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Abstract

Background: A variant can be pathogenic or benign with relation to a human
disease. Current classification categories from benign to pathogenic reflect a proba-
bilistic summary of the current understanding. A primary metric of clinical utility

for multiplexed assays of variant e ect (MAVE) is the number of variants that can be
reclassified from uncertain significance (VUS). However, a gap in this measure of util-
ity is that it underrepresents the information gained from MAVEs. The aim of this
study was to develop an improved quantification metric for MAVE utility. We propose
adopting an information content approach that includes data that does not reclassify
variants will better reflect true information gain. We adopted an information content
approach to evaluate the information gain, in bits, for MAVEs of BRCAL, PTEN, and TP53.
Here, one bit represents the amount of information required to completely classify

a single variant starting from no information.

Results: BRCA1 MAVEs produced a total of 831.2 bits of information, 6.58%

of the total missense information in BRCA1 and a 22-fold increase over the informa-
tion that only contributed to VUS reclassification. PTEN MAVEs produced 2059.6 bits

of information which represents 32.8% of the total missense information in PTEN

and an 85-fold increase over the information that contributed to VUS reclassification.
TP53 MAVEs produced 277.8 bits of information which represents 6.22% of the total
missense information in TP53 and a 3.5-fold increase over the information that contrib-
uted to VUS reclassification.

Conclusions: An information content approach will more accurately portray infor-
mation gained through MAVE mapping e orts than by counting the number of vari-
ants reclassified. This information content approach may also help define the impact
of guideline changes that modify the information definitions used to classify groups
of variants.

Keywords: Information theory, Variant classification, Genetic information, Summary
data, Entropy
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Background

Variant classification guidelines for human disease typically lead to a binary outcome.
A variant can either be pathogenic or benign for a human disease. While there are
cases where this pathogenic/benign dichotomy may not be suitable, it is appropriate for
many genes with clear disease or risk phenotypes. The familiar 5 categories of patho-
genic, likely pathogenic, uncertain/VUS, likely benign, and benign add some informa-
tion about the measure of certainty within the pathogenic/benign dichotomy [1]. Rather
than putting all the variants that are thought to be pathogenic in a single category, they
are divided into those with higher and lower probabilities of being pathogenic, called
pathogenic and likely pathogenic, respectively. The same applies for benign and likely
benign variants.

This type of categorization underrepresents the information gained from sources
of variant information that come in continuous scales. Similarly, measures of variant-
related information utility that look only at transitions of variants into different clas-
sification bins also ignore some information that contributes to understanding variant
effect. The motivation for this study was to develop and test a measure of variant classi-
fication information that overcomes some of the drawbacks of categorical classification.
Metrics of certainty about the categorization of binary variables bear a striking resem-
blance to information theory, where a key measure is the quantification of uncertainty,
which is called entropy. By borrowing ideas from information theory, these 5 categories
can be replaced by a continuous value, information content, which can precisely convey
the certainty of the classification of variants. Specifically, we can convert the probability
of pathogenicity to a measure of information content [2, 3]. The use of information the-
ory approaches has similarly been used to plot diagnostic uncertainty in pretest prob-
ability and quantify overall diagnostic uncertainty [4—6]. The problem of uncertainty in
variant classification is closely adjacent to diagnostic uncertainty and may benefit from
the use of similar methods.

In a binary system, information content ranges between 0 and 1 and is often measured
in bits. In this context, a bit with a value of 0 means that there is no certainty in the clas-
sification of the variant (i.e. it has a 50—50 chance of being pathogenic or benign; alterna-
tively, it has a probability of pathogenicity of 0.5). On the other hand, a bit with a value of
1 means that we are completely certain of the classification of the variant (i.e. the variant
is 100% pathogenic or 100% benign; alternatively, it has a probability of pathogenicity of
0 or 1). This would mean that there is complete evidence for classification toward either
pathogenicity or benignity.

This shift from discrete categories to a continuous value adds both mathematical and
practical benefits. For example, the information content yield of multiplexed assays
of variant effect (MAVE) can be more precisely quantified. In a MAVE, a great num-
ber of variants are measured for functional effects; however, the clinical value of these
studies is usually not reported as the number of variant effects measured, but rather
as the number of variants reclassified from VUS to a more certain category. In these
studies, many variants do not shift classification categories; thus, a large amount of the
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information gained is not counted [7, 8] (Fig. 1 modified from Vollmer [2]). An infor-
mation content framework allows one to quantify information for both variants that
are reclassified and variants that are not. In this way, the full information content of the
study can be assessed. The full information content of a MAVE, or MAVE information
score, can be determined by summing up the changes in certainty for all variants in the
study. Changes in information content depend on what information is already present
and what is added. If a variant is already clearly classified, adding more evidence does
not meaningfully increase the information about that variant. Similarly, the information
content framework incorporates evidence that contradicts prior evidence. New evidence
supporting pathogenicity for a likely benign variant may decrease the classification cer-
tainty and count as negative information. Incorporating all evidence is important for
ultimate accuracy, even if it may temporarily decrease the certainty of classification until
more evidence arises. These situations may not be reported in the current literature, par-
ticularly when there is no shift from one classification to another; using an information
framework encourages full reporting of the effects of all evidence on the probability of
pathogenicity.

One feature of this method is that the resulting value is easily interpretable and com-
parable across studies since a value of 1 bit represents 1 variant moved from complete
uncertainty (50% chance of either being benign or pathogenic) to complete certainty.
This means that if the calculated information content of a study is 30 bits, then it is
equivalent to completely classifying 30 variants from being completely uncertain. Note
that depending on the study, the same number of bits of information content could be
the result of gaining a small amount of information from many variants (as is common
for MAVEs, ) or a large amount of information from a small number of variants.

The MAVE information score can be further incorporated into a gene-wide view. A
gene can be thought of as a string of information where we know all the information for
the reference strand since all positions in the reference should be benign. We may also
know that all frameshift and nonsense variants that result in missing functional domains
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are pathogenic. We do not know all of the information for all possible variant strings. If
each possible variant represents a single bit of information (pathogenic or benign), then
the number of possible missense variants in a gene is the number of bits a gene needs
to be completely classified. This number can be defined as the finish line for completely
classifying all possible single nucleotide variants in a gene. If a MAVE'’s total information
content is divided by this amount, the percentage of all possible information gained is
calculated for that study. Alternatively, one can sum the bits for every variant in the gene
from a MAVE and all other evidence sources to show overall progress for variant inter-
pretation within that gene.

The major contribution of our work is to show how existing measures underestimate
MAVE information content and propose a new, more accurate measure. In this study,
we explain the theoretical background for applying information content to MAVEs. We
then illustrate these principles with three applications: First, we calculate the propor-
tion of total missense variant information in a gene for several functional studies that
have investigated different genes. We then demonstrate that information content can
capture much more information than that seen only in changes in classification. We also
illustrate how information content calculations can quantify the effect of changing prior
probability or altering variant classification guidelines on apparent gene-wide informa-
tion. The same information framework can also be used to prioritize genes for MAVEs.

Methods

Theoretical background

Each specific variant in a gene is either pathogenic or benign for the disease associated
with the gene. Each missense variant is assumed to be either pathogenic or benign and
thus contain one bit of pathogenicity information. Other variants, such as synonymous
variants, may also alter gene function, and truncating variants may be assumed to cause
loss of function. While the information content method could be used for non-mis-
sense variants, we chose to focus on missense variants, as these are the most commonly
assessed variants in MAVEs. For simplicity we will consider that each gene of interest
has a single defined gene-disease relationship. Variant classification can be described as
gathering information about binary choice. For simplicity, we also ignore issues related
to reduced penetrance, as current classification systems have also done. Probability of
pathogenicity can be converted to information entropy and then to a measure of infor-
mation content [2].

Entropy, S, is defined in the equation below where p is the probability of pathogenicity.

S=-p*log2(p) - (1 — p) *log2 (1 — p) Formula 1.

Information content is defined as 1-S or equivalently the difference between the maxi-
mum value of S, which is 1, and S.

1=1-S Formula 2.

Information content provides a measure of the certainty of an outcome rather than
the outcome itself. If there is uncertainty about any bit of information the amount
of uncertainty can be expressed as a fraction of a bit of information being availa-
ble. In this case, a 50% probability of pathogenicity amounts to 0 bits of informa-
tion. On the other hand, either 0% or 100% probability of pathogenicity amounts
to 1 bit of information since no other information could increase the classification
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(see Fig. 1). For example, if we start with pathogenic moderate evidence, then we can
convert that to an odds of pathogenicity of 4.3 [9]. From there, if we assume a prior
probability of 0.1, which is commonly done, then we can convert it to a posterior
probability of pathogenicity of 0.3246 (using the equation OddsPathogenicity*Prior/
((OddsPathogenicity-1)*Prior + 1) also shown in Tavtigian et al. [9]). This posterior
probability is equivalent to an entropy of 0.9093 using Formula 1, and an informa-
tion content of 0.0907 after applying Formula 2. In another example, we could start
with benign strong evidence, which can be converted to an odds of pathogenicity of
0.0535. This yields a posterior probability of 0.0059, assuming a 0.1 prior per Tavtig-
ian et al. [9], which is equivalent to an entropy of 0.0522, and finally an information
content of 0.9478. Note that the large difference in the information content of the
evidence is due in part to the prior of 0.1, which is substantially lower than the zero-
evidence prior of 0.5.

Conceptually, thinking of variant classification within the entropy framework as
bits of information allows new mathematical transformations. For example, bits
of information can be summed and averaged across a larger message or gene. We
describe several examples of these applications below. For each of these applications
calculations were done with simple formulas in Microsoft Excel. Figures were gener-
ated using R statistical software.

Application 1: information content of MAVEs

The total information content generated by several MAVEs was calculated. These
MAVEs assessed variants in the genes BRCAI, PTEN, and TP53. Information con-
tent gain depends on the information already available from current information,
including the prior probability of pathogenicity. For the VUS in Fayer et al. [10],
the information content of the MAVEs was calculated as the change in information
content for the specific variant with and without the evidence that the MAVE pro-
vided. We used data from prior analyses of MAVEs and prior proposed translations
of MAVE data to ACMG rules. Data for BRCAI were acquired from Supplementary
file 2 in Findlay et al. [11]. Data for PTEN were acquired from Matreyek et al. [12]
(online: http://abundance.gs.washington.edu) and Mighell et al. [13] Table S6. Data
for TP53 were acquired from Table S4 from Fayer et al. [10].

Briefly, MAVE evidence was assigned to ACMG classification criteria as described
previously and then converted to odds of pathogenicity as described in Tavtigian
et al. [9] and implemented in Fayer et al. [10] This allowed the conversion of cat-
egorical evidence, e.g., pathogenic supporting, to a numerical value. The odds of
pathogenicity were combined with the prior probability to yield a posterior prob-
ability of pathogenicity. This posterior probability of pathogenicity for each variant
(see Supplemental Tables S1, S2, and S3 in Fayer et al.) [10] was converted to entropy
and information content using formulas 1 and 2. For the PTEN and TP53 MAVEs,
information content was calculated using a prior probability of 0.1, as suggested in
Tavtigian et al. [9]. Protein variants reported by other MAVE assays were divided
into those that can be achieved through a single substitution and those that require
more than one DNA change.
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Application 2: total missense variant information content in a gene

To calculate the total information content of all missense variants in a gene, we took
amino acid sequences for BRCA1, PTEN, and TP53 from the first entry for each respec-
tive gene in UniProt [14]. We then examined each amino acid, identified the RNA
codons that could code for it, and counted the average number of possible missense,
nonsense, and synonymous changes that could be achieved through a single nucleotide
substitution. We then used amino acid sequence data for each gene from UniProt [14]
and counted the number of possible missense variants for the gene which is equivalent
to the total information content of a gene. Some PTEN and TP53 MAVEs include assess-
ments of amino acid changes that require more than one missense variant. Although this
method could be used to calculate the information content of those changes, for the sake
of simplicity, we restricted our analysis to only single missense variants.

Application 3: quantifying the apparent information effect of a classification guideline rule
change

To evaluate how classification guideline rule changes might alter the apparent informa-
tion gained from applying those rules, we applied each rule across the range of possi-
ble prior probabilities and plotted the information content from applying the single rule
strength to the prior.

Results

Application 1: information content of MAVES

We used data from prior analyses of MAVEs and prior proposed translations of MAVE
data to ACMG rules (see methods) to calculate information content. Evidence criteria
were converted to odds pathogenic per Tavtigian et. al. [9]. Then, the posterior probabil-
ity was determined using standard Bayesian calculations. Posterior probability was then
converted to information content (see Methods).

We present two examples variant in BRCA1 to illustrate this process. These examples
only use population frequency and functional data in classification to simplify the exam-
ples and to focus on the information content conversion.

BRCA1 ¢.5120T > C was classified as a variant of uncertain significance that is absent
in population databases (PM2_supporting). Combining the prior probability of patho-
genicity of 0.1 with PM2 evidence ((odds*prior)/((odds-1)*prior+ 1) derived from Tav-
tigian et al. [9] would give a posterior probability of pathogenicity of 0.188. This can be
converted to an information content of 0.303 by application of Formula 1 and Formula 2
which gives (1-(~ 0.188* log2(0.188) — (1-0.188) * log2 (1-0.188))). BRCAI c5120T >C
has a functional score of -0.143 [10], which is functionally normal and can be used as
BS3 evidence, which gives and likelihood of pathogenicity 0.053. Combining this with
the population evidence and prior gives a posterior probability of pathogenicity of 0.012.
This can be converted to an information content of 0.905 by application of Formula 1
and Formula 2 which gives (1-(- 0.012* 1og2(0.012) — (1-0.012) * log2 (1-0.012))). The
difference in information content that results from incorporating functional data for
BRCA1 ¢.5120T >C is 0.905—0.303, or 0.602 bits of information. The functional data
substantially increases the probability that the variant is benign, decreasing uncertainty
and increasing information.
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BRCA1 ¢.5288G > T was classified as a variant of uncertain significance that is absent
in population databases (PM2). Before incorporating functional data it has the same
probability of pathogenicity (0.188) and information content (0.303) as the prior exam-
ple. However, BRCAI c.5288G >T has a functional score of -1.83 [10], which is func-
tionally abnormal and leads to PS3 evidence associated with a 18.8 likelihood ratio
supporting pathogenicity. Incorporating this evidence with prior probability and PM2
evidence, gives posterior probability of pathogenicity of 0.812. This can be converted to
an information content of 0.303 from application of Formula 1 and Formula 2 which
gives (1-(— 0.812* log2(0.812) — (1-0.812) * log2 (1-0.812))). The difference in informa-
tion content that results from incorporating functional data for BRCAI ¢.5288G>T is
0.303-0.303, or 0.000 bits of information. Incorporating functional data substantially
changes the probability of pathogenicity, swinging the probability of pathogenicity from
0.188 to 0.812, VUS leaning benign or VUS leaning pathogenic, but we are not any closer
to certainty about the variant, so the information content does not change.

We summed bits of information across all variants for which MAVE data was avail-
able to calculate total information content generated for several MAVEs that assessed
variants in BRCAI, PTEN, and TP53 [10]. We compared information gain while only
considering changes that resulted in VUS reclassification to the information gain from
all single nucleotide substitutions reported in MAVE data. Data from MAVEs on amino
acid changes that require more than one DNA substitution were excluded from this
analysis.

The BRCAI MAVE [11] examined 3893 variants with 2821 functional, 249 interme-
diate, and 823 showing loss of function. A functionally normal classification was con-
sidered strong benign evidence and loss of function was considered strong pathogenic
evidence. Conversion of this evidence to posterior probability using prior probability of
0.1 and then to information content resulted in 813.2 bits of information gained by the
BRCAI MAVE.

The PTEN MAVEs [12, 13] examined 8198 variants for effects on protein abundance
and examined 7657 variants for activity. The number of overlapping variants was 7639,
of which 4811 had combined scores that were considered strong pathogenic evidence
and 303 which were considered benign supporting evidence. Conversion of this evidence
to posterior probability using prior odds of 0.1 and then to information content yielded a
total information content of 893.6 bits of variant classification information added by the
study for changes possible through single missense substitutions.

Four TP53 MAVEs were combined and used to train a naive Bayes classifier and make
predictions on 7893 variants with scores in each of the four assays [10, 15, 16]. The Bayes
classifier predicted 5070 as normal and 2823 as abnormal. These were assigned weights
of benign moderate and pathogenic strong evidence, respectively. Conversion of this evi-
dence to posterior probability using prior odds of 0.1 and then to information content
yielded 160.0 bits of variant classification information for changes possible through sin-
gle missense substitutions.

Comparing reports that included only VUS reclassified to our method, which included
all the classification information generated by several MAVEs, the reported information
content increased 22-fold for the BRCAI assay, 85-fold for the PTEN assays, and 3.5-fold
for the TP53 assays. (See Table 1)
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Table 1 Information content in bits for reclassifying VUS as presented in Fayer et al. [10], total
information content from all single substitutions reported with functional data presented in papers
originally listing data, and total possible missense information

VUS only (Fayer et al.) Single substitution Total bits of
missense
information in gene

BRCAL 36.9 8132 12351
PTEN 105 8936 2721
P53 463 160 2571
304
S
© 20+ S
= Reclassification Target
[e]
< I vusony
@ B Ausnvs
0
@ 4o
0-
BRCA1 PTEN TP53
Gene

Fig. 2 Percent of total information found by each study. A plot of the percentage of total information found
by each of the studies

Application 2: total missense variant information content in a gene

The total missense information content of a gene can be calculated by counting the
number of possible missense variants in a gene. Since each variant represents one bit of
information, the total missense information content of a gene, in bits, is the number of
possible missense variants. These values were 12,351; 2721; and 2571 for BRCA1, PTEN,
and TP53 respectively. The MAVEs generated 6.7%, 32.8%, and 6.2% of the total pos-
sible single-substitution variant classification information for BRCA1, PTEN, and TP53
respectively. (Fig. 2)

Application 3: quantifying the apparent information e ectofaclassi cation guideline rule
change

For well-established functional studies the 2015 ACMG-AMP guidelines recommend
using the evidence codes PS3 and BS3 indicating strong evidence for or against path-
ogenicity, respectively [17]. However, different levels of evidence have been proposed
for MAVEs that meet stronger or weaker validation criteria [7, 18—21]. If the variant
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classification guidelines or strength of evidence criteria change, the changes have
an effect on the apparent information for any variant that is impacted by the guide-
line change. For example, evidence against pathogenicity for PTEN MAVEs is con-
sidered supporting evidence primarily because there are very few established benign
PTEN variants to use in validation. If the amount of validation data increases the evi-
dence generated by the MAVE may change. This would result in an apparent change
in information content for many variants. Similarly, if ACMG-AMP committees or
ClinGen VCEPs decide to refine the level of evidence assigned to a specific rule,
there are many variants for which the apparent information content would change.
We evaluated how applying single ACMG-AMP evidence levels with different priors
using the Tavtigian et al. [9] Bayesian framework would result in different levels of
evidence (Fig. 3). This analysis illustrates how the greatest information gains always
occur when the prior probability is 0.5. Differences between points on the same verti-
cal prior line show how shifting evidence assignment will change apparent informa-
tion. This also illustrates that applying benign evidence to a variant with a high prior
probability results in an apparent information loss from the increase in uncertainty
or increasing entropy (all points with information change below 0 as plotted on the
y-axis). There is a similar result when pathogenic evidence is applied to a variant with
a low prior probability.

Information Change vs. Prior

1.04

Evidence
- PVS
—— PS
PM
PP
BP
(BM)
BS
—— (BVS)

0.51

0.01

Information Change

/

[

-0.5+— T T T

0.1 0.2 0.3 0.4 Of5 0.6 0.7 0.8 0.9
Prior

Fig. 3 Plot of the information change for the di erent types of evidence across di erent prior probabilities.
Information content loss for pathogenic evidence occurs at lower prior probabilities since these priors
contain high information content for benign interpretation. The incorporation of pathogenic evidence for a
variant with a low prior moves the probability in the pathogenic direction and toward greater uncertainty.
The same e ect occurs for benign evidence with a high prior probability of pathogenicity since incorporation
of benign evidence will reduce the probability moving classification toward a more uncertain class, thus
reducing information content. The listed evidence categories are pathogenic very strong(PVS), pathogenic
strong(PS), pathogenic moderate(PM), pathogenic supporting(PP), benign supporting(BP), benign
moderate(BM), benign strong(BS), and benign very strong(BVS). Note that benign moderate and benign
strong are not currently approved categories but are listed in parentheses for completion.
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Figure 3 plots how different evidence levels combined with prior probabilities result in
different amounts of apparent informatio

Discussion

Currently, the clinical utility of MAVEs is measured as the number of individual variants
classified or reclassified from variants of uncertain significance (VUS) to other classifica-
tions. Under current practice, a study that reclassifies a small number of variants may
be perceived as more useful than a study that provides evidence for many variants but
not enough for any one variant to be reclassified. An information content framework for
evaluating MAVEs will provide a more accurate measurement of the full contribution of
functional data evidence. There are many smaller functional studies that do not use high
throughput MAVE methods, the information content framework is predicted to provide
a more accurate measure of evidence for such smaller functional studies as well. We have
shown that reporting only changes in classification undervalues the information yield of
a MAVE, often by more than an order of magnitude.

In this study we focused on the change in relative information content, but the abso-
lute information content of a study can be quantified by calculating information content
using a prior of 0.5 which assumes no prior information. This effectively eliminates any
conflicting information and thus only yields positive information. With relative infor-
mation content a study can seemingly provide negative information for individual vari-
ants due to new evidence conflicting with the prior evidence (see Fig. 3). While the idea
of negative information content may seem odd at first glance, intuitively it makes sense
that new conflicting information leads to a loss of certainty. It can also be thought of as
the new information cancelling out previous information. This is evident in the TP53
analysis where variants yielded 0.3 bits if they were functionally normal and —0.44 bits
if they were functionally abnormal assuming a 0.1 prior. Since there were 1181 function-
ally abnormal variants, this led to a low total information content for the MAVE. If we
instead assumed a prior of 0.5, the variants would yield 0.3 bits if they were functionally
normal and 0.71 bits if they were functionally abnormal. This would result in a total of
1518.61 bits of information instead of the 160 bits listed in Table 1.

In addition, an information content framework allows gene-level reporting of infor-
mation in that it enables quantification of the total percentage of information provided
by a MAVE for a given gene. The ability to quantify information as a percentage of a
whole at the gene level has several benefits: it defines the variant information that exists,
it can effectively illustrate the proportion of total information a specific MAVE has pro-
duced, and it can accurately illustrate what proportion of information remains missing
for a gene or a variant. In the context of relative information, it can help prioritize future
MAVEs by showing genes where a small proportion of total information exists and
where efforts are likely to lead to a large increase in relative information.

Finally, understanding how classification rules influence apparent information will
help committees that arbitrate guidelines for variant classification to quantify the
effect of changing any specific rule more accurately across many variants in a gene. In
addition to scrutinizing the effect on a few variants, summing or averaging the change
in information over all variants can provide a global assessment of the information
change implied by the change in the strength assigned to evidence rules. The goal of
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classification guidelines should be to accurately quantify the information from differ-
ent sources. Knowing how specific individual variants are classified is a clinical imper-
ative; however, using a variant information framework shows how high-throughput
methods and rule modifications can change the entire information landscape of the
gene.

The information content approach has limitations similar to those any measure of
information content when there is uncertainty about the real message; when we do
not know the final outcome, we can only estimate the true amount of information
about variant classification that is delivered by any MAVE. Another limitation is that
this method relies on a Bayesian framework for variant classification that has not
been universally implemented. To most accurately understand the added information
coming from a new source, it is important to be able to quantify the existing informa-
tion. That information is currently expressed as a broad categorical classification. At
present broad variant classifications are converted to odds ratios and then to prob-
abilities then to bits of information. The forthcoming harmonized points system that
is correlated with Bayes values will provide more accuracy about prior information
and simplify Bayesian conversions. A strength of the information content method
proposed in this paper is that it has minimal complexity, calculations can be done at
scale quickly with any statistical software.

In future work, we will apply our information content framework to additional
MAVESs, and we encourage others to do so as well. A similar method could also be used
to apply information content strategies to in silico variant data or to both MAVE and in
silico data when used together. Variant classification committee should evaluate changes
in information content with a classification rule change across many variants to deter-

mine whether such changes appropriately reflect expected information content.

Conclusions

Counting the number of VUS reclassified is a dramatic underestimate of the information
content of MAVEs. Variant reclassification information reported as a change in informa-
tion content provides a more accurate representation of the true information gained. We
believe that incorporating an information content framework when presenting reclassifi-
cation evidence will lead to a better understanding of the value of different classification
projects and, in the end, better classification of variants. It will also allow quantification
of how much information is missing for different genes allowing prioritization of genes
with less relative knowledge. Reporting information content will better allow geneticists
to understand the contributions of high-throughput information sources and guide-
line rule changes more wholistically. In turn, better classification leads to better clinical
validity and utility of genetic testing and genetic risk assessment.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/512859-024-05920-5.

[ Supplementary Material 1, }

Acknowledgements
Not applicable.


https://doi.org/10.1186/s12859-024-05920-5

Ranola et al. BMC Bioinformatics (2024) 25:295 Page 12 of 13

Author contributions

JM.OR and B.H.S conceived the project. JM.OR, CH., TP, SF, LM.S, and B.H. contributed to acquisition and analysis
of data. JM.OR and B.H.S wrote the main manuscript text and prepared figures. All authors substantively revised the
manuscript. All authors reviewed and approved the manuscript.

Funding
This work was funded by National Institutes of Health's National Human Genome Research Institute grants
1R01HG013025 to BHS and LMS and 5UM1HG011969 to SF and LMS.

Data availability
No datasets were generated or analysed during the current study.

Declarations

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
JMOR, CH, and TP are employees of Ambry Genetics. BHS is a paid consultant for Constantiam Biosciences. Other
authors report no competing financial interests.

Received: 30 November 2023 Accepted: 3 September 2024
Published online: 06 September 2024

References

1. Plon SE, Eccles DM, Easton D, Foulkes WD, Genuardi M, Greenblatt MS, et al. Sequence variant classification and
reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum
Mutat. 2008;29:1282-91.

2. Vollmer RT. Entropy and information content of laboratory test results. Am J Clin Pathol. 2007;127:60-5.

3. Shannon CE, Weaver W. The mathematical theory of communication. Champaign, IL, US: University of lllinois
Press; 1949.

4. Bianchi MT, Alexander BM, Cash SS. Incorporating uncertainty into medical decision making: an approach to
unexpected test results. Med Decis Mak. 2009;29:116-24.

5. Westover MB, Eiseman NA, Cash SS, Bianchi MT. Information theoretic quantification of diagnostic uncertainty.
Open Med Inform J. 2012;6:36-50.

6. LeeJ, Maslove DM. Using information theory to identify redundancy in common laboratory tests in the inten-
sive care unit. BMC Med Inform Decis Mak. 2015;15:59.

7. Brnich SE, Rivera-Mufioz EA, Berg JS. Quantifying the potential of functional evidence to reclassify variants of
uncertain significance in the categorical and Bayesian interpretation frameworks. Hum Mutat. 2018;39:1531-41.

8. On behalf of the Clinical Genome Resource Sequence Variant Interpretation Working Group, Brnich SE, Abou
Tayoun AN, Couch FJ, Cutting GR, Greenblatt MS, et al. Recommendations for application of the functional
evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med.
2020;12:3.

9. Tavtigian SV, Greenblatt MS, Harrison SM, Nussbaum RL, Prabhu SA, Boucher KM, et al. Modeling the ACMG/AMP
variant classification guidelines as a Bayesian classification framework. Genet Med. 2018;20:1054—-60.

10. Fayer S, Horton C, Dines JN, Rubin AF, Richardson ME, McGoldrick K, et al. Closing the gap: systematic integra-
tion of multiplexed functional data resolves variants of uncertain significance in BRCA1, TP53, and PTEN. Am ]
Hum Genet. 2021;108:2248-58.

11. Findlay GM, Daza RM, Martin B, Zhang MD, Leith AP, Gasperini M, et al. Accurate classification of BRCA1 variants
with saturation genome editing. Nature. 2018,562:217-22.

12. Matreyek KA, Starita LM, Stephany JJ, Martin B, Chiasson MA, Gray VE, et al. Multiplex assessment of protein vari-
ant abundance by massively parallel sequencing. Nat Genet. 2018;50:874-82.

13. Mighell TL, Evans-Dutson S, O'Roak BJ. A saturation mutagenesis approach to understanding PTEN lipid phos-
phatase activity and genotype-phenotype relationships. Am J Hum Genet. 2018;102:943-55.

14. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480-9.

15. Giacomelli AQ, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, et al. Mutational processes shape the landscape
of TP53 mutations in human cancer. Nat Genet. 2018;50:1381-7.

16. Boettcher S, Miller PG, Sharma R, McConkey M, Leventhal M, Krivtsov AV, et al. A dominant-negative e ect drives
selection of TP53 missense mutations in myeloid malignancies. Science. 2019;365:599-604.

17. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation
of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and
Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405-24.

18. Mester JL, Ghosh R, Pesaran T, Huether R, Karam R, Hruska KS, et al. Gene-specific criteria for PTEN variant cura-
tion: recommendations from the ClinGen PTEN Expert Panel. Hum Mutat. 2018;39:1581-92.



Ranola et al. BMC Bioinformatics (2024) 25:295 Page 13 of 13

19. Gelman H, Dines JN, Berg J, Berger AH, Brnich S, Hisama FM, et al. Recommendations for the collection and use
of multiplexed functional data for clinical variant interpretation. Genome Med. 2019;11.:85.

20. LeeK, Krempely K, Roberts ME, Anderson MJ, Carneiro F, Chao E, et al. Specifications of the ACMG/AMP variant cura-
tion guidelines for the analysis of germline CDH1 sequence variants. Hum Mutat. 2018;39:1553-68.

21. Fortuno C, Lee K, Olivier M, Pesaran T, Mai PL, de Andrade KC, et al. Specifications of the ACMG/AMP variant interpre-
tation guidelines for germline TP53 variants. Hum Mutat. 2021,42:223-36.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional a liations.



