the activation functions and optimizers greatly affect the per-
formance. The model using ReLU activation function and SGD optimizer achieves the 
worst results, as shown in the lower left of Fig. 5. ResNet-50 backbone with Swish activa-
tion function and Ranger optimizer produces the best results with an F1 score of 0.89. 
On average, the activation functions of ReLU and Mish perform poorly (F1-score < 0.75), 
but ResNet-50 using ReLU and Adam yields better results with an F1-score of 0.86. Sur-
prisingly, Mish, as a novel activation function, does not perform well in our dataset.

Figure  7 shows MCI prediction results at the participant level. We use a major-
ity voting scheme to aggregate segments of the same participant and predict the 

(4)Accuracy =
No. of Correct Predictions

No. of Total Predictions
=

TP + TN

TP + FP + FN + TN

(5)Recall =
No. of Correctly Predicted Positive Instances

No. of Total Positive Instances in Dataset
=

TP

TP + FN

(6)Precision =
No. of Correctly Predicted Positive Instances

No. of Total Positive Predictions
=

TP

TP + FP

(7)F1Score =
2× Precision× Recall

Precision+ Recall
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participant as MCI or normal. The best result is the combination of ResNet-18 back-
bone with Swish activation function and Ranger optimizer, with an F1-score of 1. The 
next best combinations are ResNet-50 backbone with Swish and SGD, and ResNet-18 
backbone with Mish and SGD. Both achieve an F1-score of 0.86. It is worth mention-
ing that we used the same learning rate for all three optimizers in our study. However, 
different optimizers may require different learning rates. Models may reach good or 
very poor accuracy for some ranges of the learning rate. Although ResNet-18 with 
Swish and Ranger achieves the best results at the participant level, ResNet-50 with 
Swish is more stable for different optimizers. This finding could provide direction for 
hyperparameter tuning.

Table 3 summarizes the precision, recall, accuracy, and F1-score results of the models 
using Swish and Ranger. While the results show that the ResNet-18 backbone with Swish 
and Ranger achieves the F1-score of 100% at the participant level, the same combina-
tion model achieves only the F1-score of 88% at the segmentation level. This is because 
we use the majority voting scheme in the participant MCI prediction, and the decision 
depends on the distribution of misclassified segments between participants. Figure  8 
shows the confusion matrix for MCI prediction at segment level using ResNet-50 back-
bone with Swish and Ranger. Figure 9 shows the confusion matrix for MCI prediction at 
participant level using ResNet-18 backbone with Swish and Ranger. In Fig. 8, the mis-
classification rate of the MCI segments is higher than that of the normal segments. This 
may be due to data imbalance. The MCI data is less than healthy data in our dataset.

Fig. 6  F1-score of the test results for different model combinations at the segment level
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Fig. 7  F1-score of the test results for different model combinations at the participant level

Table 3  Test results of MCI prediction models using Swish and Ranger

Level Precision Recall Accuracy F1 Backbone

Segment 0.86 0.90 0.87 0.88 Resnet18

Segment 0.61 0.65 0.61 0.63 Resnet34

Segment 0.93 0.86 0.90 0.89 Resnet50

Participant 1.00 1.00 1.00 1.00 Resnet18

Participant 0.33 0.33 0.56 0.33 Resnet34

Participant 1.00 0.67 0.89 0.80 Resnet50

Fig. 8  Confusion matrix for MCI prediction at segment level
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Discussion
MCI prediction from facial videos is a challenge. In this study, we propose a MCNN-
based MCI prediction method. We evaluate ResNet-18, ResNet-34, and ResNet-50 
as MCNN backbone networks, which combine three different activation functions 
(ReLU, Swish, and Mish) and three different optimizers (SGD, Adam, and Ranger), 
yielding 27 models. Our results show that the activation functions and optimizers 
greatly affect the performance. In participant-level evaluations, the results show that 
the ResNet-18 backbone with Swish and Ranger achieves the F1-score of 100%. In 
segment-level evaluations, the ResNet-50 backbone with Swish and Ranger produces 
the best results with an F1-score of 89%. Experiments show that ResNet-50 with 
Swish is more stable for different optimizers. This finding could provide direction for 
hyperparameter tuning.

Although our model has demonstrated good prediction performance at the partici-
pant level, there is still room for improvement in the MCNN. Here are a few areas for 
refinement:

Increasing the dataset Particularly for MCI cases, expanding the dataset is crucial. 
Deep learning models require large amounts of data to effectively train their param-
eters. To address the current limitations, we divided the video data into hundreds 
of segments to augment the dataset. However, having more participant data overall 
would significantly benefit the training process.

Improving video quality The quality of the videos varies significantly. Several vid-
eos had to be excluded due to poor quality, such as bad camera angles, improper 
distances, face mask occlusions, and other distracting foreground and background 
objects. Ensuring consistent and high-quality video recordings will enhance the reli-
ability of the data.

Analyzing video segments In this study, we used the entire video recorded during 
the MMSE test. However, participants exhibit different states (e.g., listening, thinking, 
responding) at various times. Conducting a more detailed analysis of these distinct 
states could further improve the model’s prediction performance.

Fig. 9  Confusion matrix for MCI prediction at participant level
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Conclusions
The MCNN effectively captures latent facial spatial features and dynamic movements 
from facial videos. By leveraging MCNN, we can obtain robust facial representations 
without relying on the handcrafted features typically used in traditional machine 
learning methods. Research indicates that MCI can be detected through facial videos, 
positioning facial data as a potential biomarker for MCI. This approach holds great 
promise for developing accurate models to screen for MCI using facial data. It under-
scores the feasibility of automated, non-invasive, and cost-effective MCI screening 
methods that do not depend on highly subjective paper-and-pencil questionnaires. 
Additionally, this approach could be extended to detect similar symptoms, such as 
the behavioral and psychological symptoms of dementia (BPSD) in individuals with 
dementia.
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