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Introduction
The invention of the microscope allowed for unprecedented glimpses into the micron-
scale world, and led to the first characterizations of the cell  [1]. A subsequent push to 
discover the constituent components of the cell led to the development of modern bio-
chemical methods, predominantly based around density centrifugation  or chemical 
separation. In this process, cells and tissues are dissociated and then separated by den-
sity to study the subcellular interactions between individual biopolymers. This approach 
progressively revealed the “parts list” of the cell, illuminating the composition of cellu-
lar structures such as the rough and smooth endoplasmic reticulum [2] and the Golgi 
body [3]. These methods, however, lost the spatial context of where biopolymers were 
located in the cell, not to mention the relative locations of the cells themselves.

Abstract 

Genomics methods have uncovered patterns in a range of biological systems, 
but obscure important aspects of cell behavior: the shapes, relative locations, move-
ment, and interactions of cells in space. Spatial technologies that collect genomic 
or epigenomic data while preserving spatial information have begun to overcome 
these limitations. These new data promise a deeper understanding of the factors 
that affect cellular behavior, and in particular the ability to directly test existing theories 
about cell state and variation in the context of morphology, location, motility, and sign-
aling that could not be tested before. Rapid advancements in resolution, ease-of-use, 
and scale of spatial genomics technologies to address these questions also require 
an updated toolkit of statistical methods with which to interrogate these data. We 
present a framework to respond to this new avenue of research: four open biological 
questions that can now be answered using spatial genomics data paired with methods 
for analysis. We outline spatial data modalities for each open question that may yield 
specific insights, discuss how conflicting theories may be tested by comparing the data 
to conceptual models of biological behavior, and highlight statistical and machine 
learning-based tools that may prove particularly helpful to recover biological 
understanding.

Keywords:  Spatial genomics, Biophysics, Cell biology, Machine learning, Statistical 
models

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

REVIEW

Jena et al. BMC Bioinformatics          (2024) 25:291  
https://doi.org/10.1186/s12859-024-05912-5

BMC Bioinformatics

†Siddhartha G. Jena and Archit 
Verma have contributed equally 
to this work.

*Correspondence:   
bengelhardt@stanford.edu

1 Department of Stem Cell 
and Regenerative Biology, 
Harvard, 7 Divinity Ave, 
Cambridge, MA, USA
2 Gladstone Institutes, 1650 
Owens Street, San Francisco, CA 
94158, USA
3 Stanford University, 1265 Welch 
Road, x327, Stanford, CA 94305, 
USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05912-5&domain=pdf


Page 2 of 25Jena et al. BMC Bioinformatics          (2024) 25:291 

Imaging and biochemical characterization of cells and tissues have both made incredi-
ble progress since their initial development. Advances in physics in the second half of the 
20th and early 21st century led to the invention of the electron microscope [4], scanning 
tunneling microscope  [5], atomic force microscope  [6], and super-resolution micros-
copy [7]. Together with fluorescent proteins and affinity reagents (such as increasingly 
specific antibodies), these instruments opened a new frontier of molecular-level imag-
ing. Scientists could interrogate the spatial location of different proteins, nucleic acids, 
or lipids within a tissue sample, and associate their distribution with particular cell mor-
phologies or phenotypes.

The development of high-throughput genomic sequencing technologies in the early 
21st century led to the characterization of biology at base-pair resolution, first with bulk 
tissue samples as input, and later within single cells [8, 9]. These protocols revealed the 
molecular composition of nucleic acids within tissues and cells, but without the spatial 
or visual context of imaging, since these methods required lysing cells to extract nucleic 
acids for sequencing.

The parallel technologies of sequencing and imaging have continued to increase in 
quality and resolution, and have complemented one another in important biologi-
cal findings. A common post-hoc structure for leveraging the two approaches is to use 
statistical methods to identify correlations between an imaging-based readout and a 
sequencing-based readout [10], or predict gene expression levels in a sample using his-
tology imaging [11, 12]; one such example is the mapping of somatic mutations, such as 
those found in cancer, to a cellular phenotype such as the emergence of dense cancer-
ous tissue that is easily identifiable in pathology imaging [13]. More recently, pairing the 
two measurements in the same sample has become possible as biochemical methods to 
study genomics have expanded into the spatial realm. Fluorescence in situ hybridization 
(FISH) methods involve probes that directly bind to proteins, RNA, or DNA of interest, 
allowing them to be imaged while preserving the location of the biomolecule [14]. Alter-
natively, cells from a particular region of a tissue section can be sequenced together and 
reassigned to the tissue image afterwards, providing a coarse-grained view of cell-based 
gene expression across the tissue. Cells may also be optically barcoded prior to sequenc-
ing assays to capture their relative location. Using these methods, the high-dimensional 
genomic state of a single cell can be measured, and the cell can subsequently be mapped 
back onto its position in its native context, whether in culture or embedded in a tis-
sue [15]; both cellular state and cellular environment is explicit in these approaches.

Spatial genomics have already been used in a number of contexts to characterize 
genome-wide changes associated with cellular differentiation, development, interven-
tions, and the progression of diseases such as cancer [16–18]. With this new genome-
scale spatially-resolved readout, researchers have the opportunity to discover general 
principles that govern cellular behavior in their environmental contexts. As better exper-
imental methods are developed, of equal importance are the analytic frameworks that 
we use to understand and interpret the resulting spatial data.

In this review, we take a look at the types of questions to which scientists may apply 
spatial technologies, with an eye towards the methods appropriate for analyzing experi-
mental results in the context of open questions in cellular biology. We first summa-
rize the different spatial scales of analysis: molecular-, cellular-, and tissue-level data 
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resolutions. We then examine four open questions that may be answered using spatial 
genomics: 

1.	 What is the functional spatial effect size of a cell?
2.	 How do cell state and expression profile interact with cellular morphology, move-

ment, and behavior?
3.	 What local effects shape clonal dynamics in dividing and differentiating tissue?
4.	 How does a cellular environment shape rare events?

We review current and potential methods for answering these questions from spatially-
resolved genomic data. As the suite of spatial genomics tools expands, we hope that the 
approaches discussed here may be generalized to a broad collection of robust, usable 
tools and data resources.

Spatial scales of biology
Peer through a microscope at a slice of tissue on a slide, and a wide range of cell shapes, 
sizes, and patterns present themselves. Further antibody staining reveals the location 
of proteins in specific intracellular compartments and throughout the extracellular 
matrix [19]. A tissue sample contains biological processes occurring at three scales: sub-
cellular  processes taking place within a subcompartment of a single cell, cellular pro-
cesses taking place within 1− 10 cells, and multicellular processes taking place among 
> 10 cells (Fig. 1). At the subcellular scale, our questions primarily involve interactions 
between individual molecules in organelles or membranes. At the cellular level, we ask 
questions about the overall composition of the cell and interactions with nearby cells. 
Finally, at the multicellular level, we ask how groups of cells of different types come 
together to form tissues with multifaceted functions. The scales described here map 
neatly onto the paradigms of autocrine, paracrine, and encodrine signaling that are com-
mon parlance in physiology; however, we hope that generalizing these terms to their 
relevant length scales may lead to deeper insights about systems not currently or com-
monly studied in medicine.

I. Subcellular resolution

What molecules are in an individual cell and where do they function? Nucleic acids and 
individual proteins are largely the drivers of cellular morphology and behavior. Using 
specific affinity reagents, such as antibodies or oligonucleotide probes, one can iden-
tify specific RNA and protein species in a fixed sample, providing insight into func-
tion. These molecules are often complexed together; one such example is chromatin, 
which consists of DNA, histone proteins, and often associated RNAs [20]. Here, we will 
describe some of the promising use cases for investigating these molecules at subcellular 
resolution.

DNA: Accessibility and structure

DNA acts as the biological blueprint for an organism. With the exception of somatic 
mutations  [21], cells across an organism largely share the same DNA, yet serve vastly 
different functions. This functional heterogeneity is made possible through epigenetic 
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modifications, which control the genes that are transcribed or repressed in a cell  [22]. 
Structural changes from epigenetic modifications such as DNA or histone methyla-
tion [23–25] can lead to differentially accessible regions along the length of the genome. 
These exposed chromatin regions, which may be read out through methods such as 
ATAC-seq  [26], allow binding of regulatory molecules such as transcription factors 
and RNA polymerase, leading to transcription. Other modifications, such as histone 
acetylation, can lead to recruitment of specific transcription factors and result in gene 
expression [22].

Although distinct chromatin modifications have been associated with transcrip-
tional activation or repression, the spatial organization of the genome and its link to the 
expression of specific programs remains less clearly defined. The genome is spatially par-
titioned, in structures largely driven by these epigenetic modifications, into domains of 
active or inactive genes called A and B compartments, respectively [27]. Although chro-
matin conformation capture methods such as Hi-C are able to capture these compart-
ments [28, 29], the link between these compartments and their transcription products 
is still being uncovered on a spatial level within intact cells. What occurs on the border 

Fig. 1  Distinct scales of organization at different parts of the body. Subcellular localization of receptors, 
cytosolic proteins, and signaling molecules affects cellular communication between neurons, B and T cells, 
or cardiac muscle in the heart. Each of these cell types is, further, a components of multicellular assemblies of 
many neurons, immune cells in the bloodstream, or heart tissue
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between A and B compartments? Are there features that further distinguish different 
genomic compartments? A deeper understanding of spatial genome organization and its 
effect on the transcriptome would provide answers to these questions, as well as poten-
tially addressing epigenetic dysregulation, which has been implicated in aging, response 
to environmental exposures, and disease progression [30, 31].

RNA: Diversity and function

Given the (generally) shared DNA sequences across cells from a single organism, vari-
ation in RNA expression is a major driver of cellular variation. Different cell types and 
cell states show different patterns of RNA expression, but RNAs spatially confined to 
compartments in the nucleus or cytoplasm are difficult to capture through conventional 
RNA sequencing. This is of particular interest since the dynamic organization of mRNAs 
may produce differential protein gradients in a tissue, driving processes such as meta-
bolic regulation [32], polarization during  embryonic development, or synapse forma-
tion in neurons [33–35]. Beyond mRNAs, a number of noncoding RNAs (ncRNA), such 
as long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), have been identified 
and found to have important regulatory functions [36]. Understanding the relationship 
between ncRNA function and their localization in specific nuclear and cellular compart-
ments, combined with absolute transcript levels, would provide a more complete char-
acterization of the transcriptional state of single cells [37]. Outside of the cell, RNA in 
extracellular vesicles may be implicated in inter-cellular signaling [38]. Spatial transcrip-
tomics provides previously unavailable insights that will further scientists’ understand-
ing of these RNA molecules.

Proteins: localization, abundance, and modifications

When possible, protein measurements provide the most direct window into active cell 
function. While the prevailing view is that transcript levels correlate with protein lev-
els, possible discrepancies may arise between the two  [39, 40], which may necessitate 
direct measurement of protein levels depending on cellular context  [41, 42]. Inferring 
protein levels from transcript levels also ignores aspects of protein regulation such as 
localization or post-translational modifications that may activate, modify, or suppress 
protein function [43]. Antibodies to common protein modifications have allowed scien-
tists to visualize cell processes such as signaling, while more extensive spatial measure-
ments allow for mapping of specific versions of proteins to subcellular locations within 
individual cells. Once localization of a particular protein or protein family is established, 
further analyses such as proximity biotinylation [44] or affinity purification mass spec-
trometry [45] may be performed in the same sample, allowing for deeper insights as to 
what tasks the protein was performing in its targeted location.

II. Cellular resolution

Complex life is dependent on the cooperation and communication between many 
diverse cell types. Cell types are often categorized based on their interactions with other 
cells and tissues: for instance, neurons transmit signals to one another to form the basis 
of cognition [46], T cells identify and kill foreign cells [47], and cardiomyocytes coordi-
nate signaling between themselves to drive pacemaker activity in the heart [48]. Recent 
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advances in high-throughput single-cell measurements allow us to survey this diversity 
of cell types and interactions from a transcriptional or protein expression perspective.

Variation also exists within cell type, often inelegantly lumped into the vague term 
cell state. For instance, although a population of T cells are likely more similar to one 
another than they are to a muscle cell or skin cell, individual cells or subsets within the 
T cell population may be in different states of proliferation, activation, or quiescence at 
any given moment [47]. Cell states are controlled in part by local interactions between 
T cells and their environment, causing their transcriptomes and functional responses 
to diverge [39, 49]. Even in the absence of different environments, there are many sub-
types of T cells each with their own cell state profile, and moreover cell states possess a 
natural level of variation within a population [49, 50]. Some of this variation is due to the 
stochastic nature of reactions such as transcription or chromatin dynamics occurring in 
single cells [51]. However, it is an open question how much of heterogeneity is random 
and how much is a byproduct of factors that are not measured in transcriptomic studies, 
such as interactions at the spatial boundaries of the cell population [51, 52].

Cells function together, so questions at the cellular scale must consider the interac-
tions with individual cells in a local neighborhood. Receptor-ligand interactions that 
activate biochemical signaling pathways allow cells to modulate the transcriptomic state 
of nearby cells [53]. Cells from the same organisms may work together to perform com-
plementary functions, like Schwann cells coating astrocyte neurons with myelin sheets 
to improve cell-to-cell signaling [54]. Cells from different organisms may also compete 
in the same tissue; for instance, immune cells fighting an infection or autoimmune 
diseases [55].

III. Multicellular resolution

In multicellular organisms, groups of many heterogeneous cells come together to form 
cellular complexes, tissues, and organs. Repeating patterns of multiple cell types in close 
proximity in a tissue are referred to as cellular niches [56–59]. Beyond the identification 
of the cell type composition of a particular niche, there is considerable interest in under-
standing niche sizing, the variation in niche architecture, the developmental trajectory 
of niches, and the interactions between niches  [60, 61]. For instance, stem cell niches 
are of particular interest as they possess the potential to regrow and regenerate specific 
tissues [62].

Collections of niches create tissue architectures, and spatial transcriptomics presents 
the opportunity to bring more context to the organization of tissues from a molecu-
lar lens. How a repeated niche differs across the tissue may be explained by chromatin 
modifications or differences in RNA and protein expression, which lead to cell-type het-
erogeneity. Differences in structure from genetic defects can be explained causally by 
linking mutations to specific changes that propagate across the tissue [63].

The ambitions of single-cell studies have grown from defining distinct cell types [64] to 
the creation of comprehensive atlases— from the tissue level [50, 65] to organs [66, 67] 
to full organisms [68–70], across age [71, 72] and disease status [73–77]. These atlases 
have the potential to advance biological discovery, in particular because they may pro-
vide a more thorough description of the distinct cell states in a larger population. Future 
work projecting single-cell atlases to spatial scales will add more context to these cell 
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states, providing insights into the organization of specific cell states, cell types, and cel-
lular niches in tissues and organs.

Key questions in spatial biology
I. What is the functional spatial effect size of a cell?

In a multicellular context, cells use many modes of communication to convey messages 
to their surroundings (Fig. 2, Question I). The mechanisms by which and extent to which 
cells are able to communicate across the body has long captivated biologists. The con-
cept of morphogens—hormones that enable cellular communication over distance—is an 
old one  [78]. As biochemical tools grew more sophisticated, numerous signaling mol-
ecules and pathways were found to serve this critical role [79–82]. These signaling path-
ways, which are often conserved across organisms, continue to inform research today; 
for example, live-cell imaging revealed that the Ras/ERK pathway propagates waves of 
signaling activity during development in response to processes within the cell as well 
as directing events such as wound healing that take place outside of the cell [83–85]. As 
we piece together the toolbox of molecules used for cellular communication, it remains 
unclear how to best measure coupling between cells in a tissue. For a given cell, how do 
we know how much of its behavior is due to communication with cells around it? How 
far does this communication reach?

Biophysical models of cell interactions form a useful framework within which to ask 
these questions. Perhaps the earliest of these models is the the French Flag Model of 
morphogen gradients, where particular levels of a molecule are mapped to distinct 
outcomes in a tissue. Results from this model provided a conceptual explanation of 

Fig. 2  Four key questions in spatial biology. I. Cells can release ligands that allow them to communicate 
with Other cells across various, unknown spatial scales. II. Cell location can affect morphology, movement of 
cells within a tissue and gene expression in unknown ways. III. It remains unclear how dividing clonal cells 
distribute within a tissue, and how this spatial distribution affects dynamics of gene expression. IV. It remains 
unclear how rare events in gene expression are influenced and orchestrated in within a tissue
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how diffusing gradients of such a chemical could result in patterning along the length 
of a developing embryo. This class of model led to more mathematically sophisticated 
descriptions of cellular interactions, including the Turing model, which describes pair-
wise interactions between two molecules that are capable of generating stable patterns 
in a tissue [86]. In these early models, the parameters of interest were (i) the geometry 
of the tissue, (ii) the level of morphogens in space and time, (iii) the feedback, feed-for-
ward, or cooperative interactions occurring between morphogens in space, and (iv) the 
effects of these morphogens on cell state.

As more interesting biological patterning questions emerged, modeling these behav-
iors expanded accordingly. Ising models—spin models based on a lattice-structured 
Markov random field adapted from statistical physics—were used to model cellular 
interactions  [87]. Kuramoto oscillators model coupled cells with continuous states to 
drive phase differentiation  [88]. Alternatively, information-theoretic approaches have 
been used to understand how small sets of signaling genes encode a rich space of spatial 
architectures from experimental data, combining mathematical biophysical models with 
experimentally collected data [89, 90]. All of these modeling paradigms capture the key 
components of cell connectivity, morphogen levels, and morphogen interactions.

Spatial sequencing provides a high-dimensional dataset (Fig. 3) to statistically identify 
the genes involved in intercellular communication in different contexts. Early analysis 
has focused on identifying and building on known ligand-receptor pairs. In the analysis 
of the initial seqFISH+ results [91], the authors looked for enrichment of expression of 
known ligand-receptor pairs in adjacent cells by comparing against a null expression dis-
tribution created by permutation shuffling. On the same data, graph convolutional neu-
ral networks were trained to predict the probability of two genes interacting given the 
spatial neighbors graph and expression of the two genes in each cell [92]; known ligand-
receptor pairs were used as positive and negative examples. Optimal transport methods 
were used to identify similar distributions of known receptor and ligand expression pat-
terns in spatial data  [93], which captured potential interactions beyond spatially-adja-
cent cells.

Although limiting analysis to known receptors limits the investigator’s ability to dis-
cover new signaling motifs, testing pairs or higher-order sets of genes for interactions 
leads to a  combinatorial increase in statistical tests and computational demands. Few 
experiments have sufficient sample size to adequately power investigations of higher-
order interactions. Instead, statistical methods often jointly model all genes together 
and try to learn subsets of co-varying genes that are associated with spatial patterns. For 
example, Gaussian process regression can model spatial gene expression with clever ker-
nel composition [94]. Three kernels are used to decompose gene expression variance into 
intrinsic cell effects, extrinsic or environmental effects, and cell-cell interactions. Com-
parison to a null model assuming no cell-cell interactions identifies communication-
related genes. Related work reconstructs gene expression from given cell-type labels and 
spatial neighbor graphs using autoencoder architectures [95]. While not explicitly using 
the expression levels of other genes, the cell-type label serves a similar role in capturing 
expected nonspatial gene-gene correlations. This work similarly uses a null model with-
out spatial connectivity to test for interacting genes. For both strategies of testing pairs 
of genes or a gene against all other genes, the number of tests done requires proper null 
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models, multiple hypothesis testing correction, and a reliable way to control for known 
cell-type heterogeneity and adjacency, which may bias results.

Single snapshots of spatial expression data sets miss important information on the 
temporal nature of signaling. Parameters such as the responsivity of a cell type to a par-
ticular protein, or the pairwise interactions between two genes, may change as a function 
of time. For example, spatial measurements at two stages of uterine development were 
used alongside CellPhoneDB [96, 97], a database of know ligand pairs, to identify which 
cell types had compatible signaling proteins and were likely to be in communication dur-
ing development [98]. Increasing the resolution of time points will allow the expansion 
of such statistical techniques to identify interactions over time. Time-series analyses can 
also help identify more causal relationships in signaling. Fluorescent live-cell imaging 

Fig. 3  Essential cellular behaviors assayed in spatial genomics. Distributions of RNA (A), cell type clustering 
from gene expression (B) and spatial correlations (C) can all be measured from spatially resolved sequencing 
data
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data and point-process models were used to quantify ERK signaling and downstream 
Fos expression under different drug treatments  [99]. Specifically, self-exciting Hawkes 
processes model expression and signaling among cells over time and space. Newer fluo-
rescence imaging protocols will expand the number of behaviors that can be captured 
simultaneously in live-cell imaging data [100].

Understandably, we currently have the most confidence in interactions between 
directly adjacent cells, since long-distance channels or indirect secretory pathways 
through which cells can send or receive messages are more difficult to study. By incorpo-
rating multiomic measurements of cells in space, as well as potentially integrating time-
resolved measurements, we may be able to better understand cell communication at a 
distance.

II. How do gene expression profiles interact with cellular morphology?

A common practice in both basic cell biology and pathology is to use cell morphology to 
distinguish cell types or states. Cellular structure informs function, and thus cells from 
different tissues and different cell types in a single tissue vary markedly in their appear-
ance (Fig. 2, Question II). For instance, due to dysregulation in growth pathways, can-
cerous cells are commonly larger than their healthy counterparts, and are often more 
motile when imaged over time under a microscope. Physical stress can also change cell 
state and gene expression; mechanical stretching of fibroblasts was found to dramati-
cally alter their epigenome states to enable cells to prevent damage to the physical struc-
ture of the genome [101].

Before spatial single-cell technologies, some methods attempted to jointly model mor-
phology patterns and gene expression from paired bulk tissue samples  [10, 102]. The 
limitation here is the mismatch between resolutions: Images can provide cellular-level 
phenotypes, but bulk expression cannot. The emergence of spatial single-cell measure-
ment techniques is poised to overcome this limitation.

One open question is how to best represent cellular morphology. While gene expres-
sion is conventionally represented by a count matrix, there is not a similar universal 
tabular form to represent cellular morphology. Recent approaches have attempted to 
provide solutions to this problem. One strategy is to convert morphological data, gen-
erally in the form of images, into tabular data of derived features. One study measured 
gene expression with the L1000 assay and morphological features such as nuclear area 
or DNA organization using the Cell Painting assay [103]. Lasso logistic regression and 
a multi-layer perceptron accurately predict gene expression from ∼1000 morphological 
traits provided by CellProfiler  [104]. CellProfiler was also used to create tabular read-
outs from paired imaging and single-cell CRISPR-Cas9 knockouts, in order to clus-
ter gene knockouts with similar morphological changes and build genetic interaction 
networks [105].

An alternative approach is to use neural networks to capture the features of an image. 
For example, MorphNet uses a variational autoencoder to encode the cell state into a 
lower dimension, and a generative adversarial network (GAN)  [106], which jointly 
optimizes two neural nets–one to generate imaging samples from the encoded gene 
expression that look like real imaging data, and the other to predict whether the gener-
ated imaging sample is real or fake—in order to predict cellular morphology from gene 
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expression in brain-wide MERFISH data [107]. A recent study collected a paired CRISPR 
knockout and imaging dataset, as in related work  [105], but calculated embeddings of 
images from a self-supervised vision transformer trained on single-cell Cell Painting 
images [108]. This approach outperformed classic image featurization for classifying sin-
gle CRISPR perturbations’ mechanism of action and recovering known biological rela-
tionships between genes [108].

Each approach to study the relationship between cellular morphology and cell state 
has different strengths and limitations. Individual features derived from cell painting 
methods are easier to interpret and can be used in small sample size regimes. Tabular 
data is amenable to traditional statistical regression methods and the accompanying the-
oretical guarantees; however, count data and specific experimental designs often require 
additional structure on the methods that are challenging for non-statisticians. Neural 
networks provide more flexibility in the morphological variation that they capture, but 
require both an adequate amount of data for training and some expertise in training and 
interpreting the models. Both approaches also require identifying which variable should 
be the output and which variable should be the input.

Biologically, cell morphology and movement are determined largely by membrane 
contacts; cell membranes are predominantly composed of lipids and proteins, and the 
abundances of these components are largely dictated by gene expression. However, 
changes in morphology and motion also drive changes in gene expression as the cell 
responds to new conditions. Many signaling pathways begin with external influences 
on membrane proteins. These feedback loops suggest the causal relationship goes both 
ways, limiting static data to providing mostly correlative findings.

In the near future, decreases in costs and improvements in resolution will allow scien-
tists to better establish the causal relationships between gene expression and morphol-
ogy. Time-series measurements and live-cell imaging can uncover the temporal ordering 
between gene or protein expression events and morphological changes. Single molecule 
tracking will be able to resolve where in the cell proteins are functioning and creating 
structural features [109]. These improvements will shine further light on the relationship 
between morphology, motion, and function. With improved experimental methods and 
proper statistical techniques, a complete understanding of the determinants of cell mor-
phology is within grasp.

III. What local effects shape clonal dynamics of dividing and differentiating cells?

Cell division establishes populations of clones in various tissues around the body (Fig. 2, 
Question III). Cell division may maintain genomic, transcriptomic, and epigenomic 
information, but comes with the downside of passing on potentially deleterious proper-
ties such as DNA mutations and aberrant epigenomic states. On the other hand, precise 
maintenance and expansion of particular clones underlies important processes such as 
the development of adaptive immunity. Some biological processes are “bottlenecked” in 
the sense that unfit clones die out due to physiological conditions [110]. However, many 
cell populations, including hematopoetic stem cells that give rise to the entire lineage of 
circulating blood cells, are comprised of hundreds or thousands of clonal populations, 
including clones that harbor mutations that decrease proliferation [111], suggesting that 
clonal heterogeneity may be the rule rather than the exception.
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Biophysical models of clonal dynamics have been studied for many years in the con-
text of stem cells. A primary question for any stem cell population is whether and how 
the population replenishes. This has been modeled by three parameters represent-
ing three distinct probabilities of division outcomes for a stem cell: (1) division into 
two stem cells, (2) two differentiated cells, or (3) one stem cell and one differentiated 
cell  [112, 113]. Recently, another intriguing possibility has been introduced: rather 
than remaining in static states, cells may stochastically transition between stemlike 
and differentiated states with some probability, only fully converting to a distinct fate 
when faced with a particular signal [114].

These relatively simple “state transition” models, applied to well-mixed or spatially 
structured populations, have been used to great effect to predict behavior of stem cell 
populations. Crucially, certain regimes representing distinct probabilities of differen-
tiation or division can be distinguished from one another experimentally through the 
resulting predicted distributions of clone sizes. One early method for marking clones 
involves dosing subsets of cells with a dye that subsequently becomes diluted over 
time, a method that is commonly used to monitor T cell proliferation  [115]. While 
this can accurately mark the generation, it does not provide direct linkage across gen-
erations. Another method involves inducing fluorescent protein expression in a sub-
set of cells, using this to identify groups of fluorescent cells that all originated from 
the same clone. Similarly, this approach does not allow for identification of mother-
daughter cell relationships, but can be used to measure clone size distributions by 
quantifying the size of distinct groups.

Experimental methods to identify mother-daughter relationships between single 
cells within a clonal population, on the other hand, were difficult until CRISPR-Cas9 
was developed. DNA-based barcodes for clonal tracking are an attractive technologi-
cal development towards addressing clone-related questions. Static barcodes can be 
introduced into the genomes of cells in a random fashion, so that some distribution 
of barcodes is introduced into the first generation and subsequently passed on to each 
cell’s progeny [116, 117]. Through subsequent DNA sequencing, the barcode for each 
cell can be recovered to establish clusters of cells that arise from the same clone. More 
recently, dynamic barcoding can be used to establish precise lineages: in this method, 
CRISPR-Cas9 randomly edits a barcode as it is passed on from cell to cell, allowing 
researchers to reconstruct lineages through the introduction of random SNPs  [118, 
119].

Combining imaging-based methods with barcoding offers an opportunity to build 
models of clonal expansion in a spatial context. In particular, work extending clonal 
dynamics models to the mammalian epidermis exposed complex emergent clonal 
behavior that arises when cells are confined to a tissue  [112, 113]. The epidermis is 
highly stratified, and, within a layer, clonal populations of stem cells can often be visu-
alized as spatially defined clusters of mitotically active or inactive cells. Post-mitosis, 
differentiated cells that arise from a stem cell on a basal layer will often emerge on a 
suprabasal layer, giving rise to complex geometries of clone dispersion spanning three 
dimensions [120–123]. Specific functional geometries of tissues, such as the crypts of 
the stomach or the cylindrical structure of vasculature, likely involve similarly unique 
geometric patterning of clones.
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We expect that interrogating clonal populations in their native tissue through a com-
bination of imaging, barcoding, and transcriptomics will allow for a broader range of 
clonal behaviors to be defined. In particular, although clonal populations tend to be 
“coarse-grained,” as observed in the epidermis as well as in metastatic clones using spa-
tial DNA sequencing [18], it remains to be seen how fluid individual clonal populations 
are within a tissue.

Are there definable subclones within a clone that occupy their own spatial niche? In 
the case of cancers, cells from one clone may metastasize to form their own popula-
tion elsewhere. In what ways is this subclone distinct from the original? Prior work used 
variance decomposition of Slide-seq data to identify gene signatures that explained 
differences between distinct clones as well as subclones within cancerous tissue  [124]; 
similarly, constrained regression and covariance estimation were used to study clonal 
populations using copy number variation  [125]. Related work jointly identified copy 
number polymorphisms in spatial transcriptomics and inferred cellular clones in tissues 
using a hidden Markov random field [126]. Extending spatial experiments using dynamic 
barcoding would allow for fine-grained resolution of subclone emergence in the future; 
analytic methods to reconstruct the full clonal trajectories would add specific mother-
daughter relationships in space.

IV. How does a cellular environment shape rare events?

The first single-cell RNA-seq datasets confirmed what many biologists had already sus-
pected: that substantial expression heterogeneity exists between cells in a tissue, and that 
this heterogeneity underlies a wide range of diseases. For instance, cancers often arise 
not as a function of cellular collectives, but as a function of one particular cell. A domi-
nating paradigm in cancer is that single cells experience a perfect storm of factors that 
lead to them becoming jackpot cells, or clones that express a specific mRNA at extremely 
high levels while their sister clones express none  [127] (Fig.  2, Question IV). In some 
cases, these rare cellular states are transient; jackpot cells may not always express com-
binations of genes throughout their lifetime, and may not pass on their phenotypes to 
their progeny. In BRAF melanoma, jackpot cells fail to follow Luria-Delbruck behavior 
and do not pass on their properties unless challenged with the addition of a drug, which 
then stably locks in the resistant state [127]. This implies that every time a population 
of cancer cells is challenged with a drug, a constant but small fraction of the population 
experiences stochastic resistance. Other rare cellular phenotypes are more consistent 
with Luria-Delbruck dynamics; for instance, rare mutations causing cancerous growth 
are passed on from mother cell to daughter cell to create large colonies and eventually 
solid tumors [128].

While we are beginning to understand the factors affecting jackpot cell emergence in 
culture, the environmental factors (e.g., tissue niche, surrounding cellular milieu, posi-
tion in the tissue) that regulate the cell states giving rise to heterogeneous gene expres-
sion events are still unknown. Leveraging spatial genomics to identify these rare events 
such as jackpot cells among other cells in a tissue may lead to a better understanding of 
these rare events. However, a major limiting factor in studying such rare events is statis-
tical confidence in detecting such events. In studies performed on melanoma cells, jack-
pot cells were detected using RNA-FISH with probes targeting a pool of pre-identified 
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drug resistance genes  [127]; this allows for high-confidence calls of jackpot cells that 
may not be possible in standard single-cell sequencing workflows. The total number 
of mRNA transcripts per cell is typically much lower than the mRNA counts collected 
using FISH methods, especially in such a small pool of target genes. In this particular 
case, bulk RNA-seq was used to identify a set of high-confidence genes for RNA-FISH 
probing. However, the candidate genes designating jackpot cells may not always be so 
well defined, and using a sparse readout such as single-cell transcriptomics to identify 
novel jackpot cells presents a circular problem.

Methods opportunities in spatial biology
These four open questions in spatial biology—along with the existing or forthcoming 
technologies to observe the corresponding biological phenomena in tissues—require 
the development of statistical approaches to arrive at precise and reproducible answers. 
The opportunity here is in building models that incorporate additional structure—time, 
space, or environmental context. Here, we outline opportunities for methods develop-
ment in each of the four areas, focusing on methods that are most likely to be successful 
given the constraints of the data and sample size (Figure  4).

To illustrate the structure of potential novel and existing methods, we assume that we 
start with one of two structured datasets. The first dataset is two tables, a cell by gene (or 
other feature) count matrix X ∈ RN×G and cell by spatial coordinate matrix C ∈ RN×D , 
where N is the total number of cells assayed, G is the number of genes assayed, and D is 
the number of spatial dimensions (this will generally be 2 or 3). We will use xi,j to refer to 
the count of gene j in cell i, xi,−j to represent the gene counts in cell i of genes other than 
j, xi to refer to the vector of all gene counts in cell i, and x−i to refer to all gene expression 
in cells other than i, with similar subscripts for the coordinates.

Alternatively, we may have a more granular set of observations of the identity of each 
of M molecules observed (e.g., spatially localized RNA transcripts), with a location for 
each molecule cm ∈ RD , and the cell it belongs to om ∈ 1, 2, . . . ,N  . We will use ci to 
loosely refer to the coordinates of all molecules in cell i and mi for the identity of all mol-
ecules in a cell i. In the following section, question-specific data and notation will also be 
introduced to illuminate the modeling approaches proposed. For each opportunity, we 
try to identify challenges across data collection, model architectures, and model infer-
ence and evaluation.

I. Methods to characterize the functional spatial effect size of a cell

A spatial experiment observes an instance from some distribution over the expression 
and spatial coordinates of the cells, p(X, C). Signaling between cells implies there is some 
conditional relationship of a cell’s state on other cell’s state. A model to identify spatial 
signaling assumes that the variability of cell state can be decomposed into factors from 
other cell states (extrinsic factors) and cell-specific factors (intrinsic factors) [129, 130]. 
This may look like a model with form:

where ǫ is some noise distribution. We use f1 to represent how cellular state feature j is 
dependent on the other state features in the cell (i.e., intrinsic factors). Often, cell type 

xi,j|xi,−j , x−i,C ∼ f1(xi,−j)+ f2(ci)+ f3(x−i,C)+ ǫ,
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is used as a proxy for intrinsic cell state. Methods for dimension reduction, such factor 
analysis, fit without spatial information can also be used to find the intra-cellular covari-
ance between features of cell state.

Next, f2 represents a spatial pattern of cell state that is a function of location but 
not environment. This variability may reflect some global architecture of cell types 
and niche organization. It accounts for variation in cell state that is not part of the 
signaling pattern that we are attempting to find. For example, a tissue sample might 
be organized with different cell types separated in distinct regions of space, which 
creates a spatial pattern of gene expression that is not the result of short term sign-
aling behavior. We can think of a model like nonnegative spatial factorization [131] 
as decomposing the variance among these two terms: non-spatial factors capture the 

Fig. 4  Methodological opportunities for spatial genomics. We describe distinct “classes” of biological and 
biophysical measurements that fall within our four key areas of interest. These include diffusion of RNA away 
from the site of transcription, establishment of patterning in a multicellular tissue or organism, and gene 
regulatory networks giving rise to particular behaviors. For each, we describe how the underlying processes 
may be directly measured, or indirectly inferred, from spatial genomics data
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intra-cellular covariance while spatial factors learn the spatial archetypes for each fea-
ture of cell state.

The final term, f3 , represents perhaps the most interesting behavior—the depend-
ence of cell state on local cells. We are looking for repeated patterns of variation in 
cell state that cannot be explained by the other features in a cell or by global pat-
terns of expression. Of critical importance is correctly teasing out this relationship 
from our spatial term f2 . This can be done by restricting the cell’s dependence to only 
neighboring or nearby cells, making f3 represent the unique local covariance of gene 
expression.

As observed before, spatial factor models tend to capture only the first two func-
tions while missing local signaling effects [131, 132]. Looking at the correlation between 
known ligand-receptor pairs expression across neighbors uses cell type to control for the 
effects f1 and proximity to zero out f2 , testing specifically for the existence of f3.

Thus the opportunity remains to fully model all three factors simultaneously. Data with 
distinct local and global signals are essential for a model to learn the desired patterns. 
The appropriate functional forms of each term will be required to accurately capture 
biological processes; nonlinear functions will likely be necessary for an accurate model, 
although they will increase the difficulty of inference and also the data requirements for 
adequate power. For f3 , given the most obvious adjacency heuristics, models can esti-
mate signaling between adjacent cells, but more complex communication across larger 
spatial scales may be hard to detect effectively. Ideally, these models can look at signal-
ing across all features, though computational complexity may require low-dimensional 
latent factor representations to tractably model complex signaling. Bayesian represen-
tations can provide proper uncertainty quantification and identify multiple parameter 
optima that explain the data equally well, but also require more expensive computation 
for posterior distributions.

Using the specific location of molecules, our second data representation allows for 
increased granularity and ability to look for causal signals. Here, models can explicitly 
condition on the location of a molecule inside or outside a cell as a proxy for determin-
ing its contribution to signaling behavior. Proteins near the membrane, for example, are 
more likely to be involved in some extracellular signaling than nuclear proteins. In these 
cases, the coordinate of a molecule might be considered rather than the cell center:

where cn/−i and mn/−i represent the coordinates and identities of molecules in cells other 
than i, and ǫ is white noise. Here, f1 is dependent on the cell type, positing some shared 
spatial organization across cells of the same type. f2 accounts for some variation from 
the organization of the other molecules in the cell and f3 accounts for variation from 
molecules outside the cell. In this setup, f2 captures intra-cellular signaling, perhaps of 
some cascading pathway, and f3 captures inter-cellular signaling.

Like the models based on cell count tables, opportunities exist to model local and 
global effects at molecular resolution. Data with both intra-cellular and inter-cellular 
behavior measurements will be needed to calibrate the effectiveness of such a model, 
though the identification of known pathways serves as a model evaluation metric. Simi-
lar computational challenges in terms of dimension of possible gene-gene interactions 

mi, ci|m−i, c−i, oi, o−i ∼ f1(oi)+ f2(cn/−i,mn/−i)+ f3(m−n, o−n, c−n)+ ǫ,
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will plague these kinds of models, which may require the development of latent variable 
models of single-cell spatial organization.

For both approaches, we are missing an important variable in the time dependency of 
signaling. A spatial measurement only provides a snapshot of the present; some mole-
cules may be moving towards their destinations while others with important interaction 
effects may have just degraded. The current location may not be entirely informative 
about the relevant signaling actors. As multiple spatial snapshots and live-cell imaging 
become more affordable and widespread, models that explicitly include dynamic behav-
iors will be invaluable for establishing causality in biological signaling processes.

II. Methods to investigate the relationship between morphology and expression

When biologists study the relationship between morphology and expression, they 
require measurements of cell shape and molecular counts. These may come from paired 
histology and sequencing or a combination of cell segmentation and count measure-
ments from in situ fluorescence. In addition to our count matrix X from earlier, let S 
containing si ∈ 1, 2, . . . ,N  cells represent the measurements of morphology, generally 
images or derived features. An experiment captures one realization of the distribution 
over morphology, cell position, and cell molecular state p(S ,X ,C).

The analysis methods that currently exist that connect cell morphology and state 
make two strong assumptions: first, that observations from each cell are independ-
ent, and, second, that the position of the cell in space does not affect the morphology: 
p(si, xi|s−1, x−1,C) = p(si, xi) . Then, one set of measurements is defined as a function 
of the other; shape as a function of gene expression, si|xi ∼ f (xi) , or gene expression as 
a function of shape, xi|si ∼ f (si) . This is a reasonable assumption to make with current 
data and suggests a tractable class of model, but it obscures the complexity of the under-
lying mechanobiology that considers both intrinsic cell state and extrinsic environmen-
tal factors in cell morphology [133].

A natural opportunity in this space is to jointly model morphology and expression 
together, possibly by representing morphology using functional data analyses  [134] or 
an autoencoder. Within a latent variable model, we may learn a shared representation 
of both cellular state and some encoding of cellular morphology Z given some form 
si, xi|zi ∼ f (zi) . Canonical correlation analysis, for example, has been used to jointly 
learn embeddings of gene expression and histology images for bulk RNA-seq data [10]. 
Given sufficient single-cell data for network training, similar methods could be used to 
capture the relationship at single-cell resolution without causality assumptions.

More intriguing are models that are able to capture the effect of nearby cell morphol-
ogy and expression, similar to the signaling models explored before. A simple model 
would decompose the likelihood of expression and morphology, p(xi, sj|x−i, s−i,C) , 
into terms representing the intrinsic cell morphology and deviations induced by envi-
ronmental effects. With appropriate data, one could imagine more sophisticated models 
that are able to account for the organization of cells alongside their shapes and expres-
sion, a full joint model of p(X ,S ,C). Models of this type will likely require multiple rep-
licates, both technical and biological, of spatial experiments to accurately estimate these 
distributions. But the increased use of spatial experiments and expanded fields-of-view 
in each sample will open these avenues for investigation.
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Returning to our second data representation—the list of molecular locations, identi-
ties, and cellular groupings—the opportunity exists to model the molecular level effects 
on morphology and, conversely, the change in spatial distribution of molecules given 
morphology. A simple model might rely on the assumption of independence between 
cells, and posit that si|mi, ci ∼ f (mi, ci). The correct functional form will depend on 
the representation of the shapes in S ; some tabular featurization can take advantage 
of regression models while a full image might require a neural network or other non-
linear model. Most exciting would be a model that can capture biophysical properties 
of the molecular interaction, learning how specific proteins or RNA molecules lead to 
the formation and warping of individual cell parts such as membrane structures within 
and across cells. Natural extensions would jointly consider cellular  niches, to model 
p(S ,M,O,C).

For biologists who study dynamic processes such as development or cell response, 
time-dependent models will be the key to answering those scientific questions. The 
desired model will include the evolution of expression and morphology as a function of 
time, p(S ,X ,C|t) or p(S ,M,O,C|t) . These models, coupled with appropriate data, may 
untangle the order in which morphology changes drive expression or expression changes 
morphology. Fitting models with clear biophysical structure—combined with hypoth-
esis testing—may be one strategy to obtain interpretable and quantifiable results, e.g., 
estimating the mechanical forces contributed from membrane proteins on maintaining 
rigidity. Combining flexible machine learning methods with a biophysical interpretation 
will likely be required to fully capture the complexity of these dynamic morphological 
processes.

III. Methods to investigate how cellular environment shapes cellular state, cellular division, 

cell differentiation, and clonal dynamics

An exciting future direction is to map existing lineage-tracing methods onto spatial 
coordinates to better understand the spatial distribution and behavior of clones. Within 
our hypothetical framework, let us imagine that we have a count matrix X and spatial 
coordinates C, as well as some additional data structure Q that defines the relationship 
between cells (i.e., mother-daughter relationships in cells or cells that are part of one 
clonal population). One way to represent the ancestry of cells is by making Q an adja-
cency matrix that represents a directed tree, where Qij = 1 if cell i is a daughter of cell 
j. Connected components in this graph represent clonal outgrowth, and can be traced 
back to a single progenitor.

Although current analyses can identify clonal population sizes, it remains an open 
question whether these sizes are governed by cell-intrinsic or cell-extrinsic factors. If 
a set of cells Y represent a connected component of Q, we can identify generations at 
which clonal expansion slowed or halted, and ask whether clonal size (the cardinality 
of Y, |Y|) is a function of expression in surrounding cells, |Y | = f1(x−Y , c−Y )+ f2(xY ), 
where xY , x−Y  are the expression profiles of cells in Y and all cells not in Y, respectively. 
Similar to our spatial signaling framework, this treatment decouples the effects on clonal 
population size into clonal effects and the effects of environment around the clone.

Using this framework, we can also ask spatial questions about cells within a single 
clonal lineage: single-cell sequencing is able to resolve these populations but, before 
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spatial sequencing, was unable to resolve their location. In some tissues, clones of cells 
remain close to each other in space and share a common niche. However, it is also pos-
sible for clones to split, migrate away from each other, and otherwise disperse in space. 
Given a set Y of clones originating from a single cell, we can study their dispersion pat-
terns across space. Taking inspiration from our discussion of spatial signaling limits in 
cells, we can define a radius r and compute the probability of a given clone lying within 
radius r from other clones in the population, p(dist(ci, cj) ≤ r|i, j ∈ Y).

We can also ask whether this clonal colocalization is more, less, or equally likely if cells 
come from the same clone. This value can be calculated and tested for multiple clonal 
populations q1, q2, . . . to identify clone-specific spatial distributions and behaviors of 
daughter cells to stay close to their mother or intentionally disperse. If there are mem-
bers of a clonal lineage that are separated in space, we can then ask how this stratifica-
tion may have occurred as a function of cell state as well as the local cell population: 
dist(ci, cj) ≤ r|i, j ∈ Y ∼ f (xi,j , x−i,−j , c).

With sufficient spatial genomic data, learning the function f would most likely give 
higher weight to cells closer to the clones of interest, while also capturing environmental 
factors that define spatial clonal heterogeneity. The driving factors behind this spatial 
segregation may also be differentiation in the clones themselves; for instance, in the lay-
ers of the epidermis, cells from a single clone differentiate as they stratify from basal to 
apical [135]. In this case, spatial segregation may largely be a function of the intrinsic cell 
state within clones xi,j , and these effects, too, can be decoupled from effects from local 
cells.

IV. Methods to understand the relationship between cellular environment and rare events

A number of methods are needed to resolve the relationship between cellular environ-
ment and rare events. First, identification of rare events is essential but challenging given 
current pipelines. Currently, rare events are often filtered or overlooked in spatial tran-
scriptomic data. Rare transcription events may not be captured without sufficient cells 
[136], and even when present may not be detected [137], often inseparable from poorly 
detected gene expression patterns [138]. For example, jackpot cells likely will not be 
identified because of the large numbers of zeros in marker transcripts of rare cell types 
across all cells, leading to marker genes being removed from the analysis and preventing 
identification of rare cell types. The opportunity here is to work with the mapped but 
unfiltered data to identify rare cell types through rare marker gene profiles.

Second, understanding the environmental characteristics that lead to rare events 
requires phenotyping a cellular environment and testing for enrichment of rare events 
within specific types of cellular environments. A number of methods perform related 
analyses, quantifying differential cell-type adjacency across a tissue [139], functional cel-
lular collectives [140–142], and identifying de novo spatial domains [131, 132, 143].

Third, identifying enrichment of specific rare events within a cellular environment 
may be challenging given the paucity of these rare events and the complexity of a cellular 
environment. Outlier detection methods may be useful in this space, but these methods 
are broad; in the context of probabilistic models, identifying cells that have a low prob-
ability of being generated from a foundational model or latent space model of diverse 
cells may suggest a rare cell type or cell state [144–146]. A marked Poisson process may 
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be useful to identify enrichment of specific environments in which these rare cell types 
arise. Marked Poisson processes consider specific events (here, a rare cell type) in the 
context of time or space with a “mark” or an identifier; then specific marks will filter up 
as enriched for rare events.

Concluding remarks
The rapid development of spatial genomics technologies, for the first time combining 
spatial imaging of cells and tissues with an analysis of their state and genomic profiles, 
provides an opportunity to revisit the types of questions we are able to ask and the quan-
titative methods we may use to answer those questions.

Here, we present four fundamental biological questions, each with profound implica-
tions for health and disease, that can now be addressed using spatial genomics technolo-
gies combined with appropriate machine learning methods. Future work will build on 
existing spatial genomics technologies and tailored analyses through the integration of 
time series data, better predictions of short-range and long-range correlations in multi-
omic spatial datasets, and the ability to reason about biological processes across many 
scales.
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