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Abstract 

Background: Single-cell RNA sequencing (scRNAseq) offers powerful insights, 
but the surge in sample sizes demands more computational power than local worksta-
tions can provide. Consequently, high-performance computing (HPC) systems have 
become imperative. Existing web apps designed to analyze scRNAseq data lack scal-
ability and integration capabilities, while analysis packages demand coding expertise, 
hindering accessibility.

Results: In response, we introduce scRNAbox, an innovative scRNAseq analysis 
pipeline meticulously crafted for HPC systems. This end-to-end solution, executed 
via the SLURM workload manager, efficiently processes raw data from standard 
and Hashtag samples. It incorporates quality control filtering, sample integration, 
clustering, cluster annotation tools, and facilitates cell type-specific differential gene 
expression analysis between two groups. We demonstrate the application of scRNAbox 
by analyzing two publicly available datasets.

Conclusion: ScRNAbox is a comprehensive end-to-end pipeline designed 
to streamline the processing and analysis of scRNAseq data. By responding 
to the pressing demand for a user-friendly, HPC solution, scRNAbox bridges the gap 
between the growing computational demands of scRNAseq analysis and the coding 
expertise required to meet them.

Keywords: Single-cell RNA sequencing, ScRNAseq, High performance computing 
systems, Pipeline

Background
In recent years, single-cell RNA sequencing (scRNAseq) technology has led to remark-
able breakthroughs in our understanding of biology, enabling us to explore gene expres-
sion at the resolution of individual cells. With technological advancements, we have 
transitioned from analyzing a few cells to thousands and even hundreds of thousands 
of cells in a single experiment [1]. While the potential of scRNAseq is immense, it has 
brought about complexities and computational demands that have yet to be compre-
hensively addressed. Many useful web-based applications and graphical user interfaces 
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(GUI) have been developed to analyze scRNAseq [2–8]. However, these tools fall short 
of an end-to-end solution for scRNAseq data analysis due to their inability to take raw 
sequencing data as input, a limited availability of modifiable analytical parameters, 
and impeded analysis replicability due to  undocumented parameter selections. R and 
python packages with excellent user guides have been developed to process scRNAseq 
data; however, these require extensive programming knowledge [9–13]. Additionally, 
given that users must manually adapt and implement the code, repeating the process 
for each sample, this process can be laborious, error-prone, and time-consuming. The 
need to execute the code locally further exacerbates these issues, limiting researchers to 
the capabilities of their own computational resources. The scale of modern scRNAseq 
datasets necessitates the use of high-performance computing (HPC) clusters. Yet, to our 
knowledge, a comprehensive scRNAseq workflow tailored to HPC environments hith-
erto has been unavailable.

In response to these multifaceted challenges, we introduce scRNAbox, a novel and 
robust scRNAseq analysis pipeline meticulously designed for HPC systems. ScRNAbox 
not only standardizes and simplifies the scRNAseq analysis workflow for geneticists and 
biologists with any levels of computational expertise, but also diligently documents exe-
cution parameters, ensuring transparency and replicability. It has been assembled to be 
effortlessly scalable, catering to the evolving needs of researchers faced with large-scale 
datasets. ScRNAbox provides a unified and accessible resource for the growing commu-
nity of scRNAseq researchers.

Finally, we recognize the shortage of resources that provide best practices in scRNAseq 
analysis [14, 15]. In this context, we deploy scRNAbox using publicly available data and 
outline the decisions bioinformaticians must make during analysis to investigate the 
biology. To illustrate the utility of scRNAbox, we analyze single-nuclei RNA sequencing 
(snRNAseq) data published by Smajic and colleagues of midbrain tissue from patients 
with Parkinson’s Disease (PD) and controls [16]. We outline each step in the scRNAbox 
pipeline, providing the scientific rationale and the analytical decisions taken in process-
ing the data.

Implementation
scRNAbox overview

The scRNAbox pipeline consists of R scripts utilizing the Seurat framework, and other R 
packages including Doublet finder and SoupX for scRNAseq analysis, which are submit-
ted to the SLURM workload manager (job scheduling system for Linux HPC clusters) 
using bash scripts from the command line [17]. Beginning with 10X Genomics expres-
sion data from raw sequencing files, the pipeline facilitates standard steps in scRNAseq 
processing through to differential gene expression between two different conditions. The 
scRNAbox framework consists of three main components: (i) R scripts, (ii) job submis-
sion scripts, and (iii) parameter and configuration files. The pipeline is separated into 
Steps, which correspond to analytical tasks in the scRNAseq analysis workflow (Fig. 1). 
Users can tailor their analysis by manipulating the parameters in the step-specific 
parameter files. The pipeline can analyze scRNAseq experiments where each sample 
is captured separately (standard track) or multiplexed experiments where samples are 
tagged with sample-specific oligonucleotide tagged Hashtag antibodies (HTO), pooled, 
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and sequenced together (HTO track) [18, 19]. The results of each step are reported in 
intuitive tables, figures, and intermediate Seurat objects [9]. Upon submitting the bash 
script for a step, “Jobs”, or resource requests are created based on the parameters defined 
in the configuration file, including CPUs, memory, and time. Jobs are submitted to the 
HPC system using the SLURM “Scheduler” to execute the R scripts. A complete user 
guide and the code used in this manuscript can be found at the scRNAbox GitHub site: 
https:// neuro bioin fo. github. io/ scrna box/.

Installation

ScRNAbox can be installed  by two different methods on any HPC Linux system. 1) 
Direct installation via the scrnabox.slurm package, which contains the Bash and R 
scripts, parameter files, and configuration file. The HPC system must have CellRanger 
(10 × Genomics) and R (v4.2.1 or higher) [20] installed and must use a SLURM sched-
uler. Users must also run a provided bash script which will automatically install all of the 
R libraries required for the scRNAbox pipeline. 2) Through a Singularity container, which 
provides the Bash and R scripts, R library, and Cell Ranger. The container can work with 
the SLURM scheduler or without job submissions directly on a local computer with suf-
ficient memory. The Singularity container is available from Zenodo: https:// zenodo. org/ 
recor ds/ 12751 010.

Step 0: Initiation and configuration

Following installation, users run Step 0 to initiate the pipeline and specify if they will 
use the standard or HTO analysis track. Step 0 creates the job submission configuration 
files and the step-specific parameter files. The configuration file contains the time and 
memory usage settings for each step and must be edited to match the user’s needs. After 
Step 0, each subsequent Step can be run individually through separate commands or all 
together in a single command.

Step 1: FASTQ to gene expression matrix

File structure and inputs

Prior to running the CellRanger counts pipeline, a parent directory (“samples_info”) 
must be created in the working directory. The “samples_info” directory must contain a 
folder for each sample; the name of the sample-specific folders will eventually be used 
to name the samples in downstream steps. Each sample-specific folder must contain a 
library.csv file, which defines the information of the FASTQ files for the specific sample. 

Fig. 1 ScRNAbox analysis workflow. The scRNAbox pipeline provides two analysis tracks: 1) standard 
scRNAseq and 2) HTO scRNAseq. A Standard scRNAseq data is prepared by sequencing each sample 
separately, resulting in distinct FASTQ files for each sample. B HTO scRNAseq data is produced by tagging 
the cells from each sample with unique oligonucleotide “Hashtag” conjugated antibodies (HTO). Tagged cells 
from each sample are then pooled and sequenced together to produce a single FASTQ file. Sample-specific 
HTOs are used to computationally demultiplex samples downstream. C Steps of the scRNAbox pipeline 
workflow. Steps are designed to run sequentially and are submitted using the provided bash scripts through 
the command line. scRNAbox takes FASTQ files as input into Step 1; however, the pipeline can be initiated at 
any step which takes the users processed data as input

(See figure on next page.)

https://neurobioinfo.github.io/scrnabox/
https://zenodo.org/records/12751010
https://zenodo.org/records/12751010
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Fig. 1 (See legend on previous page.)
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The HTO analysis track also requires a feature_ref.csv file, which specifies the oligonu-
cleotide sequences of the Hashtags. Step 1 runs a script to automatically generate these 
files based on the user input in the parameter file. However, users can manually generate 
the required files and structure.

Running cellranger

ScRNAbox deploys the CellRanger counts pipeline to perform alignment, filtering, bar-
code, and unique molecular identifier counting on the FASTQ files. Each sample is pro-
cessed by the CellRanger counts pipeline in parallel. Although CellRanger is processed 
with default parameters, all relevant parameters can be adjusted (10X Genomics).

Step 2: Create Seurat object and remove ambient RNA

Ambient RNA detection

The R package SoupX is used to account for ambient RNA, providing users the option to 
correct the gene expression matrices for RNA contamination [21]. SoupX quantifies the 
contamination fraction according to the expression profiles of empty droplets and cell 
clusters identified by the CellRanger counts pipeline. Marker genes used to estimate the 
contamination rate are automatically identified using the AutoEstCont function and the 
expression matrix is corrected per the estimated contamination rate using the adjust-
Counts function.

Generation of the seurat object and quality control metrics

The Seurat function CreateSeuratObject is used to take in the CellRanger (if not remov-
ing ambient RNA) or SoupX (if removing ambient RNA) generated feature-barcode 
expression matrices, and create the list-type Seurat object [9]. The number of genes 
expressed per cell (number of unique RNA transcripts) and the total number of RNA 
transcripts are automatically computed. The proportion of RNA transcripts from mito-
chondrial DNA (gene symbols beginning with “MT”) and the proportion of ribosomal 
protein-related transcripts (gene symbols beginning with “RP”) are both calculated using 
the Seurat PercentageFeatureSet function. Following the Seurat workflow, the CellCycle-
Scoring function with the Seurat S and G2/M cell cycle phase reference genes are used to 
calculate the cell cycle phase scores and generate a principal component analysis (PCA) 
plot [22].

Step 3: Quality control and generation of filtered data objects

ScRNAbox allows users to filter low quality cells by defining upper- and lower-bound 
thresholds in the parameter files based on unique transcripts, total transcripts, percent-
age of mitochondrial-encoded transcripts, and percentage of ribosome gene transcripts. 
Users can also remove or regress a custom gene list from the dataset. The filtered counts 
matrix is then normalized, the top variably expressed genes are identified, and the data 
are scaled using Seurat functions. Linear dimensional reduction is performed via PCA 
and an elbow plot is generated to visualize the dimensionality of the dataset and inform 
the number of principal components (PC) to be used for doublet detection in Step 4.
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Step 4: Demultiplexing and doublet removal

Doublet detection and removal (Standard track)

Barcodes that are composed of two or more cells are identified as doublets using Dou-
bletFinder [23]. Doublets are predicted based on the proximity of each cell’s gene expres-
sion profile to that of artificial doublets created by averaging the transcriptional profiles 
of randomly chosen cell pairs. The default value of 0.25 for the number of artificial 
doublets is used. The neighbourhood size corresponding to the maximum bimodality 
coefficient is selected and the proportion of homotypic doublets is computed using the 
modelHomotypic function. Users can define the number of PCs to use for doublet detec-
tion and the expected doublet rate for each sample. Users have the option to remove 
doublets from downstream analyses or just calculate the doublet rate.

Demultiplexing followed by doublet removal (HTO track)

Pooled samples are demultiplexed  based on their sample-specific HTO labels using 
Multi-seq [19]. The automatically detected inter-maxima quantile thresholds of the 
probability density functions for each barcode are used to classify cells. Cells surpassing 
one HTO threshold are classified as singlets; cells surpassing > 1 thresholds are classified 
as doublets; the remaining cells are assigned as “negative”. The counts observed for each 
barcode are reported in a summary file and plots are generated to visualize the enrich-
ment of barcode labels across sample assignments. Users have the option to remove 
doublets and negatives from downstream analyses.

Step 5: Creation of a single Seurat object from all samples

Integration or merging samples

The individual Seurat objects are integrated to enable the joint analysis across sequenc-
ing runs or samples by deploying Seurat’s integration algorithm [24]. The genes that are 
variable across all samples are detected by the SelectIntegrationFeatures function. Inte-
gration anchors (pairs of cells in a matched biological state across datasets) are selected 
by the FindIntegrationanchors function, and the IntegrateData function is used to inte-
grate the datasets by taking the integration anchors as input. Alternatively, users may 
simply merge the normalized counts matrices using Seurat’s merge function without 
performing integration.

Linear dimensional reduction

Seurat functions are used to normalize the count matrix, find the most variably 
expressed genes, and scale the data. Linear dimensional reduction is then performed via 
PCA using the top variably expressed genes as input. An elbow plot to visualize the vari-
ance contained within each PC and jackstraw plot to visualize “significant” PCs are pro-
duced. These plots inform the number of PCs that should be retained for clustering in 
Step 6.

Step 6: Clustering

Clustering is performed to define groups of cells with similar expression profiles using 
the Seurat implementation of the Louvain network detection with PCA dimensionality 
reduction as input [9]. K-nearest neighbours are calculated and used to construct the 
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shared nearest neighbour graph. The Jaccard similarity metric is used to adjust edge 
weights between pairs of cells, and the Louvain algorithm is used to iteratively group 
cells together based on the modularity optimization. To assist users in selecting the opti-
mal clustering conditions, we include an option to compute the Louvain clustering N 
times at each clustering resolution, while shuffling the order of the nodes in the graph 
for each iteration. The average and standard deviation of the Adjusted Rand Index (ARI) 
between clustering pairs at each clustering resolution is then calculated [25]. A Clust-
Tree plot [26] and uniform manifold approximation and projection (UMAP) plots are 
generated to visualize the effect of clustering parameters.

Step 7: Cluster annotation

Cluster annotation is performed to define the cell types comprising the clusters iden-
tified in Step 6. ScRNAbox provides three tools to identify cell types comprising the 
clusters.

Tool 1: Cluster marker gene identification and gene set enrichment analysis

ScRNAbox identifies genes that are significantly up regulated within each cluster by 
using the Seurat FindAllMarkers function, implementing the Wilcoxon rank-sum test 
[9] with  a log2 fold-change (L2FC) threshold of 0.25. Differentially expressed genes 
(DEGs) are calculated by comparing each cluster against all other clusters. Only upregu-
lated genes are considered for cluster marker genes. A heatmap is generated to visualize 
the expression of the top marker genes for each cluster at the cell level. All significant, 
upregulated DEGs are used as the input for gene set enrichment analysis (GSEA) across 
user-defined libraries that define cell types using the EnrichR tool [27]. Cluster-specific 
tables are generated to report all enriched cell types and bar plots visualize the most 
enriched terms.

Tool 2: Expression profiling of cell type markers and module scores

ScRNAseq allows users to visualize the expression of individual genes and the aggre-
gated expression of multiple genes from user-defined cell type marker gene lists. For 
each gene in a user-defined list, a UMAP plot visualizes its expression at the cell level, 
while violin and dot plots visualize its expression at the cluster level. Aggregated expres-
sion of user-defined cell type marker gene lists is calculated using the Seurat AddMod-
uleScore function [22]. The average expression of each cell for the gene set is subtracted 
from randomly selected control genes, resulting in cell-specific expression scores, with 
larger values indicating higher expression across the gene set.

Tool 3: Cell type predictions based on reference data

ScRNAbox utilizes the Seurat label transfer method: FindTransferAnchors and Transfer-
Data functions, to predict cell-type annotations from a reference Seurat object [24]. Pre-
dicted annotations are directly integrated into the query object’s metadata and a UMAP 
plot is generated to visualize the query dataset, annotated according to the predictions 
obtained from the reference.
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Adding annotations

ScRNAbox uses the Seurat AddMetaData function and a user-defined list of cell types 
in the parameter file to add cluster annotations. The cluster annotations from each itera-
tion of the step will be retained, allowing users to define broad cell types and subtypes. 
UMAP plots with the annotation labels are generated to visualize the clustering annota-
tions at the cell level, allowing users to check the accuracy of their annotations.

Step 8: Differential gene expression analysis (DGE)

Metadata defining the groups to be compared are added to the Seurat object by submit-
ting a.csv file containing sample information with phenotypic or experimental data. The 
additional metadata is used to define the variables to compare for the DGE. ScRNAbox 
allows DGE to be calculated between conditions using all cells or cell type groups using 
two different data preparations: cell-based or sample-based DGE.

Cell‑based DGE

Cells are used as replicates and DGE is computed using the Seurat FindMarkers function 
to compare user-defined contrasts for a given variable [9]. While FindMarkers supports 
several statistical frameworks to compute DGE, we set the default method in our imple-
mentation to MAST, which is tailored for scRNAseq data [28]. MAST models both the 
discrete expression rate of all genes across cells and the conditional continuous expres-
sion level, which is dependent on the gene being expressed in the cell, by a two-part 
generalized linear model [28]. Regardless of the method used, P values are corrected for 
multiple hypothesis testing using the Bonferroni method. Users can perform their own 
p-value adjustments using the DEG files output from the pipeline.

Sample‑based DGE

To calculate DGE using samples or subjects as replicates, scRNAbox applies an aggre-
gate pseudo-bulk analysis [29]. First, the Seurat AggregateExpression function is used to 
compute the sum of RNA counts for each gene across all cells from a sample [30]. These 
values are then input into the DESeq2 framework, which uses gene dispersal to calculate 
DGE [31]. P-values are corrected for multiple hypothesis testing using the Bonferroni 
method, which can be recalculated from the pipeline output.

Analysis of differentially expressed genes

Step 8 produces data tables of the DEGs for each of the defined contrasts. These outputs 
can be used for gene enrichment pathway analysis using web-apps or though application 
program interfaces with reference libraries using a programming language, in our case, 
R. Further analysis of the results is experiment-dependent and must be completely tai-
lored to the research questions. We used the ClusterProfiler R package to identify signif-
icantly enriched Gene Ontology (GO) terms with the gseGO function [32]. We utilized 
the ’org.Hs.eg.db’ Bioconductor annotation package to access human (Homo sapiens) 
gene annotations for our analysis. The ggplot2 R package was used for data visualization 
[33].
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Results
To demonstrate the functionality of the scRNAbox pipeline we analyzed a publicly 
available snRNAseq dataset from the post-mortem midbrains of five patients with PD 
and six controls prepared by Smajic et al. [16]. To demonstrate scRNAbox’s ability to 
process multiplexed scRNAseq data, we analyzed a scRNAseq dataset of peripheral 
blood mononuclear cells (PBMCs) from eight human donors prepared by Stoeckius 
et al. [18].

ScRNAbox efficiently processes raw sequencing data and provides quality control 

measures

We initiated our scRNAbox analysis of the midbrain dataset by running Step 0 and 
selecting the standard track. This created the job configuration file and step-specific 
parameter files. In Step 1, we used the automatic library preparation function to gen-
erate the sample-specific library.csv files and ran CellRanger (v5.0.1) counts on all 11 
subjects.

In Step 2, the pipeline generates a Seurat object for each sample and computes mul-
tiple quality control metrics that inform decisions for filtering in Step 3. At this stage, 
we had the option to remove ambient RNA, transcripts from an external source cap-
tured with a true cell. These aberrant transcripts originate from many possible sources 
including cells that ruptured or died during dissociation and released their RNA, 
mRNA-containing exosomes, or mRNA that leaked out when cell processes were 
cleaved during dissociation. Large amounts of ambient RNA confound the data, mak-
ing cells appear to have similar transcriptional profiles when they are truly distinct. 
Leveraging SoupX to detect ambient RNA revealed low contamination rates across all 
samples (mean = 2.46%) (Fig. 2A; Table 1). Cell cycle stage is another quality control 
metric to consider during scRNAseq data processing as it can affect cell type annota-
tions in downstream analyses. ScRNAbox computes the cell cycle stage for each cell 
and generates a PCA plot to visualize the effect of cell cycle stage in the data. The cell 
cycle stage showed little effect on cell distributions in PCA space (Fig. 2B; Supplemen-
tary Figure S1).

To further visualize the data and determine thresholds for filtering, scRNAbox com-
putes the unique RNA transcripts and total counts of RNA for each cell (Fig. 2C). Cells 
with too few unique RNA transcripts are only ambient RNA, membrane fragments, or 
damaged/dying cells, and these barcodes should be removed. The range of unique tran-
scripts varies across species, tissue types, and sample preparations. The distribution of 
unique RNA transcripts and total RNA varied across the 11 samples; however, the low-
est quartile (1st quartile) value was above 1000 in both measures for all samples, indi-
cating that a stringent threshold for good quality cells will retain a large sample size 
(Table 1). Finally, the percentage of mitochondrial and ribosomal RNA transcripts are 
calculated (Fig.  2D). A high proportion of mitochondrial-encoded RNA indicates that 
the mitochondria are damaged within that cell, indicating that the cell is likely dying. In 
most cases, researchers will remove these cells. Ribosomal RNA genes encode proteins 
for ribosomal machinery and indicates a high level of translational activity in the cell. 
Like cell cycle state, elevated levels of ribosomal proteins could later impact clustering 



Page 10 of 22Thomas et al. BMC Bioinformatics          (2024) 25:319 

results; however, both may also represent biologically relevant signals that researchers 
may wish to retain and further explore. As expected from nuclear sequencing, the per-
centage of mitochondrial-encoded genes was low across all samples (Table 1).

Fig. 2 scRNAbox calculates and visualizes quality control metrics. A Line plot of the ambient RNA 
contamination rate (rho) estimated by SoupX [21]. Estimates of the RNA contamination rate using various 
estimators are visualized via a frequency distribution; the true contamination rate is assigned as the most 
frequent estimate. The ambient RNA rate for snRNAseq midbrain sample Control 1 is indicated by the red line 
(5.1%). B Principal component analysis (PCA) of Control 1 coloured by cell-cycle scores calculated using the 
Seurat S and G2/M reference genes [22]. C Violin plots showing the distribution of RNA transcripts, including 
unique RNA transcripts per cell (left) and total RNA transcripts per cell (right) in Control 1. Individual cells 
are shown. D Violin plots showing the proportion of mitochondrial-encoded RNA (left) and ribosomal RNA 
(right) in Control 1. Individual cells are shown
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ScRNAbox applies quality control filters and integrates samples

In step 3, we applied the filtering criteria used by Samjic et al. [16]; we did not adjust 
for ambient RNA contamination or regress cell cycle genes. We removed unwanted bar-
codes as described above, applying filters for minimum unique RNA transcripts (> 1000), 
minimum total RNA transcripts (> 1500), and maximum percent mitochondria and 
ribosomal RNA (< 10) (Fig. 3A). Additionally, we removed mitochondrial-encoded and 
ribosomal genes. After applying these filters, we retained between 2,442 and 6,153 cells 
per sample (Table 2). In Step 4, we leveraged DoubletFinder to predict doublets using 
default parameters and 25 PCs, and defined the expected doublet rate for each sample 
based on the number of recovered cells from the CellRanger pipeline (Figs. 3B and 3C; 
Table  2). The DoubletFinder algorithm requires that UMAP dimensional reduction is 
performed prior to analysis. We performed dimensional reduction using 25 PCs and 65 
nearest neighbours. After removing predicted doublets, 44,538 cells remained across all 
samples. In total, 9,460 cells (17.52%) were filtered from the dataset (Table 2). 

Finally, after processing each individual sample, we combined all samples into one data 
object to facilitate integrated analysis. In Step 5, users have the option to either merge 
(Fig. 3D) or integrate (Fig. 3E) the data. We proceeded with downstream analyses of the 
midbrain dataset using the integrated data object, which facilitates the identification of 
cell types that are consistent across samples [24].

ScRNAbox provides tools to optimize clustering and facilitate annotation

In Step 6, we performed clustering on the integrated dataset to eventually identify dis-
tinct cell types. We clustered the cells using the 4000 most variably expressed features 
and 25 PCs, maintaining the parameters used by Smajic et al. [16]. We used 30 neigh-
bours to construct the shared nearest neighbour graph input into the Louvain network 
detection algorithm and performed clustering on a range of clustering resolutions (Sup-
plementary Figure S2A). To evaluate the reproducibility of clusters identified at each 
resolution, we calculated the ARI between clustering pairs at each resolution across 25 
replications [25]. The ARI at a clustering resolution of 0.05 and 0.2 were both 1.00 and 
the ClusTree plot suggested high stability (Supplementary Figures S2B and S2C). Thus, 
we used a clustering resolution of 0.2, which identified 14 clusters, to annotate the major 
cell types (Fig. 4A).

Table 1 Selected quality control measurements across all samples in the midbrain dataset

Control Parkinson’s Disease

Sample 1 2 3 4 5 6 1 2 3 4 5

Ambient RNA rate (%) 5.1 1.9 2.0 2.2 4.3 1.6 2.2 2.3 2.5 1.0 2.0

Minimum total RNA transcripts 501 500 506 500 501 501 500 504 503 501 501

1st quartile total RNA transcripts 2781 2913 2278 3375 2572 3351 2582 3092 2025 2668 3654

Minimum unique RNA transcripts 112 68 199 132 50 154 184 66 261 32 196

1st Quartile unique RNA transcripts 1478 1587 1346 1766 1490 1725 1448 1711 1276 2520 1896

Median % mitochondrial RNA 3.04 1.30 0.62 0.44 1.20 1.02 1.12 1.80 0.55 2.14 0.92

3rd Quartile % mitochondrial RNA 6.19 3.22 1.24 0.89 2.34 2.30 2.31 3.42 1.14 4.49 1.69

Median % ribosomal RNA 0.42 0.72 0.64 0.67 0.61 0.76 0.45 0.66 0.79 0.85 0.63

3rd Quartile % ribosomal RNA 0.65 1.16 0.88 1.00 0.87 1.22 0.73 1.14 1.25 1.31 1.13
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In Step 7, we applied the three cluster annotation tools within the scRNAbox pipe-
line to identify the cell types. Using Tool 1, we identified the top markers for each clus-
ter (Fig.  4B) and subjected these  genes to GSEA using the EnrichR R package. As an 
example, the Descartes Cell Types and Tissues 2021 library GSEA suggested that clus-
ter 5 are microglia (Fig.  4C). For Tool 2, we profiled the expression of known marker 

Fig. 3 scRNAbox produces visualizations of filter applications, doublet detection, and data integration. A 
Violin plots visualizing the distribution of quality control metrics after filtering according to user-defined 
thresholds, for snRNAseq midbrain sample Control 1. B Results of doublet detection with DoubletFinder [23]. 
Left: violin plot displaying the distribution of the proportion of artificial nearest neighbours (pANN) across 
singlets and doublets for Control 1. Right: a bar plot of the number of predicted singlets and doublets for 
Control 1. C Uniform Manifold Approximation Projection (UMAP) plots coloured by droplet assignments 
(singlet or doublet) for Control 1. D UMAP of merged snRNAseq midbrain samples (six Control and five PD) 
coloured by sample identity. E UMAP of the same data after integration, coloured by sample identity
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genes, using the marker genes identified by Samjic et al. to annotate their clusters: oligo-
dendrocytes: MOBP; oligodendrocyte precursor cells (OPC): VCAN; astrocytes: AQP4; 
ependymal cells: FOXJ1; microglia: CD74; endothelial cells: CLDN5; pericytes: GFRB; 
excitatory neurons: SLC1746; inhibitory neurons: GAD2; GABAergic neurons: GAD2 
and GRIK1; dopaminergic neurons (DaN): TH. Except for clusters 11 and 13, we found 
that each cluster showed elevated expression for at least one marker gene (Fig.  4D). 
ScRNAbox also allows expression profiling of known marker genes through a violin plot. 
For instance, we explored the expression of CD74 across clusters and found that cluster 
5 showed elevated expression of this gene, further suggesting that this cluster consists of 
microglia (Fig. 4E). Next, we computed the module scores for custom gene marker lists 
(Supplementary Table S1). The module score for the microglia gene set was highest in 
cluster 5 (Fig. 4F). Using Tool 3, we predicted cell types using a labelled Seurat object 
generated from snRNAseq midbrain data published by Kamath et al. [34] (Fig. 4G).

Performing cluster annotations at a clustering resolution of 0.2 allowed us to identify 
the major cell types expected in the human midbrain. However, to further classify the 
neurons into subtypes, we repeated Step 7 at a clustering resolution of 1.5, as used by 
Smajic and colleagues [16]. We subjected the 33 clusters identified to marker GSEA and 
profiled the expression of known marker genes and cell type marker gene lists (Supple-
mentary Figures  S3-6). In doing so,  we identified each of the expected neuronal sub-
types, including a cluster of rare  CADPS2high DaNs identified by Smajic et al., resulting 
in 12 cell types for our final annotation (Fig. 4H; Supplementary Figure S6D).

ScRNAseq efficiently calculates differential gene expression and facilitates pathway 

analysis

In Step 8, scRNAbox calculates DGE by two different methods, cell-based using MAST 
[28] — whereby individual cells are used as replicates — and sample-based using 
DESeq2 [30] [31] — whereby the aggregated counts of individual subjects are used as 
replicates. Importantly, the choice between statistical frameworks for DGE analysis 

Table 2 Unique barcode counts at different stages of data processing

PD, Parkinson’s disease

Sample Number of 
Unique Barcodes

Cell count after 
filtering

Expected 
doublet rate (%)

Number of 
doublets 
detected

Cell count 
after doublet 
removal

Control 1 5513 4176 4.2 175 4001

Control 2 5508 4553 4.2 191 4362

Control 3 2856 2490 2.3 57 2433

Control 4 5347 4952 4.0 198 4754

Control 5 3564 3196 2.7 86 3110

Control 6 7174 6153 5.3 326 5827

PD 1 2899 2442 2.3 56 2386

PD 2 7169 6388 5.3 339 6049

PD 3 4560 3784 3.4 129 3655

PD 4 2820 2307 2.3 53 2254

PD 5 6588 6007 5.0 300 5707

Total 53,998 46,448 NA 1910 44,538
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must be carefully considered by the user. While multiple benchmarking studies have 
assessed the performance of different methods for DGE analysis, an agreement on the 
best approach has yet to be obtained as different frameworks perform variably across 
statistical performance metrics [29, 35]. To perform DGE analysis, we first added meta-
data to the Seurat object and classified each sample as either “Control” or “PD”, allowing 
us to define our desired contrasts. Next, we computed DGE between PD and controls 

Fig. 4 scRNAbox performs clustering to identify cells type groups and provides tools for cluster annotation. 
A Uniform Manifold Approximation Projection (UMAP) plots showing clusters identified by Louvain network 
detection with a resolution of 0.2, coloured by cluster index. The UMAP was generated from the 11 integrated 
snRNAseq midbrain samples. B Heatmap of the top 3 upregulated marker genes for each cluster in A. C) Bar 
chart showing the top 15 cell types in the Descartes Cell Types and Tissue library identified by GSEA of the 
marker genes for cluster 5. D Dot plot showing expression of cell type markers defined by Smajic et al. for 
each cluster at a clustering resolution of 0.2. The cell type markers are as follows: oligodendrocytes: MOBP; 
oligodendrocyte precursor cells (OPC): VCAN; astrocytes: AQP4; ependymal cells: FOXJ1; microglia: CD74; 
endothelial cells: CLDN5; pericytes: GFRB; excitatory neurons: SLC1746; inhibitory neurons: GAD2; GABAergic 
neurons: GAD2 and GRIK1; dopaminergic neurons (DaN): TH. PD specific DaN subgroup; CADPS2. E Violin 
plot showing expression levels in each cluster across individual cells for the microglia marker CD74. F UMAP 
showing the module score for the microglia gene marker list. The module score is an aggregated expression 
of known marker genes [22]. G Left: UMAP of clustered and annotated reference Seurat object: snRNAseq 
of midbrain tissue produced by Kamath et al. [34], coloured by cell type. Using the Seurat label transfer 
approach, the reference data was used to predict cell types in the query data:11 snRNAseq midbrain samples 
from Smajic et al. [16]. Right: UMAP of the label transfer predictions for each cell, coloured by predicted cell 
type. H UMAP of the 11 integrated samples with the applied final cell type annotation, coloured by cell type



Page 15 of 22Thomas et al. BMC Bioinformatics          (2024) 25:319  

Fig. 5 scRNA calculates differential gene expression (DGE) using multiple statistical frameworks. ScRNAbox 
computes DGE using two distinct data preparations: 1) using cells as replicates and the MAST statistical 
framework [28] and 2) using samples as replicates (pseudo-bulk) and the DESeq2 statistical framework [31]. 
A Volcano plot showing cell-based DGE results identified by MAST, between Parkinson’s disease (PD) and 
control subjects for microglia. B Volcano plot showing sample-based DGE identified by DESeq2 between 
PD and control subjects for microglia. C, D Bar chart showing the number of differentially expressed genes 
(DEGs) identified with a an absolute value log2 fold-change (L2FC) > 1 and p-value < 0.05. Bonferroni adjusted 
p-values < 0.05 are indicated by the darker shades. C) Cell-based DGE using MAST. D Sample-based DGE 
using DESeq2 E Number of DEGs identified by cell-based DGE with MAST, sample-based DGE with DESeq2, 
or both frameworks across all cell types. Only DEGs with an absolute value L2FC > 1 are included. F, G Bar 
chart showing the top 5 most enriched GO t-Biological Processes calculated for all cell types together. DEGs 
with p-values < 0.05 and L2FC > 1 were used as the input for gene set enrichment analysis (GSEA). The gene 
ratio, gene count, and p-value of the 5 terms in each cell type are shown. F GO analysis of DEGs identified 
by cell-based DGE across all cell types. The missing cell types did not have enough DEGs for GSEA analysis 
to return results and were not plotted. G GO analysis of DEGs identified by sample-based DGE across all cell 
types
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for all cells together and for each cell type individually. Cell-based DGE resulted in fewer 
DEGs with L2FC greater than 1.0 but more genes significant after p-value adjustment for 
multiple comparisons (Fig. 5A and 5B; Supplementary Figure S8 and S9; Supplementary 
Table S2 and S3). For example, cell-based-DGE identified 13 DEGs (p-value < 0.05; abso-
lute value L2FC > 1) between PD and controls for microglia, while pseudo-bulk with 
DESeq2 identified 1,030 DEGs at the same significance threshold and for the same 
cell type (Fig.  5A and 5B). Indeed, the sample-based-DGE identified a higher number 
of DEGs across all cell types compared to MAST, except for DaNs (sample-based = 82 
DEGs; cell-based = 111 DEGs) (Fig. 5C and 5D). Another benefit of using multiple statis-
tical frameworks for computing DGE is the ability to identify consensus signals. Particu-
larly, the DEGs that maintain significance after correction for multiple hypothesis testing 
by multiple statistical frameworks may be of highest interest to investigators (Fig. 5E). 
Finally, the DGE data tables produced by the scRNAbox pipeline can be used to perform 
gene enrichment pathway analysis and explore the contribution of different cell types to 
perturbed pathways. As an example, we performed a "GO Biological Processes" analy-
sis using significant DEGs (p-value < 0.05 and L2FC > 1) identified by sample-based DGE 
[1366 genes] and cell-based DGE [7 genes]  upon comparing all cells between PD and 
control subjects [32]. We then selected the top 5 most significantly enriched pathways 
from each DGE  method and looked at the pathway significance of each GO term across 
cell types (Fig. 5F and 5G) Interestingly, both DGE methods suggested perturbed path-
ways related to developmental and neuro-anatomical changes in the PD midbrain.

ScRNAbox effectively demultiplexes cells with Hashtag feature labels

In addition to standard scRNAseq data, scRNAbox can be used to analyze multiplexed 
samples, whereby each subject is tagged with a unique HTO, pooled, and then captured 
and sequenced together. Cell hashtagging can reduce the cost of scRNAseq by a factor 
of the number of samples multiplexed; however, additional steps are required to bio-
informatically assign each cell back to its sample of origin. In Step 4, scRNAbox pro-
vides the option for users to demultiplex cells based on the expression of sample specific 
HTOs. To demonstrate, we analyzed a scRNAseq dataset of PBMCs from 8 subjects col-
lected by Stoeckius et al. [18]. In Step 0, we selected to run the “HTO” analysis track and 
proceeded to run Steps 1–3 using the same analytical parameters that Stoeckius et al. 
used to process their data. At Step 4, instead of running doublet detection with Dou-
bletFinder, scRNAbox uses the Seurat MULTIseqDemux function to assign cells back to 
their sample-of-origin based on HTO expression (19). ScRNAbox produces multiple fig-
ures to visualize the enrichment of HTOs across samples. Upon examining the expres-
sion levels of each HTO label across samples, we observed that cells with a distinct 
expression for a given HTO are assigned to the matching sample (Figs. 6A-C). Barcodes 
with multiple HTO labels are detected as doublets, as these likely represent two cells 
that were sequenced together. Negative cells have too low of a level of any HTO tag to be 
accurately assigned. We observed that the doublet group had about twice as many RNA 
transcripts per cell compared to the cells that were assigned to an individual sample, 
suggesting that the predicted doublets are likely true doublets (Fig. 6D). We conclude 
that scRNAbox pipeline can accurately demultiplex samples with HTO tags.
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Conclusions
Here, we introduce ScRNAbox, a comprehensive end-to-end pipeline designed to 
streamline the processing and analysis of single-cell transcriptomic data. ScRNAbox 
responds to the pressing demand for a user-friendly, HPC solution, bridging the gap 
between the growing computational demands of scRNAseq analysis and the coding 
expertise required to meet them. ScRNAbox empowers researchers, regardless of 
coding experience, to unlock the full potential of HPC clusters. By automating and 
optimizing the entire scRNAseq analysis workflow, it facilitates the processing of 
numerous samples while seamlessly scaling to meet user needs. The stepwise execu-
tion of ScRNAbox provides researchers with fine-grained control over parameters 
and manual cell annotations, ensuring reproducibility and customizability at every 
stage. The pipeline contains a rich array of functionalities, enabling cell type anno-
tation, differential gene expression analysis, and efficient cell demultiplexing using 
Hashtag feature labels. In Table 3, we compare scRNAbox’s usability and capabilities 
to those of the most relevant scRNAseq analysis tools currently available.

Fig. 6 scRNAseq effectively demultiplexes HTO samples and detects doublets. The expression matrices of 
sample-specific oligonucleotide conjugated antibodies (HTO) are used to demultiplex samples and identify 
doublets [19]. The enrichment of barcode labels across sample assignments are visualized at the cellular 
and sample level. A Ridge plots (stacked density plots) showing the expression of each HTO tag expression 
in each assigned sample. B Dot plot showing the expression level (colour intensity) and proportion of cells 
(dot size) expressing each HTO in each assigned sample. C Heatmap showing expression levels of each HTO 
tag in each assigned sample. D Violin plot showing the distribution of total RNA transcripts across sample 
assignments
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While ScRNAbox offers an efficient solution for scRNAseq data analysis, it does 
come with certain limitations. Primarily tailored for sequencing alignment from 
10X data and focused on differential gene expression analysis, ScRNAbox does not 
encompass trajectory analysis, cell-to-cell networks, or other downstream analytical 
methods. Nonetheless, it equips users with final and intermediate data objects that 
seamlessly integrate into external packages for advanced analyses.

Our open-source, modular code provides a versatile foundation for users to cus-
tomize and expand. We encourage researchers to harness the flexibility of ScRNAbox, 
introducing alterations, additional options, or their preferred downstream analyses. 
With ScRNAbox, we aspire to simplify the intricacies of scRNAseq analysis, inviting 
an extended community of researchers to embark on novel and thoughtful explora-
tions of single-cell transcriptomics.
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