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impact of complex structural variations on individuals compared to simple structural
variations. Despite this, the field still lacks precise detection methods specifically
designed for complex structural variations. Therefore, the development of a highly
efficient and accurate detection method is of utmost importance.

Result: In response to this need, we propose a novel method called FindCSV, which
leverages deep learning techniques and consensus sequences to enhance the detec-
tion of SVs using long-read sequencing data. Compared to current methods, FindCSV
performs better in detecting complex and simple structural variations.

Conclusions: FindCSV is a new method to detect complex and simple structural varia-
tions with reasonable accuracy in real and simulated data. The source code for the pro-
gram is available at https://github.com/nwpuzhengyan/FindCSV.
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Background
Structural variations (SVs) are large-scale mutations in the genome involving over 50
nucleotides [1]. They encompass different types of mutations, such as deletions (DEL),
insertions (INS), duplications (DUP), inversions (INV), and translocations (TRA), and
are characterized by significant changes in the genome. Although SVs are relatively rare
compared to single nucleotide polymorphisms (SNPs) and smaller insertions or dele-
tions (Indels), recent studies have highlighted their substantial contribution to heritable
genetic variations [2]. Furthermore, SVs have been implicated in various genetic disor-
ders, including cancer, autism spectrum disorders, and Alzheimer’s disease [3—6]. They
also significantly affect species evolution, gene expression, and phenotypic diversity
[7-11].

In addition to simple SVs such as INSs and DELs, recent research has revealed the
existence of complex SVs (CSVs) [12, 13]. Detecting CSVs poses a greater challenge
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compared to simple SVs. Simple SVs involve one or two breakpoints in the genome and
have relatively straightforward structures. In contrast, CSVs typically involve multiple
breakpoints in the genome, resulting in more intricate structures. CSVs can be consid-
ered as nested SVs composed of combinations of simple SVs, leading to more complex
alignment outcomes in high-throughput sequencing data. Although CSVs occur less fre-
quently than simple SVs in the genome, their genomic structures are more complex, and
therefore, CSVs can have a greater impact on individuals than simple SVs [14].

In recent years, there has been a significant increase in the number of detection meth-
ods targeted at simple SVs. Initially, studies focused on SV detection using short reads
(100-150bp). Several methods were developed, including Delly [15], Lumpy [16], Pin-
delcitePindel, Manta [17], Gustaf [18], and SurVIndel [19]. More recently, several SV
callers based on long-read data have emerged, such as DeBreak [20], cuteSV [21], Snif-
fles [22], Sniffles2 [23], NanoSV [24], picky [25], SVIM [26], PBHoney [27], SVision [28]
and SVcnn [29].

However, there is currently a lack of precise detection methods to detect CSVs. Exper-
imental results have revealed two primary challenges in CSV detection: 1. The absence
of a precise definition for CSVs; 2. The diverse nature of CSVs presents difficulties for
detection methods in accurately identifying and reporting the correct breakpoints.

Regarding the first challenge, detecting CSVs involves identifying nested SVs that can
be considered as combinations of simple SVs. However, determining the threshold dis-
tance at which two adjacent SVs can be merged into a CSV remains a challenge. Recent
researches lack a clear and definitive definition for CSVs, which hinders their accurate
detection. Addressing this question is crucial for improving the precision of CSV detec-
tion. Regarding the second challenge, CSVs can exhibit a theoretically infinite number of
structural types as they are formed by combining and nesting simple SVs. Consequently,
exploring the internal structure of CSVs becomes a complex task for detection methods.

Therefore, there is an urgent imperative to develop better detection methods specifi-
cally tailored to target CSVs and overcome these challenges. In response to these chal-
lenges, we developed a novel detection method called FindCSV, specifically designed to
detect CSVs in third-generation sequencing data. To evaluate the performance of vari-
ous detection methods, we have obtained three real datasets and conducted extensive
experiments using these datasets. The download links for the datasets can be found in
the Supplementary file Table S1. The experimental results unequivocally demonstrate
that FindCSV has excellent performance compared to existing detection methods, not
only in detecting CSVs but also in detecting simple SVs. This comprehensive evaluation
showcases the effectiveness and superiority of FindCSV as a better tool for detection of
both CSVs and simple SVs.

Results

Details of research data

Second-generation sequencing data and third-generation sequencing data are both con-
sidered high-throughput data. However, third-generation sequencing data offers sev-
eral advantages over second-generation sequencing data. One notable advantage is the
longer read lengths provided by third-generation sequencing, which inherently improves
sequence alignment. Leveraging the alignment results from third-generation sequencing
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data allows for simplified detection of SVs and helps mitigate potential matching errors
caused by excessive parameters [30]. As a result, SV detection performed on third-gen-
eration sequencing data often yields superior results compared to second-generation
sequencing data.

Recent research shows that the number of SVs in human individuals should be
between 22,000 and 25,000 [31]. According to the survey results, it was found that short-
read-based detection methods can only detect approximately 40-60% of true positive
SVs, whereas long-read-based detection methods can detect 80-90% of true positive
SVs. Furthermore, long-read sequencing technologies enhance the ability to identify
SVs, particularly in the detection of CSVs and those located within repetitive regions
[32, 33]. Therefore, we selected third-generation sequencing data as the research data.

The two most popular long-read sequencing technologies are PacBio [34] and Oxford
Nanopore (ONT) [35]. Compared to PacBio data, ONT data exhibits higher error rates
in its reads. Consequently, detecting SVs in ONT data presents more significant chal-
lenges. For this reason, we have downloaded both PacBio and ONT sequencing data,
with a focus on evaluating the detection performance specifically on ONT data. By pri-
oritizing the evaluation on ONT data, we aim to assess the effectiveness and robustness
of our detection method in the context of challenging long-read sequences with higher

error rates.

Details of current detection methods

Due to the abundance of long-read-based detection methods, it was impractical to indi-
vidually test each method. Therefore, we carefully selected five detection methods from
a range of long-read SV callers: Sniffles [22] (version 1.0.11), cuteSV [21] (version 2.0.2),
DeBreak [20] (version 1.3), SVcnn [29] (version 1), and SVision [28] (version 1.4). These
five methods were chosen based on their recent release and demonstrated accuracy in
SV detection. Sniffles is the current most popular SV detection method. DeBreak and
cuteSV are efficient methods that have been shown to have very high recall and pre-
cision. SVcnn is the method we previously used to detect simple SVs. SVision is the
method specifically used to detect CSVs on third-generation sequencing data. The rea-
son why Sniffles2 was not selected is that it cannot detect CSVs.

Benchmark and selected samples
The HG002 SVs dataset provided by GIAB (Genome in a Bottle) is widely recognized
and extensively used as a high-quality benchmark for evaluating SV detection methods.
This benchmark is derived from the hgl9 reference genome and is considered a relia-
ble standard for SV detection evaluation [36]. The dataset comprises 12,742 SVs of the
PASS type, including 5463 DELs and 7279 INSs. However, recent research suggests that
the number of SVs in human individuals should range from 22,000 to 25,000 [31]. This
means the benchmark dataset likely misses thousands of true positive SVs. When using
this benchmark for evaluating SV detection methods, it is important to consider this
limitation, as the dataset may not fully capture the complete spectrum of SVs present in
the human population.

To address this issue, we adopted a novel approach to generate a new benchmark
by leveraging the results obtained from different SV detection methods and genome



Zheng and Shang BMC Bioinformatics (2024) 25:315 Page 4 of 19

assemblies. HiFi reads are generated using circular consensus sequencing mode on
PacBio long-read systems, which exhibit an impressively low error rate of approximately
0.1% [37]. This high-quality data can significantly enhance the reliability and confidence
of the benchmark. The steps involved in creating this new benchmark, including the uti-
lization of HiFi data and genome assemblies, are thoroughly described in Sect. 2 of the
supplementary file. These steps outline the process by which we use the outputs of mul-
tiple SV detection methods and genome assemblies to construct a more comprehensive
and accurate benchmark for SV detection evaluation.

To generate new benchmarks, it is necessary to have genome assemblies for the
samples. Hence, we carefully selected three samples: HG002 [38], CHM13 [39], and
HGO00733 [40], for which genome assemblies were available. HG002 and HG00733 are
the most popular datasets with accurate and complete genome assemblies. Compared
with HG002 and HG00733, CHM13 has near-complete homozygosity. Therefore, we
can regard CHM13 as a homozygous human genome and ignore the influence of multi-
allelic SVs. The download links for these genome assemblies can be found in the supple-
mentary file Table S2. By utilizing these genome assemblies, we were able to derive SV
datasets specifically for these three samples. These datasets serve as crucial resources for

evaluating the performance of SV detection methods.

Detection evaluation for simple SVs

This section aims to evaluate the detection performance of different methods for simple
SVs. We obtained the ONT long-read data for three individuals: HG002 [38], CHM13
[39], and HG00733 [40]. These long-read datasets were aligned to the hg38 reference
genome, resulting in BAM files. The details of the long-read data and reference links can
be found in Tables S1 and S2 of the supplementary file. The Linux commands used for
the alignment process are described in Sect. 1 of the supplementary file.

We applied selected SV detection methods to the generated BAM files. Each method
independently analyzed the long-read data and produced SV detection results. To evalu-
ate the performance of the different SV detection methods, we generated new bench-
marks for different samples, as described in detail in Sect. 2 of the supplementary file.
The benchmark contains information on DELs and INSs. Due to the specific character-
istics of DUPs and INVs, we focused on evaluating DELs and INSs in this manuscript.
Finally, we compared the SV detection results from each method with the benchmark
dataset. Section 5 of the supplementary file provides the method used to verify whether
an SV output from a detection method is present in the benchmark dataset.

Figure 1 shows the recall, precision, and F1-score of these methods across the CHM13,
HGO002, and HG00733 datasets. The results indicate that the detection performance of
FindCSV has not significantly improved compared to SVcnn. This is because some sim-
ple SVs are mistakenly identified as CSVs, leading to changes in the length of the SVs.
Consequently, during the SV comparison process, certain SVs that have been misjudged
as CSVs fail to match the simple SVs in the benchmark. Nevertheless, besides SVcnn, the
detection performance of FindCSV surpasses that of other existing methods across all
datasets. Therefore, it can be concluded that FindCSV exhibits the second-best perfor-
mance in detecting simple SVs, trailing only the SVcnn.
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Fig. 1 The figure illustrates the recall, precision, and F1-score of FindCSV, DeBreak, cuteSV, Sniffles, SVcnn, and
SVision across the CHM13, HG002, and HG00733 datasets

Detection evaluation for CSVs

This section aims to evaluate the detection performance of different methods for
identifying CSVs. However, the current research lacks high-quality and reliable
benchmark datasets specifically designed for evaluating CSV detection methods. To
address this, we utilize assembled genomes to generate a more comprehensive and
accurate benchmark for CSVs, as detailed in Sect. 2 of the supplementary file. Using
this method, our experiments identified 366, 268, and 223 CSVs in HG002, CHM13,
and HGO00733, respectively.

Most existing SV detection methods are not designed to detect CSVs, and only Snif-
fles and SVision can output CSVs. Therefore, we applied FindCSV, Sniftles, and SVi-
sion to the ONT data and HiFi data of three samples, respectively. Using the CSV
comparison method described in Sect. 5 of the supplementary file, we counted the
number of CSVs in the benchmark that were detected by each method. Additionally,
we calculated the recall, precision, and F1-score of each method to assess their per-
formance in detecting CSVs. The obtained values are shown in Fig. 2.

From Fig. 2, it is evident that the performance of all current detection methods is
not particularly superior in detecting CSVs. Among these methods, FindCSV dem-
onstrates better performance in terms of recall, precision, and F1-score. FindCSV
achieves high recall values, with the lowest recall for CSVs being over 50%. However,
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Fig. 2 The figure illustrates the F1-score of FindCSV, Sniffles, and SVision about CSVs on the ONT and HiFi
datasets

its precision values are relatively low, with the highest precision being approximately
24%. Furthermore, FindCSV performs significantly better on HiFi data compared
to ONT data. This disparity can be attributed to the higher noise levels present in
ONT data, which may lead to the formation of false positive SVs. The presence of
these false positive SVs can cause FindCSV to mistakenly detect simple SVs as CSVs.
Consequently, the number of CSVs detected exceeds the actual number, leading to a
decrease in detection accuracy.

In comparison, the other two detection methods, Sniffles and SVision, exhibit much
lower performance in detecting CSVs. The highest recall achieved by these meth-
ods is around 15%, and the highest precision is less than 6%. This discrepancy may
arise from differences in the definition of CSVs. FindCSV focuses on identifying SVs
with breakpoint distances less than 1000 bp located on the same read as CSVs. Other
detection methods may not consider SVs with distances less than 1000 bp as CSVs or
incorrectly classify multi-allelic SVs from both parents as CSVs. These factors con-
tribute to the poorer performance of Sniffles and SVision in detecting CSVs. For spe-

cific examples, please refer to Sect. 8 of the supplementary file.
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Detection evaluation on simulated datasets

In real datasets, existing detection methods have far lower performance in detect-
ing CSVs than FindCSV, possibly due to different methods having different defini-
tions of CSVs. If there is no unified standard, the evaluation results obtained will be
meaningless.

To obtain more meaningful evaluation results, this section generates simulated
CSVs on the CHM13 dataset to evaluate different methods. The reason for choos-
ing CHM13 is that it can be considered a haploid genome without considering the
impact of multi-allelic SVs. The process of generating simulated SVs involves modify-
ing the assembly genome of CHM13 and subsequently aligning the sequencing data
of CHM13 to the modified genome, thereby creating a set of simulated SVs. Through
this method, we generated 4600 CSVs of different types, composed of two different
types of SVs with consistent breakpoint positions.

Next, the FindCSV, Sniffles, and SVision were applied to the simulated datasets,
respectively. Finally, the recall, precision, and F1-score of each method were calcu-
lated to comprehensively assess their performance in detecting the simulated CSVs.
The obtained values are shown in Fig. 3.

From Fig. 3, it can be observed that on simulated data, FindCSV can detect nearly
68% of CSVs, SVision can detect about 44% of CSVs, and Sniffles can only detect 50
CSVs, accounting for only 0.8% of the actual number, which can be almost negligible.
Furthermore, FindCSV also demonstrates the highest precision of 92%. In contrast,
SVision and Sniffles show lower precision of 89% and 74%, respectively. Despite the
relatively small differences in precision among the methods, the significant disparities
in their recall values ultimately lead to notable differences in their F1-scores. In con-
clusion, FindCSV’s performance in detecting CSVs far surpasses the existing methods.
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Fig. 3 The figure illustrates the F1-score of FindCSV, Sniffles, and SVision about CSVs on the simulated
datasets
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The running time and memory

In this section, the aforementioned methods were executed on the same Linux server,
and their running time and maximum memory usage to process the same data were
recorded. The detailed results are presented in Table 1.

Analyzing Table 1, it is evident that FindCSV exhibits relatively low memory usage.
However, its detection efficiency is not superior compared to the other methods.
In terms of the time required for SVs detection, FindCSV falls in the middle range
among these detection methods. Notably, both FindCSV and Sniffles are Python-
based programs, but FindCSV tends to run slower primarily due to the inclusion of
multiple additional steps such as remapping and converting images, deep learning fil-

tering, and constructing consensus sequences.

Conclusions
We have developed a novel CSVs detection method called FindCSV. Currently, the
detection of CSVs faces two main challenges:

1. Lack of a precise definition for CSVs: To address this, we define SVs with break-
point intervals less than 1000 bp located on the same parental genome as CSVs. This
provides a clear and specific definition for identifying CSVs.

2. Diversity of CSVs: The diverse nature of CSVs poses difficulties for detection
methods to accurately identify and report the correct breakpoints. To overcome this
challenge, FindCSV employs a multi-step approach. It first distinguishes and clusters
different reads originating from both parents. Then, it generates consensus sequences
based on the clustering results and performs remapping. Finally, FindCSV determines
CSVs by analyzing the new mapping results.

The experimental results demonstrate that while the FindCSV algorithm performs
slightly worse than SVcnn in detecting simple SVs, it outperforms the other methods
in the detection of CSVs. However, FindCSV still exhibits certain limitations in its
ability to accurately detect CSVs. For instance, due to the presence of noise in the

sequencing data, FindCSV may occasionally misclassify some simple SVs as CSVs.

Methods

The design of FindCSV

The detection of CSVs faces two significant challenges, as discussed in the previous
section. The first challenge is the absence of a precise definition for CSVs. To address
this issue, we propose the following definition: Multiple SVs from the same parent
with breakpoint distances less than 1000bp are considered CSVs. As shown in Fig. 4,
When there are no other SVs near an SV, it is a simple SV. when two SV breakpoints
from either the father’s or mother’s genome are within a distance of less than 1000
bp, these two SVs are considered as CSVs. Otherwise, these two SVs are considered
as two independent simple SVs. However, if the distance between SVs is less than
1000 bp but originates from both parents, they are considered as multi-allelic SVs.
The second challenge lies in the diversity of CSVs, which makes it difficult for detec-
tion methods to identify and report the correct breakpoints accurately. Although
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Fig. 4 The figure illustrates the differences between simple SV, CSVs, and multi-allelic SVs

there are theoretically infinite types of CSVs, the most common types in real data are
DEL+INS and DEL+INV.

To overcome the second challenge, we employ the following approach: 1. Identification of
candidate SV regions. 2. Determination of parental allele presence. 3. Clustering of paren-
tal reads. 4. Generation of consistent sequences. 5. Remapping of sequences. 6. Analysis of
remapping results. Furthermore, to address false positive SVs, we introduce a deep learning
model that screens and filters out such SVs. The detailed steps of this proposed method,
including the identification of candidate SV regions, clustering of parental reads, generation
of consistent sequences, remapping, and analysis of remapping results, are outlined in the
next section.

Overview of FindCSV

The input for FindCSV comprises two components: (i) a sorted long-read BAM file and
(ii) a FASTA file. FindCSV primarily consists of three main steps: (1) Identify candidate SV
regions, (2) Cluster reads and construct consensus sequences, and (3) Filter and output SVs.
Figure 5 illustrates the steps involved in FindCSV, while the detailed steps are explained in
the following sections.

Identify candidate SV regions

The first step of FindCSV involves identifying candidate SV regions, where SVs may exist.
In contrast to other methods, this method allows us to focus the subsequent analysis on
these candidate regions. This streamlines the detection process and improves efficiency,
compared to analyzing the entire genome.

Parameter estimation Before detecting candidate SV regions, FindCSV performs preproc-
essing on the BAM file by estimating the average coverage, denoted as C. This estimation is
achieved by randomly selecting 1000 positions from the reference genome and calculating
the average coverage of these positions using the following formula:

C=—=> G
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Fig. 5 The overview of FindCSV. The input consists of a sorted BAM file and a FASTA file. FindCSV mainly
consists of three main steps: (1) Identify candidate SV regions, (2) Cluster reads and construct consensus
sequence, and (3) Filter and output SVs

In certain cases, certain regions in the genome exhibit exceptionally high coverage,
sometimes exceeding dozens of times the average coverage. Consequently, it becomes
challenging to accurately detect SVs in these regions. Fortunately, these high-coverage
regions contain very few SVs. Leveraging this observation, FindCSV implements a filter-
ing mechanism to discard these high-coverage regions. Specifically, if a region has cov-
erage that surpasses ten times the average coverage, it is filtered out and excluded from
further analysis. By filtering out these high-coverage regions, FindCSV aims to mitigate
the complexity introduced by read similarity between different regions, focusing its
efforts on regions with more reliable read assignments and a higher likelihood of con-
taining SVs.

Detect candidate SV regions To identify candidate SV regions, FindCSV follows a
two-step approach. In the first step, it searches for all potential SVs and generates a
list of candidate SVs. The second step involves merging these candidate SVs to obtain
candidate SV regions. FindCSV applies three criteria to filter out alignments that are

deemed useless, retaining only those alignments that satisfy the following conditions:

1 The MAPQ of alignment is greater than 20.
2 The alignment is primary.
3 The alignment length is greater than 1000.

By applying these filtering criteria, FindCSV ensures that only alignments that meet
specific quality and length requirements are considered as potential SVs, enhancing
the reliability and accuracy of the subsequent steps in the SV detection process. To
detect candidate SVs, FindCSV employs two complementary approaches: one based
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on CIGAR strings and the other one based on split reads. These approaches comple-
ment each other and enhance the accuracy of SV detection.

CIGAR strings FindCSV examines the CIGAR strings of aligned reads to identify
potential SVs. The CIGAR string represents the alignment pattern between the read
and the reference genome. By analyzing variations in the CIGAR strings, such as
insertions, deletions, or mismatches, FindCSV can identify regions where SVs may be
present.

Split reads FindCSV utilizes split reads to detect candidate SVs. Split reads are
reads that span an SV breakpoint, with a portion of the read aligning to one genomic
location and another portion aligning to a different location. By identifying split
reads, FindCSV can infer the presence of SVs and determine their breakpoints. More
detailed steps are outlined in Sect. 3 of the supplementary file.

By combining these two approaches, FindCSV maximizes its ability to detect candi-
date SVs. A length-6 tuple is used to record the characteristics of each candidate SV,
which consists of the following elements: .(Chr, S, E, L, T, R). Here is the breakdown of
each element in the tuple: Chr refers to the chromosome name, S and E represent the
start and end positions of the SV respectively, L denotes the SV length, T indicates
the type of SV (DEL, INS, INV), and R specifies the name of read where the SV is
located.

After obtaining the tuple for each candidate SV, FindCSV proceeds to merge tuples
with closer distances to generate candidate SV regions. This merging process is per-
formed according to the following approach: (i) For each tuple, FindCSV creates a
length-4 tuple (Chr, S, E, 1). This new tuple serves as the initial region, where the value
‘1’ represents the initial read count in this region. (ii) Let regionl = (Chrl, S1, E1, 1) and
region2 = (Chr2, S2, E2, 1) be two initial regions. If these two regions are located on
the same chromosome and the distance between their breakpoints is less than 1000bp,
FindCSV merges them into a single region. The merged region is recorded as (Chrl,
min(S1, S2), max(E1, E2), 2), where the value 2’ represents the combined read count
of the two initial regions. (iii) This merging process continues iteratively until no fur-
ther regions can be merged. (iv) To eliminate the effects of noise, FindCSV retains only
the regions with final values greater than three. These filtered regions are considered as
the candidate SV regions. By merging tuples with closer distances, FindCSV aggregates
candidate SVs into candidate SV regions, providing a more comprehensive and accurate
representation of the SVs present in the analyzed data.

Convert regions to images In this section, the regions obtained from the previous
steps are converted into images. To gather more comprehensive information about
SVs, FindCSV introduces a parameter called “flank_len”, denoted as F. For each can-
didate SV region (Chr, S, E), FindCSV extracts all CIGAR strings within an extended
region (Chr, S-F, E4+F). The extended region ensures that an adequate genomic context
around the SV breakpoints is included. The value of F is determined as the minimum
of (200, 2*(E-S)), where 200 represents a fixed length, and 2*(E-S) ensures that the
extended region covers twice the length of the SV region.

To represent the CIGAR strings of each candidate SV region, FindCSV utilizes a
five-color image. In this image representation, each line corresponds to a read, and
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each column corresponds to a position on the reference genome. The conversion pro-
cess involves converting each character of the CIGAR strings into a pixel, following
specific rules:

1 The M (Match) of the CIGAR string with a plus strand (+) is represented as a yellow
pixel.

The Match of the CIGAR string with a minus strand (-) is represented as a blue pixel.
The D (DEL) of the CIGAR string is represented as a black pixel.

The I (INS) of the CIGAR string is represented as a red pixel.

The X (Mismatch) of the CIGAR string is represented as a green pixel.

[SATENT= NGO O]

By converting each character of the CIGAR strings into pixels following these rules,
FindCSV creates a five-color image that visually represents the variations and alignment
patterns of the reads within the candidate SV region. However, there is a challenge when
representing INSs in the image because they do not occupy a position on the reference
genome. This means that if FindCSV uses columns to represent positions on the ref-
erence, the insertions will not be displayed in the image, and their information will be
lost. To address this issue, FindCSV implemented the following method: In the BAM
file, the majority of positions are occupied by matches (M). FindCSV leverages this fact
to replace a portion of the matches with insertions (I) based on the insertion lengths. To
avoid excessive information loss for matches (M), for every 10bp insertions (I), FindCSV
replaces one match (M) on the reference with an insertion (I). For example, if the length
of an insertion is 50 base pairs, FindCSV identifies five consecutive match characters
(M) on the reference genome near the insertion and replaces them with five insertion
characters (I). By incorporating these modifications, FindCSV ensures that the inser-
tions are represented in the resulting image. After the replacement process, the region is
converted into an image, which is referred to as an SV image. In the SV image, a vertical
red line is used to indicate the presence of an insertion, providing a visual representation
of the inserted sequence. Figure 6 illustrates the SV images representing three different
types of SVs, showcasing the ability of FindCSV to visually capture and differentiate vari-
ous types of SVs.

DEL

DUP
) INS

INV+DEL

Fig. 6 The alignments in (Chr, S-F, E+F) are converted into an image. Each read occupies a row in the image.
Yellow and blue pixels represent matches, black pixels represent deletions, red pixels represent Insertions and
green pixels represent mismatchs
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Train LetNet model In this section, FindCSV employs a Convolutional Neural Network
model to filter the candidate SV regions. Specifically, FindCSV selects the LeNet model as
the filtering model. The LeNet model consists of three convolutional layers, two subsam-
pling layers, and two fully connected layers. These layers are designed to extract features
and learn representations from the input data. The detailed parameters of the seven layers
in the LeNet model are provided in Fig. 7.

To accommodate the fixed input image size requirement of the LeNet model, it is
necessary to normalize the previously obtained SV images. This normalization pro-
cess involves using the resize function from the Python library to resize the images to
a uniform size of 224*224*3 pixels. The training dataset plays a crucial role in train-
ing the LeNet model. FindCSV utilizes the HG002_SVs_Tierl_v0.6 dataset, which is
widely accepted as a benchmark dataset in SV research. However, this benchmark
dataset only includes two types of SVs: DELs and INSs. To improve the performance
of the model, FindCSV augments the training data by simulating additional types
of SVs. Specifically, FindCSV generates 4000 INVs and 3258 regions with no SVs
(Abbreviated as noSVs). The noSVs are randomly selected regions from the reference
genome, ensuring that there are no SVs present in those regions. The generation pro-
cess for simulating INVs is slightly more complex. First, a region is randomly selected
from the reference genome, and it is confirmed that there are no SVs in that region.
Then, the region is reversed to create an inverted mutation. Finally, the sequencing
data is remapped onto the inverted reference genome to obtain the mapping results
for the simulated INVs. This way, FindCSV obtains a training dataset comprising
20,000 regions, including four types: 5463 DELs, 7279 INSs, 4000 INVs, and 3258
noSVs.

Subsequently, FindCSV converts these regions into two types of images based on
ONT data and HiFi data. This results in a total of 40,000 images in the training dataset.
FindCSV inputs these normalized SV images into the LeNet model and trains it using
a ten-fold cross-validation approach. The dataset of 40,000 images is divided into ten
groups, each containing 4000 images. The training and validation data are alternated,
with nine groups used for training and one group used for validation in each iteration.
The training process is performed for 5000 iterations, and the accuracy of the model is
recorded. Finally, the model with the highest accuracy is retained for further use.

i Kernel(5,5,3)+6 i Maxpool(2.2) i Kernel(5,5,6)+16 a Maxpool(2.2) /

(224, 224, 3) (220, 220, 6) (110, 110, 6) (106, 106, 16) (53, 53, 16)
/ Kernel 53,53,16)+120 /Lneauzom %
(53, 53, 16) (1, 1, 120) (1, 1, 84) (1, 1, 4)

Fig. 7 The detailed parameters of the seven layers in the LeNet model
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After training the model, FindCSV applies the trained LeNet model to the SV images
of candidate SV regions obtained in the previous steps. The model is utilized to deter-
mine the probability of an SV occurring within each region. The label with the highest
probability is selected as the judgment result. If the model determines that there is no
SV present in a particular region, FindCSV discards the candidate SV region. However,
if the model identifies a DEL, INS, or INV, FindCSV proceeds to calculate the precise
length and breakpoints of the SV in the subsequent step.

Cluster reads and construct consensus sequences

After obtaining the filtered candidate SV regions in the previous steps, FindCSV pro-
ceeds to cluster the reads within these regions based on their alignments. The goal of this
clustering step is to identify potential multi-allelic SVs originating from both parents.
By clustering the reads from both parents, FindCSV aims to distinguish different alleles
and their corresponding alignments within the SV region. This clustering allows for the
identification of variations that may exist between the two parental genomes. Once the
clustering is performed and the reads are grouped accordingly, FindCSV constructs a
consensus sequence based on the reads within each cluster. The consensus sequence
represents the most likely sequence representation of the alleles present within the SV
region. Finally, FindCSV obtains the final SV by remapping the consensus sequence onto
the reference genome. This remapping process aligns the consensus sequence to the ref-
erence genome, providing the precise location and sequence information of the identi-
fied SV.

Cluster reads in candidate SV region FindCSV extracts all reliably aligned reads for each
candidate SV region and refines them to obtain a candidate SV. However, in candidate SV
regions, particularly in repeat regions (Chr, S, E), some reads may have incorrect align-
ments. Figure 8 illustrates examples of read alignments in repeat regions, and it can be
observed that the alignment of Read4, Read6, Read?7 in Fig. 8 leads to two small false posi-
tive SVs, which can impact the overall detection results. To mitigate the impact of wrong
alignments, FindCSV employs a filtering strategy and retains only two types of long reads.
The first type includes reads that span the entire region (Chr, S-1000, E+1000), such as
Readl — Read4 in Fig. 8. The second type comprises reads that have two or more align-
ments, such as Read5 in the figure. By retaining these two types of long reads, FindCSV
ensures that the majority of the retained reads are less susceptible to incorrect alignments
caused by repeat regions. In Fig. 8, the reads (Read1 — Read5) within the green and blue
boxes are considered reliable reads and are retained for further analysis. Conversely, the
reads (Read6 — Read7) within the red box are deemed unreliable reads and are filtered
out. This filtering process, which removes unreliable reads, enables FindCSV to achieve
improved results, particularly in repeat regions where incorrect alignments can be more
prevalent.

For reliable reads, FindCSV performs a merging process if a read contains more than one
SV within the candidate SV region. This merging process aims to consolidate multiple SVs
into a single, correctly identified SV. For instance, in the case of Read4 depicted in Fig. 8,
which exhibits two small false positive DELs, FindCSV endeavors to merge them into a sin-
gle, accurate DEL. Suppose a read contains two SVs, namely SV1 (Chr, S1, E1, L1) and SV2
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Fig. 8 In the provided figure, we present the alignments of seven distinct reads. The reads enclosed
within the green and blue boxes will be classified as reliable reads and will be retained for further analysis.
Conversely, the reads encompassed by the red box will be identified as unreliable reads and will be filtered
out from subsequent processing

Table 1 The run time and memory of different methods

FindCSV DeBreak cuteSV Sniffles SVision SVcnn
Time 17h34m 48 m 16m 6h42m 2d21h45m 15h42m
Memory 467 MB 2.05GB 1.98 GB 585 MB 1.2GB 324 MB

(Chr, S2, E2, L2). FindCSV merges these SVs to create a merged SV, denoted as SV_m: (Chr,
min(S1, S2), max(E1, E2), L1 + L2). By combining the start positions (S1, S2), end positions
(E1, E2), and lengths (L1, L2), FindCSV forms a merged SV with adjusted start and end
positions and an updated length. In addition, even for reliable reads that do not contain any
SVs within the candidate SV region, FindCSV still records them as (Chr, 0, 0, 0) to maintain
a comprehensive record of all the reliable reads. Subsequently, FindCSV proceeds to cluster
the reads based on the length of the SVs within each candidate SV region. For a candidate
SV region with N reads, FindCSV calculates the average SV length, denoted as L. The for-
mula for calculating the average SV length is as follows:

1 XN
Lzﬁ;Li
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FindCSV classifies the candidate SV regions into two types, namely long SVs and short
SVs, based on the average SV length (L) exceeding or being less than 500bp. The cluster-
ing methods employed for these two types of regions are as follows:

Long SVs (L > 500 bp) Sort the candidate SV region’s SVs based on SV length. Each
SV is recorded as an individual cluster, with the average length of all SVs in the cluster
set as the cluster_length. If the difference in cluster_length between two clusters is less
than 20%, the two clusters are merged into a single cluster. The above merging process
is repeated for the remaining clusters. The clusters are continuously compared, and if
the difference in cluster_length is below the specified threshold, they are merged. This
iterative merging continues until no further clusters can be merged based on the given
criteria.

Short SVs (L < 500 bp) For short SVs, the influence of sequencing noise on SV length is
significant. Consequently, distinguishing between two short SVs of similar length can be
challenging. To overcome this issue, FindCSV utilizes hierarchical clustering to separate
these reads and identify distinct SVs within the cluster. Specifically, if a bimodal distri-
bution is observed for all SV lengths within a given cluster, it indicates the presence of
two heterozygous SVs. The detailed steps for this approach can be found in Sect. 6 of the

supplementary file.

Construct consensus sequences Following the aforementioned steps, FindCSV proceeds
to perform read clustering for the candidate SV regions. The objective of this step is to
construct a consensus sequence based on the reads within each cluster. This process
aims to reduce noise inherent in third-generation sequencing data and improve mapping
results. The specific steps to get consensus sequences are shown in Sect. 9 of the supple-
mentary file.

Once the consensus sequence is obtained, FindCSV performs remapping of the con-
sensus sequence to the reference genome. This remapping process enables the detection
of SVs in the new mapping results. If two or more SVs are identified in the new mapping
result, and their breakpoint distance is less than 1000 bp, FindCSV merges these SVs
into a single CSV. The breakpoint positions and types of each SV are recorded for fur-
ther analysis.

Filter and output SVs

In the previous step, FindCSV generates a set of candidate SVs and proceeds to filter
them based on their lengths. Only candidate SVs with lengths greater than 30 bp are
retained for further analysis. However, due to limitations in sequencing technology, it
has been observed that there are many false SVs in simple repeat regions. To address
this issue, FindCSV implements a stricter criterion to remove false SVs specifically in
simple repeat regions. The determination of whether a region is a simple repeat region is
described in Sect. 7 of the supplementary file. When a candidate SV is located in a sim-
ple repeat region, FindCSV examines the SV lengths of all reads at that location. If it is
found that more than half of the reads have SV lengths greater than 40 bp, the candidate
SV is considered valid and retained for further analysis. By employing this stricter crite-
rion, FindCSV aims to mitigate the impact of false SVs in simple repeat regions, ensuring
that only reliable SVs are included in the final results.
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Finally, for each candidate SV that is retained after the filtering process, FindCSV per-
forms the following calculations: the reliable read count (R.) and the support read count
(Rs). These metrics are then used to calculate the support rate, denoted as Rate, for each
candidate SV.

Rate = Rg/R. * 100%

If the support rate of a candidate SV is determined to be greater than 20% and the num-
ber of supporting reads exceeds 3 (default threshold), FindCSV considers these SVs as
true positive SVs and includes them in the final output. The output SVs are then saved in
a Variant Call Format file.

Performance measure

To assess the performance of different detection methods, this paper employs three
evaluation metrics: Recall, Precision, and F1-score. These metrics provide quantitative
measures of the method’s ability to accurately detect and classify true positive and false
positive results. All three measurements range between 0 and 1, and they are defined as

follows:
TP
Recall = ———
TP + FN
. TP
Precision = ———
TP + FP
2« recall * precision
F1-score =

recall + precision

Please note that in the context of evaluating the performance of a detection method, the
following definitions are used: TP (True Positives) refers to the number of SVs that are
correctly identified by the method and also appear in the benchmark dataset. TP+FN
corresponds to the total number of SVs present in the benchmark dataset, regardless of
whether they are detected by the method or not. TP+FP represents the total number of
SVs predicted by the method, including both true positives and false positives.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/512859-024-05937-w.

[ Additional file 1 }

Acknowledgements
We would like to thank the helpful discussion with Professor Wing-Kin Sung in the computing school of NUS.

Author Contributions

YZ designed the method and implemented the algorithm and complete the manuscript. XS is the major coordina-
tor, who contributed a lot of time and effort to the discussion of this project. All authors read and approved the final
manuscript.

Funding

Publication costs were funded by the National Natural Science Foundation of China (Grant No. 62072374). This Project
has been funded by the National Natural Science Foundation of China (Grant Nos. 61702420, 61332014, 61702420
and 61772426) and the Top International University Visiting Program for Outstanding Young Scholars of Northwestern
Polytechnical University.

Availability of data and materials
The FindCSV is available at https://github.com/nwpuzhengyan/FindCSV. Other datasets’download links are shown in the
supplementary file.


https://doi.org/10.1186/s12859-024-05937-w
https://github.com/nwpuzhengyan/FindCSV

Zheng and Shang BMC Bioinformatics (2024) 25:315

Declarations

Ethics approval consent to participate
Not Applicable.

Consent for publication
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 24 March 2024 Accepted: 18 September 2024
Published online: 28 September 2024

References

1.

2.

20.

21.

22.

23.

24,

Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, Zhang Y, Ye K, Jun G, Hsi-Yang Fritz M,
et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015,526(7571):75-81.

Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet.
2011;12(5):363-76.

Macintyre G, Ylstra B, Brenton JD. Sequencing structural variants in cancer for precision therapeutics. Trends Genet.
2016,32(9):530-42.

Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of genomic structural variation: insights from
and for human disease. Nat Rev Genet. 2013;14(2):125-38.

Rovelet-Lecrux A, Hannequin D, Raux G, Meur NL, Laquerriere A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercel-
letto M, et al. App locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral
amyloid angiopathy. Nat Genet. 2006;38(1):24-6.

Hedges DJ, Hamilton-Nelson KL, Sacharow SJ, Nations L, Beecham GW, Kozhekbaeva ZM, Butler BL, Cukier HN,
Whitehead PL, Ma D, et al. Evidence of novel fine-scale structural variation at autism spectrum disorder candidate
loci. Mol Autism. 2012;3:1-11.

Dennenmoser S, Sedlazeck FJ, Iwaszkiewicz E, Li X-Y, Altmdiller J, Nolte AW. Copy number increases of transposable
elements and protein-coding genes in an invasive fish of hybrid origin. Mol Ecol. 2017,26(18):4712-24.

Lupski JR. Structural variation mutagenesis of the human genome: Impact on disease and evolution. Environ Mol
Mutagen. 2015;56(5):419-36.

Chiang C, Scott AJ, Davis JR, Tsang EK, Li X, KimY, Hadzic T, Damani FN, Ganel L, et al. The impact of structural varia-
tion on human gene expression. Nat Genet. 2017;49(5):692-9.

Zichner T, Garfield DA, Rausch T, Stttz AM, Cannavo E, Braun M, Furlong EE, Korbel JO. Impact of genomic structural
variation in drosophila melanogaster based on population-scale sequencing. Genome Res. 2013;23(3):568-79.

. Jeffares DC, Jolly C, Hoti M, Speed D, Shaw L, Rallis C, Balloux F, Dessimoz C, Béhler J, Sedlazeck FJ. Transient struc-

tural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat Commun.
2017,8(1):14061.

Quinlan AR, Hall IM. Characterizing complex structural variation in germline and somatic genomes. Trends Genet.
2012,28(1):43-53.

Weckselblatt B, Rudd MK. Human structural variation: mechanisms of chromosome rearrangements. Trends Genet.
2015;31(10):587-99.

Hadi K, Yao X, Behr JM, Deshpande A, Xanthopoulakis C, Tian H, Kudman S, Rosiene J, Darmofal M, DeRose J,

et al. Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs. Cell.
2020;183(1):197-210.

Rausch T, Zichner T, Schiattl A, Stiitz AM, Benes V, Korbel JO. Delly: structural variant discovery by integrated paired-
end and split-read analysis. Bioinformatics. 2012;28(18):333-9.

Layer RM, Chiang C, Quinlan AR, Hall IM. Lumpy: a probabilistic framework for structural variant discovery. Genome
Biol. 2014;15:1-19.

Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Kallberg M, Cox AJ, Kruglyak S, Saunders CT. Manta:
rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics.
2016,32(8):1220-2.

Trappe K, Emde A-K, Ehrlich H-C, Reinert K. Gustaf: detecting and correctly classifying SVs in the NGS twilight zone.
Bioinformatics. 2014;30(24):3484-90.

Rajaby R, Sung W-K. Survindel: improving CNV calling from high-throughput sequencing data through statistical
testing. Bioinformatics. 2021,37(11):1497-505.

Chen Y, Wang A, Barkley C, Zhao X, Gao M, Edmonds M, Chong Z. Debreak: deciphering the exact breakpoints of
structural variations using long sequencing reads (2022)

Jiang T, LiuY, Jiang Y, LiJ, GaoY, Cui Z, Liu'Y, Liu B, Wang Y. Long-read-based human genomic structural variation
detection with cuteSV. Genome Biol. 2020;21:1-24.

Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, Von Haeseler A, Schatz MC. Accurate detection of
complex structural variations using single-molecule sequencing. Nat Methods. 2018;15(6):461-8.

Smolka M, Paulin LF, Grochowski CM, Horner DW, Mahmoud M, Behera S, Kalef-Ezra E, Gandhi M, Hong K, Pehlivan
D, et al. Comprehensive structural variant detection: from mosaic to population-level. BioRxiv. 2022-04 (2022)
Cretu Stancu M, Van Roosmalen MJ, Renkens |, Nieboer MM, Middelkamp S, De Ligt J, Pregno G, Giachino D, Man-
drile G, Espejo Valle-Inclan J, et al. Mapping and phasing of structural variation in patient genomes using nanopore
sequencing. Nat Commun. 2017;8(1):1326.

Page 18 of 19



Zheng and Shang BMC Bioinformatics (2024) 25:315

25.

26.

27.

28.

29.

30.
31

32.

33.

34.
35.

36.

37.

38.

39.

40.

Gong L, Wong C-H, Cheng W-C, Tjong H, Menghi F, Ngan CY, Liu ET, Wei C-L. Picky comprehensively detects high-
resolution structural variants in nanopore long reads. Nat Methods. 2018;15(6):455-60.

Heller D, Vingron M. SVIM: structural variant identification using mapped long reads. Bioinformatics.
2019;35(17):2907-15.

English AC, Salerno WJ, Reid JG. Pbhoney: identifying genomic variants via long-read discordance and interrupted
mapping. BMC Bioinform. 2014;15:1-7.

Lin J,Wang S, Audano PA, Meng D, Flores JI, Kosters W, Yang X, Jia P, Marschall T, Beck CR, et al. SVision: a deep learn-
ing approach to resolve complex structural variants. Nat Methods. 2022;19(10):1230-3.

ZhengY, Shang X. SVcnn: an accurate deep learning-based method for detecting structural variation based on
long-read data. BMC Bioinform. 2023;24.

Ho SS, Urban AE, Mills RE. Structural variation in the sequencing era. Nat Rev Genet. 2020;21(3):171-89.

Mantere T, Kersten S, Hoischen A. Long-read sequencing emerging in medical genetics. Front Genet.
2019;10:432668.

Dashnow H, Lek M, Phipson B, Halman A, Sadedin S, Lonsdale A, Davis M, Lamont P, Clayton JS, Laing NG, et al.
Stretch: detecting and discovering pathogenic short tandem repeat expansions. Genome Biol. 2018;19:1-13.

Chiu R, Rajan-Babu I-S, Friedman JM, Birol I. Straglr: discovering and genotyping tandem repeat expansions using
whole genome long-read sequences. Genome Biol. 2021;22(1):224.

Roberts RJ, Carneiro MO, Schatz MC. The advantages of SMRT sequencing. Genome Biol. 2013;14:1-4.

Jain M, Olsen HE, Paten B, Akeson M. The oxford nanopore minion: delivery of nanopore sequencing to the genom-
ics community. Genome Biol. 2016;17:1-11.

Zook JM, Hansen NF, Olson ND, Chapman L, Mullikin JC, Xiao C, Sherry S, Koren S, Phillippy AM, Boutros PC, et al. A
robust benchmark for detection of germline large deletions and insertions. Nat Biotechnol. 2020;38(11):1347-55.
Hon T, Mars K, Young G, Tsai Y-C, Karalius JW, Landolin JM, Maurer N, Kudrna D, Hardigan MA, Steiner CC, et al. Highly
accurate long-read HiFi sequencing data for five complex genomes. Sci Data. 2020;7(1):399.

Garg S, Fungtammasan A, Carroll A, Chou M, Schmitt A, Zhou X, Mac S, Peluso P, Hatas E, Ghurye J, et al. Chromo-
some-scale, haplotype-resolved assembly of human genomes. Nat Biotechnol. 2021;39(3):309-12.

Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger MR, Altemose N, Uralsky L, Gershman A,

et al. The complete sequence of a human genome. Science. 2022;376(6588):44-53.

1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature
2012,491(7422):56.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Page 19 of 19



	FindCSV: a long-read based method for detecting complex structural variations
	Abstract 
	Background: 
	Result: 
	Conclusions: 

	Background
	Results
	Details of research data
	Details of current detection methods
	Benchmark and selected samples
	Detection evaluation for simple SVs
	Detection evaluation for CSVs
	Detection evaluation on simulated datasets
	The running time and memory

	Conclusions
	Methods
	The design of FindCSV
	Overview of FindCSV
	Identify candidate SV regions
	Parameter estimation 
	Detect candidate SV regions 
	Convert regions to images 
	Train LetNet model 

	Cluster reads and construct consensus sequences
	Cluster reads in candidate SV region 
	Construct consensus sequences 

	Filter and output SVs

	Performance measure

	Acknowledgements
	References


