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Abstract 

Background:  The active functionalities of RNA are recognized to be heavily depend-
ent on the structure and sequence. Therefore, a model that can accurately evaluate 
a design by giving RNA sequence-structure pairs would be a valuable tool for many 
researchers. Machine learning methods have been explored to develop such tools, 
showing promising results. However, two key issues remain. Firstly, the performance 
of machine learning models is affected by the features used to characterize RNA. Cur-
rently, there is no consensus on which features are the most effective for characterizing 
RNA sequence-structure pairs. Secondly, most existing machine learning methods 
extract features describing entire RNA molecule. We argue that it is essential to define 
additional features that characterize nucleotides and specific sections of RNA structure 
to enhance the overall efficacy of the RNA design process.

Results:  We develop two deep learning models for evaluating RNA sequence-sec-
ondary structure pairs. The first model, NU-ResNet, uses a convolutional neural network 
architecture that solves the aforementioned problems by explicitly encoding RNA 
sequence-structure information into a 3D matrix. Building upon NU-ResNet, our sec-
ond model, NUMO-ResNet, incorporates additional information derived from the char-
acterizations of RNA, specifically the 2D folding motifs. In this work, we introduce 
an automated method to extract these motifs based on fundamental secondary struc-
ture descriptions. We evaluate the performance of both models on an independent 
testing dataset. Our proposed models outperform the models from literatures in this 
independent testing dataset. To assess the robustness of our models, we conduct 
10-fold cross validation. To evaluate the generalization ability of NU-ResNet and NUMO-
ResNet across different RNA families, we train and test our proposed models in different 
RNA families. Our proposed models show superior performance compared to the mod-
els from literatures when being tested across different independent RNA families.

Conclusions:  In this study, we propose two deep learning models, NU-ResNet 
and NUMO-ResNet, to evaluate RNA sequence-secondary structure pairs. These two 
models expand the field of data-driven approaches for learning RNA. Furthermore, 
these two models provide the new method to encode RNA sequence-secondary 
structure pairs.
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Background
RNA molecules play an important role in protein synthesis, gene regulation, and catal-
ysis [1, 2]. It is composed of four types of nucleotides, adenine (A), uracil (U), cyto-
sine (C), and guanine (G) [3]. RNA studies have witnessed an important growth in the 
areas of materials in nanotechnology applications [3]. For example, RNA aptamers can 
be utilized as biosensors [4], riboswitches that exist in non-coding parts of messenger 
RNA (mRNA) can control gene expression [5], and RNA strands can be used to con-
struct nanoscaffolds for therapeutic applications in nanomedicine [6]. In many of these 
applications, the functionality of the designed RNA molecule is highly influenced by its 
geometrical structure  [1, 7]. In general, the structure can be represented in its primary 
(sequence of nucleotides), secondary (sequence and pairings between nucleotides), and 
tertiary (sequence, pairings, and 3D displacement of nucleotides) form, with increasing 
associated computational and experimental complexity. Although RNA tertiary struc-
ture can provide insights into the actual 3D geometry, the scope of this study is spe-
cifically directed towards the investigation of RNA secondary structure. In fact, RNA 
secondary structure exhibits greater stability compared to the tertiary structure folding 
[8]. Moreover, learning RNA secondary structure can help understand and predict the 
tertiary structure folding [8, 9]. Therefore, developing a comprehensive understanding 
of RNA secondary structure, along with its associated patterns, can enhance our under-
standing of RNA and its functional mechanisms.

In this study, we present a series of deep learning models designed to assess RNA 
sequence-secondary structure pairs, focusing exclusively on pseudoknot-free struc-
tures. To describe the distinctive shapes within the secondary structure, we employ the 
term motif, which will be defined in section "Methods". The underlying concept involves 
using specific sub-structures to capture the localized patterns formed by subsets of 
nucleotides.

Motivation

Several scientific contributions have focused on the analysis of RNA secondary struc-
tures with three core research areas: (i) secondary structure prediction: given a sequence, 
we can predict the secondary structure that the RNA will adopt [10]; (ii) inverse fold-
ing prediction: given a secondary structure, we can predict the most possible sequence 
to achieve the target structure [11]; (iii) problems (i)-(ii) have in common the need 
to evaluate the quality of a sequence-structure pair [12] because an RNA sequence or 
an RNA structure with its corresponding predicted RNA structure or predicted RNA 
sequence need to be evaluated with respect to the likelihood of co-existence of this RNA 
sequence-structure pair [12]. Recently, it has been shown how methods from (iii) can be 
used in (i) and, potentially, (ii) in the form of experts that evaluate intermediate struc-
tures [13]. In the following, we briefly review the state-of-the-art approaches in (i), (ii), 
and (iii).

Within the research field of RNA secondary structure prediction, several studies have 
focused on the use of minimum free energy (MFE) as a key metric for RNA folding. 
The underlying assumption is that the structure with the lowest free energy is also the 
most likely structure the RNA will adopt. It is important to highlight that, generally, free 
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energy cannot be calculated in closed form due to (a) the incomplete understanding of 
the RNA molecular interactions, and (b) the impractical computational cost of detailed 
kinetic simulation tools. As a result, several approximate models have been proposed 
in the literature [14–17] to estimate the free energy associated with a given secondary 
structure. An example of methods in this class is RNAfold [10], which uses the approach 
in [18] to approximate MFE. MXfold2 [19], SPOT-RNA [20], and SPOT-RNA2 [9] uti-
lize deep learning (DL) to predict the RNA secondary structure. Specifically, MXfold2 
predicts the RNA secondary structure by maximizing a score which is the sum of a DL 
model generated folding score and the contribution from thermodynamic parameters. 
SPOT-RNA employs Transfer Learning [21] where the input is the outer concatenation 
of the one hot encoding of the RNA sequence, and the output is an upper triangular 
matrix which represents the predicted base-pairing information. The SPOT-RNA2 adds 
three features to the RNA sequence as the input: the predicted probability of base pair-
ing obtained from a Linear Partition algorithm [22], the Position Specific Score Matrix 
(PSSM), and the information of Direct Coupling Analysis (DCA) [23, 24]. The output of 
SPOT-RNA2 is still an upper triangular matrix representing the predicted base-pairing 
information. ExpertRNA is a Reinforcement Learning algorithm that uses the rollout 
method [25–28] to predict RNA secondary structure [13]. ExpertRNA predicts the dot 
bracket notation of RNA secondary structure by position from 5′ end to 3′ end. In each 
position, ExpertRNA uses RNAfold to generate multiple intermediate candidate struc-
tures [10] to be assessed by RNA sequence-secondary structure pair evaluation model, 
ENTRNA, presented in [12].

In RNA inverse folding area, NUPACK [29] is among the most commonly used 
methods. NUPACK formulates the inverse folding as an optimization problem whose 
objective is to minimize the ensemble defect defined as the average of wrongly paired 
nucleotides’ counts on the ensemble of unpseudoknotted structures. When designing 
the RNA sequence, NUPACK decomposes the target structure into sub-structures that 
are then optimized. RNAiFold employs the MFE as the objective to predict the RNA 
sequence for a given RNA secondary structure [11, 30]. The RNAiFold includes two 
approaches, a Constraint Programming (CP) [31] based algorithm and Large Neighbor-
hood Search (LNS) based algorithm. The constraints of the CP ensure the solutions can 
follow the RNA folding rules, possess desired features of RNA design, and fold into the 
corresponding target RNA secondary structures. The only difference between CP and 
LNS is regarding the search method. The CP searches the entire space while the LNS 
fixes parts of the solution space and explores the unfixed parts.

From the review, we note that evaluating the RNA sequence-secondary structure pair 
is a fundamental aspect of the methodologies, irrespective of their specific applications. 
Example evaluating metric is the probability from the Boltzmann distribution which 
is used in the partition-based methods such as the one proposed in [32] and Linear-
Partition [22]. The partition-based methods rely on the Boltzmann distribution where 
the molecule with lower energy has higher probability to exist. However, the consensus 
regarding which metric should be utilized to evaluate RNA secondary structure has not 
been made [12]. There has been a notable rise in the utilization of machine learning-
based approaches that incorporate features beyond MFE-based methods. This is jus-
tified by the recognition that RNA molecules often exhibit stability levels higher than 
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what is predicted by MFE calculations [12]. Additionally, considering the folding kinetics 
becomes important when dealing with large RNAs [1]. In this direction, ENTRNA is 
a classifier [12] that utilizes domain knowledge to determine features for encoding the 
information of RNA sequence-structure pairs and develops the machine learning model 
(i.e. logistic regression) to evaluate the pair of RNA sequence and secondary structure. 
ENTRNA’s output score is defined by the authors as foldability, and it can be interpreted 
as the likelihood that the RNA sequence and RNA secondary structure coexist. Consid-
ering foldability in place of free energy has proven to improve classification and design 
tasks [12, 13]. In fact, foldability can play a role across several tasks in RNA related 
studies.

•	 Folding prediction is usually performed by means of sequential algorithms (e.g., 
Reinforcement Learning (RL), Dynamic Programming). In this application, foldabil-
ity can be used as reward function underlying the evaluation of the possible interme-
diate foldings. An example is given in [13].

•	 Emerging Generative Artificial Intelligence (GenAI) techniques (e.g., Transformers, 
Large Language Models) are increasingly being used for both prediction of structures 
and sequences. These techniques can generate a large number of candidate solutions, 
thus generating a challenge in experimental validation, which is extremely expensive. 
A metric such as foldability can be used to downselect solutions thus possibly reduc-
ing the experimental effort.

Contribution and paper structure

In order to tackle the aforementioned challenges, we propose a deep learning based 
approach including two deep learning models, NU-ResNet and NUMO-ResNet, whose 
scores function as foldability. Our contributions are: 

(1)	 For the challenge that there is no consensus on which features are most effective for 
characterizing RNA sequence-secondary structure pairs, the NU-ResNet explic-
itly encodes the RNA sequence-secondary structure pairs by using an innovative 
image representation, a 3D matrix. Thus, a convolutional neural networks (CNN), 
ResNet-18 [33], can be employed to automatically extract features from our pro-
posed 3D matrix.

(2)	 Given the challenge posed by existing machine learning method, which extract fea-
tures characterizing the entire RNA molecule (e.g. GC percentage), our proposed 
3D matrix is designed to incorporate nucleotide-level information including the 
types of nucleotides and their base pairing. The NUMO-ResNet extends the NU-
ResNet by incorporating sub-structure (i.e. motif ) information including motifs’ 
types and their free energy, which is encoded into a 2D matrix. We revise the archi-
tecture based on ResNet-18 to take both of our proposed 3D matrix and 2D matrix 
as inputs to develop NUMO-ResNet.

To our knowledge, this is the first paper which utilizes neural networks to evaluate the 
pair of RNA sequence and RNA secondary structure. The performance of NU-ResNet 
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and NUMO-ResNet is superior to state-of-the-art approach, ENTRNA. In addition, the 
NU-ResNet and NUMO-ResNet exhibit the unique advantages compared to the equilib-
rium probability when being tested on an independent dataset and across RNA families.

The remainder of the paper is structured as follows: in Methods section, we elabo-
rate the detailed algorithms for encoding the pair of RNA sequence and RNA secondary 
structure as well as the two neural network architectures utilized in our proposed frame-
work. The Results section introduces the data sets utilized in this research, the models’ 
performance comparison with data-driven approach as well as model-driven approach, 
the analysis of NU-ResNet and NUMO-ResNet, and the testing of the NU-ResNet, 
NUMO-ResNet, ENTRNA, and Equilibrium Probability across different RNA families. 
In Discussion section, we discuss the characteristics and potential use of our two pro-
posed models as well as the future work with respect to this research. In Conclusion sec-
tion, we summarize the work and introduce the potential directions for future research.

Methods
Figure 1 shows an example of RNA secondary structure represented as a graph using 
the software VARNA [34]. The RNA graph G RNA = (V ,E, F) has vertices V, edges 
E, and faces F. Each element in the set of vertices v ∈ V  has an associated label 
ℓ(v) ∈ {C ,G,A,U} , based on its composition being, cytosine, guanine, adenine, and 
uracil, respectively. Edges e ∈ E of G RNA are of two types: hydrogen bonds connect-
ing two paired nucleotides (we refer to this subset of edges as EH ), also commonly 
referred to as interior edges; and phosphodiester bonds connecting any two adjacent 
nucleotides (we refer to this subset of edges as EP ), commonly referred to as exterior 

Fig. 1  An example of RNA represented by RNA secondary structure. This RNA is 5 s_
Paracoccus-denitrificans-1, extracted from the Mathews laboratory data set [36]. The 5 motifs considered in 
our approach are indicated: hairpin, interior, bulge, bifurcation loops, and stack
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edges. As a result, E = EH ∪ EP . All edges in E are labelled using the dot-bracket nota-
tion presented in [35]. An interior edge is represented by a pair of open and closed 
brackets ( “(”, “)”), and an exterior edge is represented by two consecutive dots (“.”).

Specifically, the dot-bracket notation of pseudoknot-free RNA is comprised of three 
elements, namely:

•	 dot (“.”) is used when representing an unpaired nucleotide;
•	 open bracket (“(”) is used when a nucleotide is the origin of a base pair. This nucle-

otide will be paired with one and only one nucleotide;
•	 closed bracket (“)”) is used when a nucleotide closes a base pair. For symmetry, this 

nucleotide will be paired with one and only one “open bracket”nucleotide.

As shown below, the information given in graph form by Fig. 1 in the paper can be 
encoded, without any information loss, using two strings: one containing the charac-
ters of the bases in the RNA molecule, and the second reporting the dot-bracket nota-
tion to express the secondary structure information.

Sequence:
GUC​UGG​UGG​CCA​AAG​CAC​GAG​CAA​AAC​ACC​CGA​UCC​CAU​CCC​GAA​CUC​
GGC​CGU​UAA​GUG​CCG​UCG​CGC​CAA​UGG​UAC​UGC​GUC​AAA​AGA​CGU​GGG​
AGA​GUG​GAU​CAC​CGC​CAG​ACC​
Secondary structure:
(((((((((.....(((((.(((....((((((.............))))..))....)))))).))..(.((....(((((((....)))))))....)).)....))))))))).
Given each element f ∈ F  , a face is the 2-d region defined by the tuple 

〈eip, . . . , e
j
h, . . .〉 , i.e., a closed region bounded by consecutive hydrogen and phosphodi-

ester bonds. The number and arrangement of edges determines the size and the shape 
of each face. Given the constraints that nucleotides have to satisfy when bonding, 5 
shapes exist for faces in 2-d RNA structures (see Fig. 1 for a depiction). In the rest of 
the paper, we refer to the shape of the faces as motifs.

The definition of motifs are as follows.

•	 Stack: A face having two interior edges which are separated by one exterior edge 
on each side.

•	 Hairpin loop: A face only having one interior edge.
•	 Interior loop: A face having two interior edges separated by more than one exte-

rior edge on each side.
•	 Bulge loop: A face having two interior edges separated by more than one exterior 

edge on one side and exactly one exterior edge on the other side.
•	 Bifurcation loop: A face having more than two interior edges.

Section  "Nucleotide-level features-informed residual neural network model (NU-
ResNet)" introduces our first DL model in which the nucleotide level information of 
an RNA sequence-structure pair is encoded into a 3D matrix. We name this model 
NU-ResNet. Section  "Nucleotide-level features and Motifs-informed residual neu-
ral network model (NUMO-ResNet)" introduces our second DL model, which adds 
motifs to the features encoded by NU-ResNet, we refer to this as NUMO-ResNet.
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Nucleotide‑level features‑informed residual neural network model (NU‑ResNet)

In this section, we introduce our first deep learning model, which uses nucleotide level 
properties to evaluate sequence-structure pairs. We refer to this model as NU-ResNet 
since it uses a Residual Neural Network as basis architecture and it uses nucleotide level 
features to encode the input.

Input layer encoding A key contribution of this work is the design and implementation 
of the input layer encoding, which we detail herein. The input layer for the first model 
describes the structure of the molecule. We encode the secondary structure as a 3D 
matrix of size [L× L× B] , where L is the length of RNA sequence (number of nucleo-
tides), B = 4 is the number of bits we need for the one-hot encoding of the nucleotide 
type (C,G,A,U) and the base pairing information, which we will refer to as the chan-
nels for the input of our NU-ResNet. As a result, a cell in the 3D matrix with index 
(

i, j
)

, i = 1, . . . , L; j = 1, . . . ,L is a 4-elements vector with each element in {0, 1} . A key 
motivation behind the choice of transforming the one-hot encoding into a 3D matrix 
is driven by the consideration that deep learning approaches are particularly effective 
with imaging data which are essentially 2D or 3D matrixes, in that they are designed 
to extract features from this type of input format. In the following, we detail the con-
struction of the 3D matrix starting from input sequence-structure information. The 3D 
matrix G is initialized with all zeros.

Diagonal elements encoding We set

Out-of-diagonal elements encoding Next, we encode all the edges e ∈ EH as vectors of 
the 3D matrix, denoted as Gij· , which satisfy 

(

i, j
)

∈ EH , i.e., all the nucleotides that form 
a base pair.

Specifically, the values are obtained as the sum of the one-hot encoding vectors of the 
two nucleotides involved in the pairing. For symmetry, 

(

i, j
)

∈ EH implies 
(

j, i
)

∈ EH , 
hence the vector Gij· is equivalent to the vector Gji·, ∀i, j = 1, . . . , L , where the equality 
between vectors is interpreted as the equality of all elements.

Example In order to clarify the approach, we show an example that leads to the gen-
eration of the 3D RNA matrix. We start considering a fictitious RNA sequence “CAG​
GAG​CUC​UUC​” with corresponding secondary structure “.(((...)))..”, i.e., it contains 3 
base pairs. The visualization of the 3D RNA matrix from this example is shown in Fig. 2.

Deep learning architecture design and architecture training Convolutional Neu-
ral Networks (CNN) have shown very good performance within the image recogni-
tion literature [33, 37, 38]. Within this broad family of learning models, ResNets are 
designed to resolve the degradation of training accuracy when the depth of the neural 
network increases [33]. ResNets have shown robust performance on image classifica-
tion tasks. Rather than learning the sophisticated functions to depict the relationship 

Gii· =











[0, 0, 1, 0] if type is cytosine (C)
[0, 0, 0, 1] if type is guanine (G)

[1, 0, 0, 0] if type is adenine (A)
[0, 1, 0, 0] if type is uracil (U)

, i = 1, . . . , L

Gij· =







[1, 1, 0, 0] if base pair is (AU)

[0, 0, 1, 1] if base pair is (CG)

[0, 1, 0, 1] if base pair is (UG)

,
�

i, j
�

∈ EH
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between input and output directly, ResNets learn how to approximate residual 
functions by using stacked nonlinear layers [33]. For these reasons, we choose the 
ResNet-18 as the primary architecture in this research.

Figure  3 shows the NU-ResNet architecture with detailing the building block 
including all the components from the beginning of an identity shortcut to its end, 
where an identity shortcut is represented by a black solid or dashed curve. The 

Fig. 2  Example of 3D RNA matrix. The combination of four stacked subfigures on the top is the input of 
NU-ResNet. The flat form of four stacked subfigures are shown at the bottom. The 4 subfigures at the bottom 
represent the encoded Gij1 , Gij2 , Gij3 , and Gij4 , respectively. Fundamentally, each subfigure is a 2D matrix, 
which refers to a channel in the 3D RNA matrix. In this 3D RNA matrix example, the white box and black box 
correspond to 1 and 0 values of the matrix, respectively

Fig. 3  NU-ResNet architecture. The black straight and solid arrows and the curved dashed arrows represent 
identity shortcuts, additive operators that combine the input and the output of a layer returning the 
residuals to learn. The black solid curved arrows are used in cases where the input and output have the same 
dimensionality, and the black dashed curve is used when output dimension is increased compared to input 
dimension [33]. Each identity shortcut corresponds to a building block which is a network sub-structure 
including 2 convolutional layers, 2 Batch Normalization, 2 rectified linear activation units (ReLU) [39] (enabling 
non-linear models), and 1 identity shortcut. The Batch Normalization [40] is used between each convolutional 
layer and the ReLU activation to normalize the intermediate representation [33, 40]. The kernel size of the 
first convolutional layer is 7 and the kernel size of any convolutional layer within the building block is 3. The 
number of output channels from the convolutional layers in the 4 types of building block is 64, 128, 256, and 
512, respectively. The parameters in the convolutional layer at the beginning of architecture, in the eight 
building blocks, and in the fully connected layer (i.e. Dense layer) need to be learned during training
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difference between identity shortcuts with black solid and dashed curve is also illus-
trated in Fig. 3.

The model is trained using RNA molecules of different lengths each corresponding 
to 3D RNA matrixes of different sizes (L). To allow training, we transform the input by 
“padding” with zeros along each of the B = 4 channels. After padding, the size of each 
3D RNA matrix equals to L× L× 4 , where L is any value greater than the size of the 
longest RNA we are building the model to evaluate. This value can be given as input by 
the user or be set to the size of longest sequence across the training, testing, and valida-
tion datasets.

When training NU-ResNet, we employ Adam [41] as the optimizer of the models 
parameters. The learning rate and weight decay of optimizer for NU-ResNet are 0.0001 
and 0.15, respectively. The learning rate decreases exponentially with gamma value 
equaling to 0.95, the batch size during the training is 20, and the model is trained for 100 
epochs. The models associated with the best validation accuracy and the best validation 
loss are saved as models to be deployed.

Nucleotide‑level features and motifs‑informed residual neural network model 

(NUMO‑ResNet)

As mentioned in section "Motivation", several approaches account for RNA features that 
knowingly impact the folding. NUMO-ResNet extends the fully data-driven (black-box) 
model in section  "Nucleotide-level features-informed residual neuralnetwork model 
(NU-ResNet)" to include features localized to sub-structures of the molecule that can 
potentially impact the RNA stability. In particular, we include the motifs present in the 
structure, and characterize them with the associated free energy, and the motif types 
(see section "Motivation" for the definition of free energy and Sect. 2, Fig. 1 for the defi-
nition of the motifs).

Input layer encoding In the following, we detail the approach to automatically derive 
the motifs contained in the structure, and how to calculate the free energy associated 
to the different sub-structures given the type of motif and the number of nucleotides 
involved. The nucleotide type is encoded in the same way as in NU-ResNet.

Automatic identification and encoding of the motifs NUMO-ResNet adds to the base 
types used in NU-ResNet, the motifs associated to each nucleotide (e.g., stack, hairpin 
loop, interior loop, bulge loop, bifurcation loop, and no motif ). Since a motif involves 
a face (sub-structure) of a molecule, based on its location within the sub-structure, the 
same nucleotide may be involved in two motifs. For this reason, for each nucleotide 
i = 1, . . . , L , we can assign two distinct vectors to encode all the possible motifs the base 
is involved in. This results into two matrixes M1

i·,M
2
i· encoded as follows:

While the encoding of the nucloetide type is a direct translation from the input sequence 
information, an algorithm is necessary to recover the type and characteristics of the 

M
k
i· =



























[1, 0, 0, 0, 0, 0] stack
[0, 1, 0, 0, 0, 0] hairpin loop
[0, 0, 1, 0, 0, 0] interior loop
[0, 0, 0, 1, 0, 0] bulge loop
[0, 0, 0, 0, 1, 0] bifurcation loop
[0, 0, 0, 0, 0, 1] no motif

, i = 1, . . . , L; k = 1, 2.
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motifs given the sequence and structure information. We develop a procedure to auto-
matically extract motif information for each nucleotide in RNA sequence.

In the following, we show the key steps of the procedure to automatically extract 
motif information for each nucleotide in RNA sequence.

•	 Initialization: As previously mentioned, the RNA structure is given as input 
encoded as a string of dots and brackets, which we refer to as � of size L (number 
of nucleotides). We create a set for each motif type and initialize it to the empty 
set, namely the set of stacks S stack = ∅ , the set of hairpin loops S hairpin = ∅ , the 
set of bulge loops S bulge = ∅ , the set of interior loops S interior = ∅ , and the set of 
bifurcation loops S bifurcation = ∅.

•	 Step 1.a Base Pair Identification: All base pairs within � are translated into a tuple 
(

j, k
)

, j, k ∈ {1, . . . , L} representing the index of the origin and destination nucleo-
tide, respectively. The collection of all the tuples forms the base pairs index set 
B whose elements bi, i = 1, . . . , |B| are defined as bi =

(

j, k
)

 . We adopt the rna-
tools [42] Python package for the automatic identification of all base pairs 
within this RNA secondary structure. The implemented algorithm runs with com-
plexity O(L).

•	 Step 1.b Motif Elicitation As previously explained, each motif is bounded by at 
least one base pair. Hence, given the collection of base pairs from Step 1.a, B , we 
verify which motifs the base pairs are defined in. More specifically:

–	 Stack: If (bi(1)+ 1,bi(2)− 1) ∈ B , then 

 where {bi, (bi(1)+ 1,bi(2)− 1)} are interior edges (hydrogen bonds), while 
{(bi(1),bi(1)+ 1), (bi(2)− 1,bi(2))} are exterior edges (phosphodiester bonds);

–	 Hairpin loop: If the structure elements �j = “.′′, ∀j = bi(1)+ 1, . . . ,bi(2)− 1 , 
then 

 where all edges are phosphodiester bonds, except the hydrogen bond bi;
–	 Bulge loop: Similar to the stack, we have two consecutive base pairs whose 

bases are either at the origin or destination. In particular, if the bulge is on the 
side of the destination bases, we have that bi(1)+ 1 = bi+1(1),with a bulge of 
size bi(2)− bi+1(2) > 1.Then, 

 where all edges are phosphodiester bonds, except the hydrogen bonds bi,bi+1. In 
case the bulge is on the side of the origin bases, we have that bi(2)− 1 = bi+1(2), 
with a bulge of size bi+1(1)− bi(1) > 1. Then, 

S stack ← S stack ∪ {bi, (bi(1)+ 1,bi(2)− 1),

(bi(1),bi(1)+ 1), (bi(2)− 1,bi(2))},

S
hairpin ← S

hairpin ∪ {bi, (bi(1)+ 1,bi(1)+ 2),

. . . , (bi(2)− 2,bi(2)− 1)},

S
bulge ← S

bulge ∪ {bi,bi+1, (bi(1),bi+1(1)),

(bi+1(2),bi+1(2)+ 1), . . . , (bi(2)− 1,bi(2))},
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 where all edges are phosphodiester bonds, except the hydrogen bonds bi,bi+1;
–	 Interior loop: Similar to the bulge loop, we have two consecutive base pairs whose 

bases are either at the origin or destination. On the side of the origin and destina-
tion bases, we have that bi+1(1)− bi(1) > 1 and bi(2)− bi+1(2) > 1 . Then, 

 where all edges are phosphodiester bonds, except the hydrogen bonds bi,bi+1.
–	 Bifurcation loop: Let z represent the number of base pairs in the loop. If there are 

more than two base pairs (i.e. z > 2 ) in this loop, then 

 where all edges are phosphodiester bonds, except the hydrogen bonds 
bi,bi+1, . . . ,bi+z−1.

•	 Step 2 Obtain the sequence of each motif The sequence of the motif includes all the 
paired nucleotides and unpaired nucleotides in the motif that are aligned in order of 
index.

Calculating and encoding free energy The free energy of a molecule is the sum of the free 
energies calculated at the sub-structure (motif ) level [18]. In particular, the free energy 
of a motif in RNA is a function of the involved bases. In our model, the type and the free 
energy of a motif are its two core features. Because the motif is composed of nucleotides, 
we assign the type and the free energy of a motif as the features for each nucleotide that 
forms it. Since a nucleotide could belong to two adjacent motifs, both of these two adja-
cent motifs’ types and free energy values should be assigned to this nucleotide as fea-
tures. To summarize all these features, we propose a 2D matrix, which we refer to as the 
nucleotide localized information matrix, to encode the motifs’ free energy, motifs’ types, 
and nucleotides’ types for each nucleotide in the RNA molecule. The size of nucleotide 
localized information matrix is L× 5 , where L is the length of RNA sequence and 5 is 
the number of motif-driven features.

After representing the categorical variables by one-hot encoding, the nucleotide 
localized information matrix becomes a L× 18 matrix where 4 columns are for 4-ele-
ments nucleotide one-hot encoding, 12 columns are for two 6-elements motif one-hot 
encoding, and 2 columns are for free energy of two motifs. We pad 0 in the bottom of 
each nucleotide localized information matrix to uniform the size of all nucleotide local-
ized information matrixes. As a result, each nucleotide localized information matrix 
has a size of L× 18 ( L has the same meaning as defined in section  "Nucleotide-level 

S
bulge ← S

bulge ∪ {bi,bi+1, (bi(1),bi(1)+ 1),

. . . , (bi+1(1)− 1,bi+1(1)), (bi+1(2),bi(2))}
,

S
interior ← S

interior ∪ {bi,bi+1, (bi(1),bi(1)+ 1),

. . . , (bi+1(1)− 1,bi+1(1)), (bi+1(2),bi+1(2)+ 1),

. . . , (bi+1(1)− 1,bi+1(1))}
,

S
bifurcation ← S

bifurcation ∪ {bi,bi+1, . . . ,bi+z−1,

(bi(2),bi(2)+ 1), . . . , (bi+1(1)− 1,bi+1(1)),

(bi+1(2),bi+1(2)+ 1), . . . , (bi+2(1)− 1,bi+2(1)), . . . ,

(bi+z−2(2),bi+z−2(2)+ 1), . . . , (bi+z−1(1)− 1,bi+z−1(1))

(bi+z−1(2),bi+z−1(2)+ 1), . . . , (bi(1)− 1,bi(1))}

,
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features-informed residual neuralnetwork model (NU-ResNet)"). Different from the 
binary valued features from the categorical variables, the free energy of motifs are 
numerical in nature. To prevent learning difficulties, we rescale these values to the [0, 1] 
interval by utilizing the cumulative distribution function (CDF) of normal distribution 
with µ and σ , where µ is the mean of normal distribution and σ is the standard devia-
tion of normal distribution. Here, the reason why we utilize CDF of normal distribution 
to rescale the free energy is that the rate of CDF of normal distribution converging to 0 
and 1 can be controlled by the parameter σ . We wish the scaling function converging to 
0 and 1 neither too fast nor too slow. In other words, we expect to customize a scaling 
function so that it can be more sensitive to the different free energy values. The nature of 
CDF of normal distribution exactly satisfies this requirement.

Example An example of nucleotide localized information matrix is shown in Table  1. 
The fictitious RNA used in this example is same with the one used in Fig. 2.

Architecture design To account for the novel features, we revise the architecture pro-
posed for NU-ResNet. Specifically, we have two inputs, 3D RNA matrix and nucleotide 
localized information matrix, for each RNA. We develop a neural network model which 
uses two parallel ResNet-18 with removing the last fully connected layer to generate fea-
tures from each input and concatenates these generated features. The concatenated fea-
tures are followed by stacked fully connected layers to perform classification. We name 
this revised ResNet-18 as NUMO-ResNet. The detailed architecture of NUMO-ResNet 
is shown in Fig. 4.

When training NUMO-ResNet, all the hyperparameters are set as the same with NU-
ResNet except the weight decay. The weight decay set for NUMO-ResNet is 0.1.

Results
In this section, we analyze the performance of NU-ResNet and NUMO-ResNet, and 
analyze them against the state-of-the-art approaches, ENTRNA presented in [12] and 
equilibrium probability from the ensemble of the RNA structures proposed in [32].

Section  "Data sets" characterizes the data sets utilized in this research. Sec-
tion  "Models Comparison" presents the comparison of performance of NU-ResNet 

Table 1  An example of nucleotide localized information matrix

In this table, nt and FE are the abbreviations of nucleotide and free energy, respectively

nt Motif1 Motif1 FE Motif 2 Motif2 FE

C None 0 None 0

A Stack – 210 None 0

G Stack – 150 Stack – 210

G Hairpin loop 590 Stack – 150

A Hairpin loop 590 None 0

G Hairpin loop 590 None 0

C Hairpin loop 590 None 0

U Hairpin loop 590 Stack – 150

C Stack – 150 Stack – 210

U Stack – 210 None 0

U None 0 None 0

C None 0 None 0
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and NUMO-ResNet with data-driven approach, ENTRNA, and model-driven 
approach, equilibrium probability from the ensemble of the RNA secondary struc-
tures. Section  "Analysis of NU-ResNet and NUMO-ResNet" introduces the analysis 
of NU-ResNet and NUMO-ResNet, including the comparison between NU-ResNet 
and NUMO-ResNet, convergence behavior of proposed models, and model robust-
ness analysis of proposed models. Section "Performance of NU-ResNet and NUMO-
ResNet across independent RNA families" shows the performance of testing 
NU-ResNet, NUMO-ResNet, ENTRNA, and Equilibrium Probability across inde-
pendent RNA families.

Data sets

The samples utilized in this research are extracted from Protein Data Bank (PDB), in 
particular from the RNA STRAND database [43]. This is a commonly used data set in 
the literature [9, 12, 20]. When generating the dataset for our analysis, we only consider 
RNAs validated by X-Ray or NMR, thus ensuring the availability of the ground truth for 
each sequence. Synthetic RNAs and RNAs with pseudoknots are not considered.

Both our deep learning models require positive and negative samples for training. 
While the positive samples are the RNA sequence-structure pairs in the data set, we 
use the Positive-Unlabeled (PU) Learning method [12, 44] to generate multiple negative 
samples for the same RNA structure. Specifically, we use RNAinverse [45] and incaRNA-
tion [46] to generate 101 negative sequence candidates for each RNA structure. Not all 
the generated sequences are accepted as negative samples. Similar to the approach in 
[12, 47], we accept negative samples that satisfy three requirements:

•	 repetition constraint: as first requirement, we ask that any sub-sequence of an RNA 
sequence can have at most r consecutive identical nucleotides. In this analysis, we set 
r = 6;

•	 The second constraint is that the only allowed base pairs in RNA sequence is AU, 
CG, and GU;

•	 The third constraint is that the most or least occurring nucleotide within the 
sequence is either G or C.

Fig. 4  The details of architecture of NUMO-ResNet
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These three constraints can help us to select the negative samples that are “reliable”. 
Upon screening the candidates against the constraints, we calculate the five features, 
Normalized Sequence Segment Entropy with Segment Size 3, GC Percentage, Ensemble 
Diversity, Expected Accuracy, Pseudoknot-free RNA normalized free energy, proposed 
in [12] and compute the Euclidean distance between each negative sample candidate and 
the corresponding positive sample. The negative sample candidate with the largest dis-
tance from the positive sample is finally selected and included in the data set. As a result, 
each RNA structure has associated a positive and a negative sequence.

The positive samples that are the ground truth within the data set have the base pairs 
other than AU, CG, and GU pairs. In order to keep consistency with negative samples, 
we only consider the AU, CG, and GU pairs in the positive samples. Otherwise, whether 
having base pairs except AU, CG, and GU pairs will become a main feature to classify the 
positive samples and negative samples, which is not what we expect.

The longest RNA sequence within the data set utilized in this research has 408 nucleo-
tides, and the shortest RNA sequence has 12 nucleotides. To unify the size of inputs of 
NU-ResNet and NUMO-ResNet, we pad both the 3D RNA matrix and the nucleotide 
localized information matrix with 0. We choose to use 410 as the maximum length L , 
resulting in 3D RNA matrixes with size [410× 410× 4] and nucleotide localized infor-
mation matrixes with size [410× 18] . When utilizing the CDF of normal distribution to 
rescale free energy to the [0, 1] interval in the nucleotide localized information matrix, 
we set µ = 0 and σ = 5.

In this work, the RNA sequence-structure pairs are randomly selected to generate the 
training (TrDS, with 81% of the inputs), validation (VDS, with 9% of the inputs), and 
testing (TeDS, with 10% of the inputs) datasets. This data split setting is the same as pro-
posed in PreRBP-TL [48]. The TrDS, VDS, and TeDS have 259 RNAs, 29 RNAs, and 32 
RNAs, respectively. Considering the negative samples results in 518, 58, and 64 samples, 
respectively.

In the following, we analyze the performance of both our models with the associated 
largest validation accuracy and lowest validation loss. For these models, we also show 
the 10-fold CV performance under the combined TrDS, VDS, and TeDS datasets.

Models comparison

In order to evaluate the performance of NU-ResNet and NUMO-ResNet, we compare 
them with data-driven approach, ENTRNA [12], and model-driven approach, equilib-
rium probability proposed in [32]. The data-driven approach uses the Machine Learning 
to develop the model where the RNA sequence-secondary structure pairs are encoded 
by using feature engineering and the parameters of the model are learnt from the train-
ing of the model. The model-driven approach develops the model based on the Physics 
knowledge. Specifically, the ENTRNA evaluates an RNA sequence-secondary structure 
pair based on its features, while the equilibrium probability approach evaluates an RNA 
sequence-secondary structure pair based on its free energy. In section "Models compari-
son with data-driven approach" introduces the comparison of NU-ResNet and NUMO-
ResNet with data-driven approach, ENTRNA. Section  "Models comparison with 
model-driven approach" introduces the comparison of NU-ResNet and NUMO-ResNet 
with model-driven approach, equilibrium probability.
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Models comparison with data‑driven approach

Performance Metrics
Since NU-ResNet, NUMO-ResNet, and ENTRNA are trained as binary classifica-

tion models, we propose several metrics to comprehensively analyze the trained 
architectures. The metrics we utilize include the area under curve receiver operator 
characteristic (AUCROC), the Matthews correlation coefficient (MCC), accuracy, 
precision, recall, and specificity. The AUCROC has a threshold invariant characteris-
tic which can comprehensively evaluate the classification model. In addition, 
AUCROC has been proven to be equivalent to the probability that a randomly chosen 
positive sample can be ranked higher than a randomly chosen negative sample by the 
classification model [49]. Here, MCC = (TP×TN−FP×FN )√

(TP+FP)(TP+FN )(TN+FP)(TN+FN )
 , 

Accuracy = TP+TN
TP+FN+TN+FP , Precision = TP

TP+FP , Recall = TP
TP+FN  , and 

Specificity = TN
TN+FP . Within these formulas, TP, TN, FP, and FN refer to the number 

of true positive, true negative, false positive, and false negative respectively. 
AUCROC, accuracy, precision, recall, and specificity are all defined in the range [0, 1] . 
The MCC metric is defined in the range [−1, 1] . For all of the metrics, higher value 
indicates better performance.

NU-ResNet and NUMO-ResNet compared to ENTRNA
As previously mentioned, we record the models with best validation accuracy and 

best validation loss resulting from training. The set of parameters of the model with 
best validation accuracy and best validation loss is referred to as ϑ∗

a and ϑ∗
ℓ respec-

tively. The performance of the resulting NU-ResNet and NUMO-ResNet on the TeDS 
is shown in Table 2. We retrain and test the state-of-the-art RNA sequence-secondary 
structure pair evaluation model, ENTRNA, on TrDS and TeDS, respectively. The per-
formance of ENTRNA on the TeDS is also shown in Table 2. It can be observed how 
all of four models outperform ENTRNA on the TeDS.

In Table 2, we observe that NU-ResNet with ϑ∗
a outperforms ENTRNA and on all 

metrics except for the recall where they achieve the same performance. NU-ResNet 
with ϑ∗

ℓ outperforms ENTRNA on 5 out of 6 metrics (i.e. accuracy, AUCROC, MCC, 
precision and specificity). In addition, NUMO-ResNet models with ϑ∗

ℓ outperform 
ENTRNA on all metrics. The NUMO-ResNet with ϑ∗

a outperforms ENTRNA on 5 out 
of 6 metrics (i.e. accuracy, AUCROC, MCC, precision, and specificity). The perfor-
mance of NU-ResNet and NUMO-ResNet is superior to the performance of ENTRNA 

Table 2  Models performance on TeDS

Models with parameters that optimize the validation accuracy are referred to as ϑ∗
a , while models with parameters that 

optimize the validation loss are referred to as ϑ∗
ℓ

Metric NU-ResNet NUMO-ResNet ENTRNA

ϑ
∗

a ϑ
∗

ℓ
ϑ
∗

a ϑ
∗

ℓ

Accuracy 93.75% 92.19% 90.63% 96.88% 73.44%

AUCROC 0.9736 0.9824 0.9824 0.9912 0.7275

MCC 0.875 0.8442 0.8141 0.9375 0.5130

Precision 93.75% 93.55% 93.33% 96.88% 66.67%

Recall 93.75% 90.63% 87.5% 96.88% 93.75%

Specificity 93.75% 93.75% 93.75% 96.88% 53.13%
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except the recall. Here, the low precision, low specificity, and high recall of ENTRNA 
indicates that the model is more inclined to classify the sample as positive.

From the model comparisons among NU-ResNet, NUMO-ResNet, and ENTRNA. We 
have following two conclusions.

•	 The overall classification performance of NU-ResNet or NUMO-ResNet is superior 
to ENTRNA on TeDS.

•	 The experiments indicate the effectiveness of the methods utilized by NU-ResNet 
and NUMO-ResNet to encode the RNA sequence-structure pair.

Models comparison with model‑driven approach

Equilibrium probability
According to the method proposed in [32], the equilibrium probability is defined with 

respect to the set of all pseudoknot-free RNA structures for a given RNA sequence [32]. 
Specifically, the authors define the equilibrium probability as

where stri is i-th RNA structure, E(stri) is the associated free energy of stri , N is the num-
ber of all RNA structures in ensemble. Finally, R is the gas constant and T is the thermo-
dynamic temperature [22]. From this formula, we observe that the RNA structure with 
lower energy has higher equilibrium probability for a given sequence.

In this analysis, we adopt the ViennaRNA package [10] to calculate the equilibrium 
probability of the RNA sequence-structure pairs. We firstly use mfe() to obtain the MFE 
structure for a given RNA sequence and the corresponding free energy of this MFE 
structure. Then, we use exp_params_rescale() with setting the parameter equal to MFE 
value to rescale Boltzmann factor for computing partition function. Finally, we use pf() 
and pr_structure() to cauculate the partition function and the associated equilibrium 
probability for the given RNA structure, respectively.

NU-ResNet and NUMO-ResNet compared to Equilibrium Probability
We calculate the equilibrium probability based on the ensemble for all data on 

TeDS. In TeDS, there are 32 RNAs in total. On 13 out of these 32 RNAs, the equilib-
rium probability of their corresponding positive samples are 0. This is because that 
their free energies are much greater than the free energies of associated RNAfold 
[10] predicted structures which are obtained by approximating MFE. For 32 positive 
samples in TeDS, there are 22 samples whose free energies that are greater than the 
free energies of the associated RNAfold predicted structures. And among these 32 
positive samples, only 7 positive samples’ structures are same with the correspond-
ing RNAfold predicted RNA structures, which is 21.88%. In terms of the free energy 
comparison between the positive sample and negative sample of each RNA in TeDS, 
28 out of 32 RNAs whose corresponding positive sample’s free energy is less than 

p(stri) =
exp(−E(stri)

RT )
∑N

i=1 exp(−
E(stri)
RT )

,
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the corresponding negative sample’s free energy. In other words, using free energy 
value to directly classify the positive sample and negative sample has 87.5% accuracy, 
which is still lower than the accuracy of NU-ResNet or NUMO-ResNet. By removing 
all the zero and extremely small values of equilibrium probability, there are 7 RNAs 
within the TeDS having associated positive sample’s equilibrium probability less than 
the associated negative sample’s equilibrium probability, which means 21.88% sam-
ples are evaluated wrongly. For the 7 RNAs whose positive samples have free energies 
equaling to the free energy of RNAfold predicted structures, the equilibrium proba-
bility classifies all the 7 associated positive samples correctly and 3 out of 7 associated 
negative samples correctly when threshold equals to 0.5. When setting the thresh-
old as 0.6, the equilibrium probability classifies all the associated 7 positive samples 
and 7 negative samples correctly. Hence, the equilibrium probability has admirable 
performance when dealing with the RNAs whose ground truth structures are same 
with RNAfold predicted structures in nature. However, when dealing with the RNAs 
whose ground truth structures are not same with RNAfold predicted structures, the 
equilibrium probability has the limitation. The data-driven approach is a direction 
to overcome this limitation. Therefore, our data-driven approaches, NU-ResNet and 
NUMO-ResNet, are good complement to RNA sequence-secondary structure evalua-
tion research field.

The significant difference in the performance between four proposed models and equi-
librium probability is mainly from the different mechanisms between these two types of 
the approaches. The NU-ResNet and NUMO-ResNet are data-driven approaches. How-
ever, the equilibrium probability is Physics-based approach. In these 32 RNAs, there are 
two positive samples whose equilibrium probabilities are greater than 1. This is because 
that these two positive samples have AC pair in their structures which leads to their free 
energies are less than the corresponding ensemble free energies. The NU-ResNet and 
NUMO-ResNet neglect the base pairs other than AU, CG, as well as GU pairs and limit 
the output score ranging from 0 to 1. The equilibrium probability only considers the AU, 
CG, and GU pairs when they build the ensemble. However, when dealing with some 
ground truth RNAs which have base pairs other AU, CG, and GU pairs, these ground 
truth RNAs could have free energies less than that of ensemble, which causes that the 
corresponding equilibrium probability is greater than 1. The advantage of data-driven 
approaches is that they learn the knowledge from the data, which can benefit the domain 
by using the knowledge learnt from big data.

From the model comparisons among NU-ResNet, NUMO-ResNet, and equilibrium 
probability. We have following two conclusions.

•	 The data-driven approaches, NU-ResNet and NUMO-ResNet, can learn the 
knowledge from the data source directly. The model-learnt knowledge is able to 
benefit the RNA evaluation domain.

•	 The data-driven approaches, NU-ResNet and NUMO-ResNet, are good comple-
ment to RNA sequence-secondary structure pair evaluation field because purely 
using free energy to evaluate RNA sequence-secondary structure pair has limita-
tion in classification performance. The good classification performance can ben-
efit the RNA secondary structure prediction and RNA inverse folding field.
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Analysis of NU‑ResNet and NUMO‑ResNet

Comparison between proposed models
Table 2 shows that NUMO-ResNet with ϑ∗

ℓ outperforms NU-ResNet with ϑ∗
a and ϑ∗

ℓ in 
all 6 metrics. In AUCROC, the NUMO-ResNet with ϑ∗

a is superior to NU-ResNet with 
ϑ
∗
a and is equal to NU-ResNet with ϑ∗

ℓ.
The results of the experiments follow our expectation because NUMO-ResNet incor-

porates more features compared to NU-ResNet. Intuitively, NUMO-ResNet should 
at least have the same performance with NU-ResNet because NUMO-ResNet has the 
whole input that NU-ResNet has. The results of experiments also show the advance of 
motif-based features extracted by NUMO-ResNet compared to the input only incorpo-
rating sequence and structure information employed by NU-ResNet.

Convergence behavior of NU-ResNet training compared to NUMO-ResNet training 
Here, we provide insights into the training process of the proposed models. In particu-
lar, we analyze the validation loss and accuracy metrics as a function of the training 
effort (i.e., number of epochs). Figure 5a shows that NU-ResNet validation loss presents 
larger fluctuation than NUMO-ResNet. Figure 5b confirms this observation when accu-
racy is considered: NU-ResNet has larger fluctuation in validation accuracy compared 
to NUMO-ResNet. This finding suggests that the motif-based features extracted by 
NUMO-ResNet do have positive effects on model when it learns the RNA data because 
its validation loss and validation accuracy are more stable compared to NU-ResNet.

Models robustness analysis Since we utilize a weighted sampler to sample the data dur-
ing the training which has randomness, the performance of trained models on testing 
data may be affected by this randomness. To verify the robustness of the trained models, 
we perform a 10-fold CV on both NU-ResNet and NUMO-ResNet.

Similar to the previous analysis, for each iteration of the validation routine, we con-
sider two models, one with the best validation accuracy, and one with the best validation 
loss. Table 3 shows the 10-fold CV results from our models as the average of the perfor-
mance resulting from 10 iterations of the approach. The 10-fold CV results presented in 
Table 3 confirm that NU-ResNet and NUMO-ResNet are capable of tackling different 
groups of RNAs across the data set used in this research.

Performance of NU‑ResNet and NUMO‑ResNet across independent RNA families

Inspired by the findings introduced in [50], we conduct the experiments to analyze the 
performance of NU-ResNet and NUMO-ResNet across independent RNA families. 
Specifically, we train and validate the NU-ResNet and NUMO-ResNet only on Trans-
fer RNA and Ribosomal RNA because they have first two largest data sizes compared 
to other RNA families in the data set utilized in this research. The training and valida-
tion data have 118 RNAs and 14 RNAs respectively. By considering the negative sam-
ples, there are 236 and 28 samples in training data and validation data respectively. The 
ratio between training data and validation data is consistent with the ratio between TrDS 
and VDS in section "Data sets". Then we test the trained models on all remaining RNA 
families individually. In addition to RNA families within the PDB data set we utilize in 
this research, we also include the Riboswitch data from [51] as an independent testing 
data set. The statistics of each RNA family are summarized in Table 4. We also retrain 
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Fig. 5  a: The training and validation loss. b: The training and validation accuracy

Table 3  10-fold cross validation results from NU-ResNet and NUMO-ResNet

Models with parameters that optimize the validation accuracy are referred to as ϑ∗
a , while models with parameters that 

optimize validation loss are referred to as ϑ∗
ℓ

Metric NU-ResNet NUMO-ResNet

ϑ
∗

a ϑ
∗

ℓ
ϑ
∗

a ϑ
∗

ℓ

Accuracy 98.13 % 97.19% 95.47% 93.44%

AUCROC 0.9939 0.9948 0.9749 0.9768

MCC 0.9629 0.9444 0.9111 0.8702

Precision 98.16% 97.54% 96.91% 93.48%

Recall 98.13% 96.88% 94.06% 93.75%

Specificity 98.13% 97.5% 96.88% 93.13%
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and test the ENTRNA in same data sets for data-driven approaches’ comparison. The 
results are shown in Tables 5 and 6. In addition, we test the equilibrium probability for 
comparing the NU-ResNet and NUMO-ResNet with model-driven approach. In addi-
tion to RNA families within the PDB data set we utilize in this research, we also include 
the Riboswitch data from [51] as an independent testing data set.

Data-driven models performance across RNA families

Table 4  Nanoparticles length range grouped by family

Family (abbreviation) Number Length range

Transfer RNA (t) 60 13–152

5S Ribosomal RNA (5Sr) 12 24–122

16S Ribosomal RNA (16Sr) 2 14–14

23S Ribosomal RNA (23Sr) 7 19–27

other Ribosomal RNA (or) 51 12–408

Group I intron (GI) 3 18–22

Group II intron (GII) 4 27–70

Signal Recognition Particle RNA (SRP) 10 28–192

Viral and Phage (V &P) 18 12–38

Small Nuclear RNA (sn) 6 20–66

Ribonuclease P RNA (RNP) 15 21–270

Internal Ribosome Entry Site (IR) 4 14–30

Hairpin Ribozyme (HpR) 11 38–226

Hammerhead Ribozyme (HhR) 9 40–82

Riboswitch (Rbo) 4 71–154

other Ribozyme (oR) 17 17–159

other RNA (O) 91 16–304

Total 324 12–408

Table 5  Models performance across RNA families on Accuracy, AUCROC, and MCC

Here, the NU-ResNet and NUMO-ResNet are ϑ∗
ℓ . C refers to the combination of all RNA categories in this table except the 

other RNA (O). C + refers to the combination of C and other RNA (O). Ctgy, Acc, and AUC are the abbreviations of category, 
Accuracy, and AUCROC, respectively

Ctgy NU-ResNet NUMO-ResNet ENTRNA

Acc AUC​ MCC Acc AUC​ MCC Acc AUC​ MCC

GI 50% 0.44 0 50% 0.33 0 50% 0.33 0

GII 75% 1 0.5774 62.5% 0.8125 0.2582 62.5% 0.8125 0.3780

SRP 100% 1 1 90% 0.96 0.8 66.67% 0.6790 0.3333

V &P 63.89% 0.8364 0.2817 52.78% 0.7037 0.0642 66.67% 0.6790 0.3333

sn 66.67% 1 0.4472 50% 0.4722 0 66.67% 0.6111 0.3536

RNP 100% 1 1 83.33% 0.88 0.7071 63.33% 0.76 0.3922

IR 100% 1 1 75% 1 0.5774 75% 0.75 0.5774

HpR 90.91% 0.9835 0.8321 77.27% 0.9504 0.5669 50% 0.9917 0

HhR 100% 1 1 55.56% 0.7778 0.1140 50% 0.6914 0

oR 97.06% 0.9792 0.9428 64.71% 0.6747 0.3333 67.65% 0.7474 0.4629

Rbo 50% – 0 25% – 0 75% – 0

O 94.51% 0.9546 0.8921 80.22% 0.8721 0.6140 65.93% 0.7313 0.3349

C 86.36% 0.9458 0.7390 66.67% 0.7862 0.3658 62.12% 0.6889 0.2920

C+ 90.26% 0.9520 0.8114 73.16% 0.8272 0.4846 63.95% 0.7085 0.3102
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We select from the PDB data set the Transfer RNA, 5S Ribosomal RNA, 16S Riboso-
mal RNA, 23S Ribosomal RNA, and other Ribosomal RNA to from the training data set. 
We use the same hyperparameters setting introduced in section "Methods" to retrain the 
NU-ResNet and NUMO-ResNet. Then we test the resulting NU-ResNet and NUMO-
ResNet models “out of sample” on Group I intron, Group II intron, SRP RNA, Viral and 
Phage, Small Nuclear RNA, Ribonuclease P RNA, Internal Ribosome Entry Site, Hairpin 
Ribozyme, Hammerhead Ribozyme, Riboswitch, other Ribozyme, and other RNA indi-
vidually. We also retrain and test ENTRNA using the same data sets. Because the model 
complexity of NUMO-ResNet is higher than that of NU-ResNet, more training data are 
expected for NUMO-ResNet compared to NU-ResNet. However, in order to avoid the 
overlap RNA families between training data and testing data, we need to exclude the 
other RNA from the training data set, which causes that the size of the training data 
decreased compared to the TrDS.

In Table 5, there are 11 testing RNA families in total. The NU-ResNet has better or 
equal performance compared to ENTRNA in 9, 9, and 10 testing RNA families based 
on accuracy, AUCROC, and MCC, respectively. The NUMO-ResNet has better or equal 
performance compared to ENTRNA in 7, 7, and 7 testing RNA families based on accu-
racy, AUCROC, and MCC, respectively.

Table  6 shows that both of NU-ResNet and NUMO-ResNet have balanced perfor-
mance in Precision, Recall, and Specificity across all testing RNA families except the 
Group I intron, which implies that NU-ResNet and NUMO-ResNet are not biased when 
they are tested on most of these new RNA families. However, ENTRNA has the biased 
performance on Group I intron, Hairpin Ribozyme, and Hammerhead Ribozyme. In 
terms of the model performance on handling both of positive samples and negative sam-
ples across different RNA families, the NU-ResNet and NUMO-ResNet show more bal-
anced capability than ENTRNA.

Table 6  Models performance across RNA families on Precision, Recall, and Specificity

Here, the NU-ResNet and NUMO-ResNet are ϑ∗
ℓ . C refers to the combination of all RNA categories in this table except 

the other RNA (O). C + refers to the combination of C and other RNA (O). Ctgy, Pre, Rec, and Spe are the abbreviations of 
category, Precision, Recall, and Specificity, respectively

Ctgy NU-ResNet NUMO-ResNet ENTRNA

Pre Rec Spe Pre Rec Spe Pre Rec Spe

GI 0% 0% 100% 0% 0% 100% 50% 100% 0

GII 100% 50% 100% 66.67% 50% 75% 57.14% 100% 25%

SRP 100% 100% 100% 90% 90% 90% 66.67% 66.67% 66.67%

V &P 66.67% 55.56% 72.22% 55.56% 27.78% 77.78% 66.67% 66.67% 66.67%

sn 100% 33.33% 100% 50% 33.33% 66.67% 62.5% 83.33% 50%

RNP 100% 100% 100% 100% 66.67% 100% 57.69% 100% 26.67%

IR 100% 100% 100% 100% 50% 100% 66.67% 100% 50%

HpR 100% 81.82% 100% 87.5% 63.64% 90.91% 50% 100% 0%

HhR 100% 100% 100% 57.14% 44.44% 66.67% 50% 100% 0%

oR 100% 94.12% 100% 77.78% 41.18% 88.24% 60.71% 100% 35.29%

Rbo 100% 50% – 100% 25% – 100% 75% –

O 97.65% 91.21% 97.80% 86.67% 71.43% 89.01% 62.18% 81.32% 50.55%

C 94.05% 78.22% 94.85% 77.78% 48.51% 85.57% 58.13% 92.08% 30.93%

C+ 95.86% 84.38% 96.28% 82.61% 59.38% 87.23% 59.86% 86.98% 40.43%
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Tables 5and 6 show that both the NU-ResNet and NUMO-ResNet models outperform 
the competitors over the SRP RNA, Ribonuclease P RNA, Internal Ribosome Entry Site, 
and Hammerhead Ribozyme families.

The results for the aggregate data sets “C” and “C+ ” in Table 5 shows that NU-ResNet 
and NUMO-ResNet outperform ENTRNA across all metrics. Because “C” data set and 
the training data have no overlap RNA families, the NU-ResNet still has the AUCROC 
as 0.9458, which is consistent with the AUCROC in Table 2. This shows the generaliz-
ability of NU-ResNet. On the other hand, NUMO-ResNet shows a decrease in the per-
formance. We believe such difference is not due to lesser generalizability of the model, 
rather to the reduced size of the training data set compared to the TrDS and the larger 
number of parameters required by NUMO-ResNet as compared to the NU-ResNet 
model.

By testing the NU-ResNet, NUMO-ResNet, and ENTRNA across different RNA fami-
lies, we can obtain the following conclusions.

•	 The overall testing performance of NU-ResNet and NUMO-ResNet across different 
RNA families is superior to ENTRNA.

•	 The experiments show that the NU-ResNet has the admirable performance when 
handling the data from the new RNA families.

Equilibrium probability performance across RNA families
In order to compare NU-ResNet and NUMO-ResNet with equilibrium probability 

in handling different RNA families, we test the equilibrium probability in each data set 
listed in Table 5. The performance of equilibrium probability in different RNA families is 
shown in Table 7. Specifically, in Table 7, there are in total 80.73% RNAs whose positive 

Table 7  The performance of equilibrium probability across RNA families

Here the column FEpos > FERNAfoldstr refers to the percentage of RNAs whose positive sample has greater free energy than 
the free energy of the corresponding RNAfold predicted structure. The column FEpos = FERNAfoldstr refers to the percentage 
of RNAs whose positive sample has the same free energy as the corresponding RNAfold predicted structure. The column 
FEpos < FEneg refers to the percentage of RNAs whose positive sample has lower free energy than the negative sample. C 
refers to the combination of all RNA categories in this table except the other RNA (O). C + refers to the combination of C and 
other RNA (O). Ctgy is the abbreviation of category

Families FEpos > FERNAfoldstr FEpos = FERNAfoldstr FEpos < FEneg

GI 100% 0% 33.33%

GII 100% 0% 100%

SRP 90% 0% 90%

V &P 77.78% 22.22% 83.33%

sn 83.33% 0% 83.33%

RNP 86.67% 13.33% 100%

IR 75% 0% 50%

HpR 100% 0% 36.36%

HhR 100% 0% 77.78%

oR 70.59% 17.65% 64.71%

Rbo 75% 25% –

O 75.82% 7.69% 83.52%

C 85.15% 9.90% –

C+ 80.73% 8.85% –
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sample has the free energy greater than the free energy of the corresponding RNAfold 
predicted structures.

Table 7 shows in column FEpos < FEneg the percentage of RNAs that exhibit positive 
samples with lower free energy compared with the negative samples within each RNA 
family. As an example all the data within the Group II intron and Ribonuclease P RNA 
families exhibit this property. As a result, a classifier that uses free energy to distinguish 
positive from negative samples (like the equilibrium probability does) will achieve a good 
performance. On the other hand, families such as Group I intron and Hairpin Ribozyme 
exhibit this property for only 33.33% and 36.36% of the cases. Considering only RNAs 
which have negative samples in the “C” and “C+ ”, we observe that 75.26% and 79.26% 
exhibit positive samples with lower free energy compared to the negative sample, thus 
resulting in an accuracy of 75.26% and 79.26% for the equilibrium probability method. 
This performance is superior to both ENTRNA and NUMO-ResNet, while NU-ResNet 
still shows the best results.

From the testing performance of NU-ResNet, NUMO-ResNet and Equilibrium Prob-
ability across different RNA families. We have the following conclusions.

•	 Using free energy to evaluate the RNA sequence-secondary structure pairs has the 
different performance in different RNA families. The NU-ResNet and NUMO-
ResNet have more consistent performance in different RNA families.

•	 Leveraging the knowledge learnt from data-driven approaches can benefit the clas-
sification performance of the models across independent RNA families.

Discussion
In this work, we propose two deep learning models, NU-ResNet and NUMO-ResNet, to 
evaluate the pair of RNA sequence and RNA secondary structure. And we propose two 
matrixes, 3D RNA matrix and nucleotide localized information matrix, to encode the 
RNA sequence-secondary structure pairs. The 3D RNA matrix can be used to explic-
itly encode the information of the RNA sequence and RNA structure. And the nucleo-
tide localized information matrix incorporates the motif and free energy information of 
RNA. The NU-ResNet and NUMO-ResNet exhibit the distinguished performance in the 
experiments. And they outperform the state-of-the-art data-driven RNA sequence-sec-
ondary structure pair evaluation model, ENTRNA, and physics-based model, equilib-
rium probability from the ensemble, in an independent testing data set. The 10-fold CV 
results show the robustness of NU-ResNet and NUMO-ResNet. The high level embed-
dings from NU-ResNet or NUMO-ResNet are model-automatically-extracted-features 
of RNA, which can be used in other downstream work in the future research. NU-
ResNet and NUMO-ResNet show a consistent performance when they are being tested 
across independent RNA families. The NU-ResNet model works especially well across 
different RNA families, which shows that the model has the robust generalization ability 
even when handling the data from new RNA families.

There are several avenues for further to explore. Firstly, we can enhance the model 
development by incorporating RNA with pseudoknots. Secondly, we can devise novel 
methods for generating higher-quality negative samples. Thirdly, we can introduce confi-
dence interval for the prediction results obtained from NU-ResNet and NUMO-ResNet.
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Conclusion
In this research, we present a deep learning framework for the evaluation of RNA 
sequence-structure pairs. Within this framework, we introduce two models, NU-ResNet 
and NUMO-ResNet. Both models exhibit superior performance compared to state-of-
the-art RNA sequence-structure pair evaluation models across multiple metrics. The 
two models rely on different inputs. Particularly, NUMO-ResNet incorporates motif-
based features, which enhance the training process stability to a considerable degree. 
The NU-ResNet model shows a robust generalization ability when handling the data 
from new RNA families. It is important to highlight that this study exclusively focuses 
on pseudoknot-free structures. Our future efforts will involve addressing pseudoknot-
ted RNA structures as well as evaluating RNA sequence-tertiary structure pairs, and the 
outcomes will be reported separately. Furthermore, we plan to explore incorporating 
uncertainty quantification techniques into our models in future, further enhancing their 
reliability and robustness.
Acknowledgements
The authors thank Arizona State University Research Computing for providing us with the computational nodes.

Author Contributions
YZ contributed to the code, algorithms, formulation of the research problem, experiments, experimental analysis, and 
main writing of the manuscript. GP led the project, contributed to the formulation of the research problem as well as 
the main writing of the manuscript, and supervised the model development and experimental analysis. TW contributed 
to the formulation of the research problem as well as the review and edit of the manuscript, and supervised the model 
development and experimental analysis. FZ contributed to the domain knowledge consulting of Biology as well as the 
review and edit of the manuscript.

Funding
This research is supported by U.S. National Science Foundation grant 2007861.

Data availibility
The corresponding data for this research is available at https://​github.​com/​yzhou​617/​NU_​ResNet_​NUMO_​ResNet

Declarations

Competing interests
No Conflict of interest is declared.

Code availability
The corresponding source code for this research is available at https://​github.​com/​yzhou​617/​NU_​ResNet_​NUMO_​
ResNet

Received: 7 March 2024   Accepted: 27 August 2024

References
	1.	 Low JT, Weeks KM. Shape-directed RNA secondary structure prediction. Methods. 2010;52(2):150–8.
	2.	 Brenner S. The ancient molecule. Nature. 1994;367:228–9.
	3.	 Guo P. The emerging field of RNA nanotechnology. Nat Nanotechnol. 2010;5(12):833–42.
	4.	 Oguro A, Ohtsu T, Nakamura Y. An aptamer-based biosensor for mammalian initiation factor eukaryotic initiation 

factor 4a. SAN DIEGO Elsevier Inc. 2009;388(1):102–107
	5.	 Winkler WC, Breaker RR. Regulation of bacterial gene expression by riboswitches. PALO ALTO Annual Rev. 

2005;59(1):487–517.
	6.	 Jaeger L, Voss N, Bindewald E, Yaghoubian AJ, Shapiro BA, Afonin KA, Jacovetty E. In vitro assembly of cubic 

RNA-based scaffolds designed in silico. Nat Nanotechnol. 2010;5(9):676–82.
	7.	 Pyle AM. Metal ions in the structure and function of RNA. J Biol Inorg Chem. 2002;7:679–90.
	8.	 Tinoco I, Bustamante C. How RNA folds. J Mol Biol. 1999;293:271–81.
	9.	 Singh J, Paliwal K, Zhang T, Singh J, Litfin T, Zhou Y, Gorodkin J. Improved RNA secondary structure and tertiary 

base-pairing prediction using evolutionary profile, mutational coupling and two-dimensional transfer learning. 
Bioinformatics. 2021;37:2589–600.

https://github.com/yzhou617/NU_ResNet_NUMO_ResNet
https://github.com/yzhou617/NU_ResNet_NUMO_ResNet
https://github.com/yzhou617/NU_ResNet_NUMO_ResNet


Page 25 of 26Zhou et al. BMC Bioinformatics          (2024) 25:316 	

	10.	 Lorenz R, Bernhart SH, Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL Viennarna package 2.0. Algo-
rithms for molecular biology 2011;6:26–26

	11.	 Garcia-Martin JA, Clote P, Dotu I. Rnaifold: a web server for RNA inverse folding and molecular design. Nucleic 
Acids Res. 2013;41(W1):465–70.

	12.	 Su C, Weir JD, Zhang F, Yan H, Wu T. Entrna: a framework to predict RNA foldability. BMC Bioinf. 2019;20:373–373.
	13.	 Liu M, Poppleton E, Pedrielli G, Sulc P, Bertsekas DP. Expertrna: a new framework for RNA secondary structure 

prediction. INFORMS J Comput. 2022;34(5):2464–84.
	14.	 Mathews DH, Sabina J, Zuker M, Turner DH. Expanded sequence dependence of thermodynamic parameters 

improves prediction of RNA secondary structure. J Mol Biol. 1999;288(5):911–40.
	15.	 Xia T, SantaLucia J, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH. Thermodynamic parameters for 

an expanded nearest-neighbor model for formation of RNA duplexes with Watsonâcrick base pairs. Biochemis-
try. 1998;37(42):14719–35.

	16.	 Andronescu M, Condon A, Hoos HH, Mathews DH, Murphy KP. Efficient parameter estimation for RNA secondary 
structure prediction. Bioinformatics. 2007;23(13):19–28.

	17.	 Andronescu M, Condon A, Hoos HH, Mathews DH, Murphy KP. Computational approaches for RNA energy 
parameter estimation. RNA. 2010;16(12):2304–18.

	18.	 Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary 
information. Nucleic Acids Res. 1981;9(1):133–48.

	19.	 Sato K, Akiyama M, Sakakibara Y. RNA secondary structure prediction using deep learning with thermodynamic 
integration. Nat Commun. 2021;12:941–941.

	20.	 Singh J, Hanson J, Paliwal K, Zhou Y. RNA secondary structure prediction using an ensemble of two-dimensional 
deep neural networks and transfer learning. Nat Commun. 2019;10:5407–13.

	21.	 Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22(10):1345–59.
	22.	 Zhang H, Zhang L, Mathews DH, Huang L. Linearpartition: linear-time approximation of RNA folding partition 

function and base-pairing probabilities. Bioinformatics. 2020;36(1):258–67.
	23.	 Zhang T, Singh J, Litfin T, Zhan J, Paliwal K, Zhou Y. Rnacmap: a fully automatic pipeline for predicting contact 

maps of RNAs by evolutionary coupling analysis. Bioinformatics. 2021;37(20):3494–500.
	24.	 Kamisetty H, Ovchinnikov S, Baker D. Assessing the utility of coevolution-based residue residue contact 

predictions in a sequence- and structure-rich era. In Proceedings of the National Academy of Sciences—PNAS. 
2013;110(39):15674–9.

	25.	 Bertsekas DP, Tsitsiklis JN. Neuro-dynamic programming 1996
	26.	 Bertsekas DP, Tsitsiklis JN, Wu C. Rollout algorithms for combinatorial optimization. J Heuristics. 1997;3(3):245–62.
	27.	 Bertsekas DP. Reinforcement learning and optimal control (2019).
	28.	 Bertsekas, DP Rollout, policy iteration, and distributed reinforcement learning (2020).
	29.	 Zadeh JN, Wolfe BR, Pierce NA. Nucleic acid sequence design via efficient ensemble defect optimization. J Com-

put Chem. 2011;32(3):439–52.
	30.	 Garcia-Martin JA, Clote P, Dotu I. Rnaifold: a constraint programming algorithm for RNA inverse folding and 

molecular design. J Bioinform Comput Biol. 2013;11(02):1350001.
	31.	 Van Hentenryck P, Michel L. Constraint-based local search (2005).
	32.	 McCaskill JS. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. 

Biopolymers: original research on biomolecules 1990;29(6–7), 1105–1119
	33.	 He K, Zhang X, Ren S. Sun, J. Deep residual learning for image recognition. IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR). 2016;2016:770–8.
	34.	 Darty K, Denise A, Ponty Y. Varna: interactive drawing and editing of the RNA secondary structure. Bioinformat-

ics. 2009;25(15):1974–5.
	35.	 Antczak M, Popenda M, Zok T, Zurkowski M, Adamiak RW, Szachniuk M. New algorithms to represent complex 

pseudoknotted RNA structures in dot-bracket notation. Bioinformatics. 2018;34(8):1304–12.
	36.	 Reuter JS, Mathews DH. Rnastructure: software for RNA secondary structure prediction and analysis. BMC Bioinf. 

2010;11(1):129–129.
	37.	 Alex K, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. Commun ACM. 

2017;60(6):84–90.
	38.	 Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ICLR (2015)
	39.	 Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. ICML, 807–814 (2010)
	40.	 Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate 

shift. arXiv (2015.
	41.	 Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv (2014).
	42.	 Magnus M, Antczak M, Zok T, Wiedemann J, Lukasiak P, Cao Y, Bujnicki JM, Westhof E, Szachniuk M, Miao Z. RNA-

puzzles toolkit: a computational resource of RNA 3d structure benchmark datasets, structure manipulation, and 
evaluation tools. Nucleic Acids Res. 2019;48(2):576–88.

	43.	 Andronescu M, Bereg V, Hoos HH, Condon A. RNA strand: The RNA secondary structure and statistical analysis 
database. BMC Bioinf. 2008;9(1):340–340.

	44.	 Liu B, Dai Y, Li X, Lee WS, Yu PS. Building text classifiers using positive and unlabeled examples. In IEEE Interna-
tional Conference on Data Mining, ICDM, 179–186 (2003)

	45.	 Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P. Fast folding and comparison of RNA 
secondary structures. Monatsh Chem. 1994;125(2):167–88.

	46.	 Reinharz, V., Ponty, Y., WaldispÃ¼hl, J.: A weighted sampling algorithm for the design of rna sequences with 
targeted secondary structure and nucleotide distribution. Bioinformatics 29(13), 308–315 (2013)

	47.	 Williams, S., Lund, K., Lin, C., Wonka, P., Lindsay, S., Yan, H.: Tiamat: a three-dimensional editing tool for complex 
dna structures. In DNA Computing: 14th International Meeting on DNA Computing, 90–101 (2008)

	48.	 Zhang J, Yan K, Chen Q, Liu B. Prerbp-tl: prediction of species-specific RNA-binding proteins based on transfer 
learning. Bioinformatics. 2022;38(8):2135–43.



Page 26 of 26Zhou et al. BMC Bioinformatics          (2024) 25:316 

	49.	 Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006;27(8):861–74.
	50.	 Szikszai M, Wise M, Datta A, Ward M, Mathews DH. Deep learning models for RNA secondary structure prediction 

(probably) do not generalize across families. Bioinformatics. 2022;38(16):3892–9.
	51.	 Wayment-Steele HK, Kladwang W, Strom AI, Lee J, Treuille A, Becka A, Participants E, Das R. Rna secondary structure 

packages evaluated and improved by high-throughput experiments. Nat Methods. 2022;19(10):1234–42.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Predicting RNA sequence-structure likelihood via structure-aware deep learning
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Motivation
	Contribution and paper structure

	Methods
	Nucleotide-level features-informed residual neural network model (NU-ResNet)
	Nucleotide-level features and motifs-informed residual neural network model (NUMO-ResNet)

	Results
	Data sets
	Models comparison
	Models comparison with data-driven approach
	Models comparison with model-driven approach

	Analysis of NU-ResNet and NUMO-ResNet
	Performance of NU-ResNet and NUMO-ResNet across independent RNA families

	Discussion
	Conclusion
	Acknowledgements
	References


