
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Fan and Waldmann BMC Bioinformatics (2024) 25:322
https://doi.org/10.1186/s12859-024-05940-1

BMC Bioinformatics

Tabular deep learning: a comparative study
applied to multi-task genome-wide prediction
Yuhua Fan1 and Patrik Waldmann1*

Abstract

Purpose: More accurate prediction of phenotype traits can increase the success
of genomic selection in both plant and animal breeding studies and provide more
reliable disease risk prediction in humans. Traditional approaches typically use regres-
sion models based on linear assumptions between the genetic markers and the traits
of interest. Non-linear models have been considered as an alternative tool for modeling
genomic interactions (i.e. non-additive effects) and other subtle non-linear patterns
between markers and phenotype. Deep learning has become a state-of-the-art non-
linear prediction method for sound, image and language data. However, genomic
data is better represented in a tabular format. The existing literature on deep learning
for tabular data proposes a wide range of novel architectures and reports successful
results on various datasets. Tabular deep learning applications in genome-wide pre-
diction (GWP) are still rare. In this work, we perform an overview of the main families
of recent deep learning architectures for tabular data and apply them to multi-trait
regression and multi-class classification for GWP on real gene datasets.

Methods: The study involves an extensive overview of recent deep learning archi-
tectures for tabular data learning: NODE, TabNet, TabR, TabTransformer, FT-Transformer,
AutoInt, GANDALF, SAINT and LassoNet. These architectures are applied to multi-trait
GWP. Comprehensive benchmarks of various tabular deep learning methods are con-
ducted to identify best practices and determine their effectiveness compared to tradi-
tional methods.

Results: Extensive experimental results on several genomic datasets (three for multi-
trait regression and two for multi-class classification) highlight LassoNet as a standout
performer, surpassing both other tabular deep learning models and the highly efficient
tree based LightGBM method in terms of both best prediction accuracy and comput-
ing efficiency.

Conclusion: Through series of evaluations on real-world genomic datasets, the study
identifies LassoNet as a standout performer, surpassing decision tree methods
like LightGBM and other tabular deep learning architectures in terms of both predictive
accuracy and computing efficiency. Moreover, the inherent variable selection property
of LassoNet provides a systematic way to find important genetic markers that contrib-
ute to phenotype expression.

Keywords: Tabular data, Multi-trait, Genome-wide prediction (GWP), Non-linear
models

*Correspondence:
Patrik.Waldmann@oulu.fi

1 Research Unit of Mathematical
Sciences, University of Oulu, P.O.
Box 8000, 90014 Univesity of
Oulu, Finland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05940-1&domain=pdf

Page 2 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

Background
Genome-wide prediction has become widespread as a valuable tool to estimate genetic
merit in animal and plant breeding [1, 2]. In humans, GWP has been widely used to
predict disease risk of highly polygenic complex human traits [3]. Genomic data is
usually represented in matrices with markers in columns and individual observations
in rows. Linear mixed models for GWP either model the markers effects directly or
via pedigree based covariance models and both approaches often obtain competitive
results [4, 5], but comparative studies show that machine learning (ML) methods are
better in modelling various interactions in the genome [6]. In recent years, deep neural
networks have emerged as powerful tools across various domains, ranging from sound
and image analysis to natural language processing [7]. In these problems, the data points
are represented as vectors of structured homogeneous features. However, in many other
real-world applications, tabular data remains the most prevalent data type, consisting of
samples in rows and different features in columns that don’t follow any simple structure
[8, 9]. Over the past decade, numerous supervised, self-supervised, and semi-supervised
learning methods have been proposed to address the specific challenges associated with
modeling tabular data.

Decision tree models represent a widely adopted machine learning technique and
serve as the foundation for more sophisticated ensemble methods such as random
forests [10] and gradient boost decision trees (GBDT) [11–13]. Classical machine
learning approaches, including GBDT, have dominated tabular data applications due to
their superior performance. Various GBDT methods, such as XGBoost [11], LightGBM
[12], and CatBoost [13], construct a robust predictor by ensembling weaker predictors
through gradient descent in a functional space. They have been applied with success
across diverse domains [14–16]. Despite their ability to model non-linear dependencies,
decision trees struggle with out-of-distribution samples [17]. Furthermore, these
methods lack flexibility and ability to utilize pre-trained models, thereby limiting their
utility. However, they are computationally very efficient and can be utilized on big data
sets.

In the context of genomics, a lot of research effort has been invested into prediction of
molecular properties of organisms [18]. Single-layer neural networks have been utilized
in animal and plant breeding [19, 20]. These shallow neural networks have been found
to be prone to overfitting, although they are sometimes competitive with penalized
linear models. Recently, several applications of GWP using deep learning have been
studied and compared with other methods [21, 22]. The most commonly employed
deep learning architectures in genomic prediction are the multi-layer perceptron
(MLP) and one-dimensional convolutional neural networks (CNNs), which have been
used for GWP in for example humans [23], pigs [24], wheat [25, 26] and soybean [27].
Current research has demonstrated that the CNN-RNN method exhibit superior
performance compared to models based on random forest, deep fully connected neural
networks, and conventional Lasso regression [28]. A deep neural network was designed
to predict maize yield across 2,247 locations from 2008 to 2016 using both genotype and
environmental data in the yield testing stage [29]. Furthermore, a number of studies have
used multi-omics data to predict complex traits in various organisms, including animals,
humans and plants [30–32].

Page 3 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

The tabular representation of genomic data offers a structured framework for
organizing, analyzing, and interpreting complex biological information [33]. Except for
the usually underperforming MLP, few tabular deep learning models have been applied
to GWP tasks. One exception is the GPtransformer which is a Transformer-based deep
learning algorithm that was applied to predicting Fusarium related traits in Barley
[34]. Neural networks offer an end-to-end pipeline of hierarchical feature extractors
and a final estimator for tabular data, with components trained together to minimize
loss functions using gradient-based strategies. Unlike decision trees, neural networks
can to some extent maintain performance on out-of-distribution data [17]. Recent
research has highlighted deep learning as a promising alternative approach to decision
trees [9]. Based on Lasso regularization, three prominent models, the CNNGWP [24],
the LassoNet [35] and the Neural Lasso [36], underscore the flexibility and efficiency
of regularized deep learning methods. Developed by researchers at Google Cloud AI,
TabNet [37] leverages the advantages of decision trees and attention mechanisms to
effectively learn from tabular data, making it well-suited for tasks such as classification
and regression. Additionally, NODE [38] combines neural oblivious decision trees with
dense connections, applying the ensemble method of oblivious decision trees to neural
networks using differentiable trees based on the entmax function. TabR [39] introduces
a retrieval-augmented tabular deep learning architecture, achieving strong performance
through attention-based retrieval components. AutoInt [40] reduces data sparsity by
transforming high-dimensional data into a low-dimensional space using an embedding
layer with a gating mechanism for feature representation learning and feature selection.
Moreover, GANDALF [41] proposes a gated adaptive network for deep automated
feature learning, incorporating a gating mechanism for feature representation learning.
Tab-Transformer [42] utilizes self-attention based transformers to transform categorical
feature embeddings into robust contextual embeddings for improved prediction
accuracy. FT-Transformer [43], adapted from the transformer architecture, embeds all
features before applying a stack of transformer layers to operate on the feature level,
specifically designed for tabular data. By leveraging several mechanisms to overcome the
difficulties of training on tabular data, SAINT [44] was proposed to boost performance
for semi-supervised problems with a self-attention and intersample attention
transformer.

Compared to typical linear statistical models, multi-task deep learning for genomic
prediction tasks presents a more flexible and powerful framework by leveraging feature
representation learning and facilitating learning across tasks. Although multi-task deep
learning models perform well for classification or regression tasks on homogeneous
input data (e.g., image, audio, and text data), its application to tabular genomic data still
pose a challenge in the high-dimensional setting where the number of feature variables
is considerably higher than the number of observations. In this paper, we present a
comparative GWP study of tabular deep learning together with LightGBM as a GBDT
representative using five real datasets for both regression and classification.

Page 4 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

Results
Model comparison

Multi-trait regression: The results from the regression tasks are summarized in the
Table 1. The comparative analysis of different models for multi-trait regression tasks
across three datasets-Mice, Pig, and Wheat-reveals notable variations in performance,
primarily measured by Mean Squared Error (MSE) and correlation coefficient (r).
LassoNet consistently outperforms other models, achieving the lowest MSE and highest
correlation across all datasets (e.g., Mice data: MSE = 0.135 ± 0.003, r = 0.735; Pig data:
MSE = 0.151 ± 0.002, r = 0.722). This indicates LassoNet’s superior ability to capture the
important information in the underlying data structure. In contrast, models like NODE
and TabR show relatively poor performance, with higher MSE and lower correlation
values, indicating less accurate predictions (e.g., NODE on Pig data: MSE = 0.242 ±
0.007, r = 0.531). GANDALF demonstrates competitive results, especially in the Wheat
dataset, where it records an MSE of 0.191 ± 0.004 and a correlation of 0.651, close to
LassoNet’s performance. The TabNet models, both supervised and unsupervised,
perform moderately well across the datasets, with supervised TabNet slightly
outperforming the unsupervised version. For instance, on the Pig data, supervised
TabNet achieves an MSE of 0.225 ± 0.006 and r = 0.607, whereas the unsupervised
version shows a slightly higher MSE of 0.243 ± 0.004 and r = 0.621. FT-Transformer,
Tab-Transformer and SAINT offer a middle ground in terms of performance, with MSE
values consistently lower than NODE but higher than LassoNet, reflecting a decent
trade-off between complexity and predictive power. The results clearly demonstrate that
LassoNet is the most effective model for multi-trait regression tasks over these datasets.

Multi-class classification: The experimental results for multi-class classification for
GWD are reported in Table 2. In the multi-trait classification tasks, the performance
of various models was evaluated based on their accuracy, area under the curve (AUC),
and Brier score across two datasets: the 14-cancer microarray data and the Loblolly pine
data (subset). Among the models, LassoNet once again emerged as the top performer,
achieving the highest accuracy (90.1 ± 0.17) and AUC (91.5 ± 0.152) on the microarray
data, and further outperforming other models on the Loblolly pine data with an accu-
racy of 93.5 ± 0.19 and an AUC of 96.7 ± 0.190, coupled with the lowest Brier scores
(0.174 and 0.183, respectively). It is clear that LassoNet has strong capability in both pre-
dictive power and reliability. In contrast, TabNet (unsupervised) displayed the weakest
performance, with the lowest accuracy (81.2 ± 0.37) and AUC (84.5 ± 0.205) on the
microarray data as well as worse metrics on the Loblolly pine data (accuracy of 90.3 ±
0.25 and AUC of 93.6 ± 0.233). This highlights the challenges faced by unsupervised
approaches in these prediction tasks. GANDALF and FT-Transformer also showed com-
petitive results, with GANDALF reaching an accuracy of 87.4 ± 0.33 and an AUC of 89.7
± 0.163 on the microarray data. On the Loblolly pine data the accuracy was 91.5 ± 0.26
and AUC 95.1 ± 0.194, indicating relatively robust performance. FT-Transformer also
positioned itself as a strong contender.

Interpretability analysis

In the context of multi-trait genomic prediction, interpretability of models is becoming
an increasingly important issue for understanding the influence of specific genomic

Page 5 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

features on model predictions [45, 46]. Feature selection of input variables provides a
straightforward interprebablity of the evaluated models in this study. Compared with
other methods, LassoNet offers a high interpretability due to its use of L1 regularization
(Lasso penalty), which by its inherent sparsity operation identify which input features
are most relevant for making predictions (139 on the mice data, 952 on the pig data,
55 on the wheat data, 764 on the 14-cancer microarray data, and 99 on the Loblolly
pine data). By selecting a subset of features, LassoNet can focus on the most influential
variables while ignoring irrelevant or redundant ones. LightGBM can also provide
interpretable results in terms of feature importance and decision paths within the trees.
However, LightGBM does not rely on L1 regularization for interpretation, but instead
provides two different types of feature importance: split and gain importance. On the
other side, the tabular deep learning methods lack the inherent interpretabily due to
their more complex neural network structures. This complexity enables them to capture
the patterns present in genomic data but also make interpretation and understanding
of model decision more challenging. We only visualize the selected coefficients for the
five datasets using LassoNet due to the superiority of this model. Figures 1 and 2 shows
the selected coefficients for multi-trait regression and multi-class classification over five
datasets.

Computation time

To improve the computing efficiency, we use parallel computing with 5 GPUs for the
different models. The time required for one BO iteration of the models are summarized
in Table 3. We can clearly see that LightGBM consistently outperforms other models,
achieving the fastest execution times across all datasets. For instance, LightGBM
completes one Bayesian Optimization (BO) iteration on the Mice dataset in only 4.9 ±
0.4 seconds (s), significantly faster than any other model. Similarly, it maintains a clear
advantage on larger datasets such as Pig, Wheat, and 14-cancer microarray data, with
times of 33.2 ± 3.5, 25 ± 2.6, and 8.4 ± 0.52 s, respectively. In contrast, NODE and
Tab-R exhibit the slowest performance, particularly on the Pig and Wheat datasets
where NODE takes 207 ± 11.7 and 240 ± 14.3 s, respectively, and Tab-R requires
175 ± 10.7 and 271 ± 11.6 s. This indicates that these models are not optimized for
computational speed, especially in a multi-GPU setting. LassoNet and AutoInt show
competitive performance with LassoNet nearly matching LightGBM on the Loblolly
pine dataset, finishing in 4.1 ± 1.1 s. However, they generally lag behind LightGBM
on the other datasets. Models like TabNet (both unsupervised and semi-supervised),
FT-Transformer, Tab-Transformer, and SAINT offer moderate performance, with
execution times ranging between those of the fastest and slowest models. These
models, while not as fast as LightGBM, are notably quicker than NODE and Tab-R,
particularly on smaller datasets like the Mice and 14-cancer microarray data.

Page 6 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

Discussion
In one earlier study [47], we evaluated several linear sparse proximal multi-task learning
(SPMTL) methods on the same genomic datasets as in the current study. The
regularization methods there include Lasso, group Lasso, sparse group Lasso, nuclear
norm, and the L2, 12 norm. Among the evaluated methods, the L2, 12 norm achieved the

best out-of-sample prediction performance across all datasets with the smallest test
MSE and the highest r on the mice data (MSE = 0.151, r = 0.702) , pig data
(MSE = 0.160, r = 0.71) , and wheat data (MSE = 0.180, r = 0.620).

Fig. 1 Selected coefficients using LassoNet for multi-trait regression over three datasets, with the number
of features selected on a specific trait noted in parentheses (zero values in the coefficient matrix have been
removed)

Page 7 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

Compared with L2, 12 norm from SPMTL methods, the current study presents an

obvious reduction in test MSE with LassoNet across three datasets: a decrease of
10.6% for the mice datasets, 5.7% for the pig data, and 17.2% for the wheat dataset,
respectively. Moreover, employing Markov Chain Monte Carlo (MCMC)-based

Fig. 2 Selected coefficients using LassoNet over two datasets for multi-class classification, with the number
of features selected on a specific task noted in parentheses (zero values in the coefficient matrix have been
removed)

Table 1 Comparison of model performance across different datasets for multi-trait regression tasks

Bold indicates the best results

Mice data Pig data Wheat data

 Model MSE (mean ±
stddev)

r MSE (mean ±
stddev)

r MSE (mean ±
stddev)

r

LightGMB 0.208 ± 0.005 0.572 0.203 ± 0.006 0.652 0.160 ± 0.004 0.657

NODE 0.231 ± 0.008 0.501 0.242 ± 0.007 0.531 0.223 ± 0.006 0.514

LassoNet 0.135 ± 0.003 0.735 0.151 ± 0.002 0.722 0.149 ± 0.003 0.691
AutoInt 0.253 ± 0.007 0.571 0.267 ± 0.006 0.633 0.228 ± 0.005 0.641

TabNet
(unsupervised)

0.301 ± 0.006 0.566 0.243 ± 0.004 0.621 0.218 ± 0.004 0.635

TabNet (supervised) 0.252 ± 0.008 0.554 0.225 ± 0.006 0.607 0.216 ± 0.005 0.626

FT-Transformer 0.221 ± 0.005 0.531 0.219 ± 0.004 0.585 0.206 ± 0.004 0.602

Tab-Transformer 0.223 ± 0.006 0.526 0.221 ± 0.005 0.563 0.209 ± 0.005 0.558

TabR 0.241 ± 0.009 0.503 0.230 ± 0.007 0.534 0.211 ± 0.006 0.541

GANDALF 0.211 ± 0.006 0.571 0.214 ± 0.005 0.637 0.191 ± 0.004 0.651

SAINT 0.224 ± 0.007 0.537 0.227 ± 0.006 0.581 0.210 ± 0.005 0.576

Page 8 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

multi-task Bayesian ridge regression (BRR) and Bayesian spike-and-slab analysis fur-
ther confirms the efficacy of LassoNet. Specially, the test MSE exhibits significant
improvements with a reduction of 48.8% compared to BRR on the mice dataset, 50.3%
compared to spike-and-slab on the pig dataset, and 43.5% compared to BRR on the
wheat data. These results demonstrate that LassoNet is very competitive in
comparison to both linear SPMTL methods, Bayesian GWP methods and other
tabular neural network methods in performing joint predictions across correlated
traits.

In [48], linear classifiers with eight different regularization methods were
assessed on the microarray data that contains 14 cancer classes. These techniques

Table 2 Comparison of different models for multi-class classification tasks on two datasets

Bold indicates the best results

14-cancer microarray data Loblolly pine data (subset)

 Model Accuracy
(mean ±
stddev)

AUC (mean ±
stddev)

Brier score Accuracy
(mean ±
stddev)

AUC (mean ±
stddev)

Brier score

LightGMB 85.7± 0.32 88.9 ± 0.171 0.202 91.5± 0.27 93.7 ± 0.201 0.206

NODE 85.1± 0.35 88.7 ± 0.237 0.243 91.1± 0.31 93.4 ± 0.223 0.301

LassoNet 90.1 ± 0.17 91.5 ± 0.152 0.174 93.5 ± 0.19 96.7 ± 0.190 0.183
AutoInt 85.2± 0.33 88.6 ± 0.263 0.381 91.5± 0.30 94.3 ± 0.207 0.372

TabNet
(unsupervised)

81.2± 0.37 84.5 ± 0.205 0.406 90.3± 0.25 93.6 ± 0.233 0.383

TabNet
(supervised)

82.3± 0.37 86.1 ± 0.207 0.355 90.1± 0.33 93.6 ± 0.246 0.361

FT-Transformer 84.7± 0.34 88.8 ± 0.181 0.235 90.8± 0.34 94.1 ± 0.252 0.245

Tab-Transformer 83.4± 0.34 88.5 ± 0.177 0.238 90.6± 0.32 94.0 ± 0.243 0.253

TabR 85.1± 0.35 88.6 ± 0.183 0.244 91.4± 0.27 93.5 ± 0.221 0.355

GANDALF 87.4± 0.33 89.7 ± 0.163 0.227 91.5± 0.26 95.1 ± 0.194 0.241

SAINT 84.6± 0.32 88.8 ± 0.175 0.241 90.7± 0.27 93.5 ± 0.185 0.263

Table 3 Time report in seconds (s) (mean ± stddev) of one BO iteration using 5 GPUs for different
models on the five data sets

Bold indicates the best results

Data sets

 Model Mice data (s) Pig data (s) Wheat data (s) 14-cancer
microarray
data (s)

Loblolly pine
data (subset)
(s)

LightGBM 4.9 ± 0.4 33.2 ± 3.5 25 ± 2.6 8.4 ± 0.52 4.1 ± 0.27
NODE 46.3 ± 6.3 207 ± 11.7 240 ± 14.3 33.1 ± 3.7 9.1 ± 2.1

LassoNet 5.6 ± 1.1 36.1 ± 3.3 32 ± 3.6 8.8 ± 2.7 4.1 ± 1.1
AutoInt 9.3 ± 1.7 56.8 ± 4.4 53 ± 3.6 9.1 ± 2.2 4.4 ± 1.2

TabNet (unsupervised) 19.1 ± 5.1 75.5 ± 4.3 123 ± 9.1 10.9 ± 2.3 5.7 ± 1.7

TabNet (semi-supervised) 16.9 ± 5.4 67.3 ± 6.1 113 ± 7.7 10.1 ± 4.1 5.2 ± 1.3

FT-Transformer 14.1 ± 3.9 62.3 ± 5.6 147 ± 10.4 13.7 ± 4.0 6.8 ± 2.2

Tab-Transformer 16.3 ± 3.6 85.3 ± 4.8 93 ± 6.6 11.2 ± 5.3 5.9 ± 0.9

Tab-R 55.1 ± 5.5 175 ± 10.7 271 ± 11.6 35.4 ± 7.1 11.2 ± 2.3

GANDALF 16.5 ± 3.1 52.3 ± 6.2 98 ± 5.7 10.2 ± 2.3 5.0 ± 1.0

SAINT 15.3 ± 2.1 67.1 ± 4.2 97.3 ± 4.9 14.1 ± 3.7 7.5 ± 2.1

Page 9 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

included nearest shrunken centroids, L2-penalized discriminant analysis, support
vector classifier, Lasso regression (one vs all), k-nearest neighbors, L1/L2 penalized
multinomial, and elastic-net penalized multinomial regression. Among these
methods, the elastic-net penalized multinomial method achieved the highest accuracy
of 78.1%. In contrast, LassoNet attained an accuracy of 90.1% on the same 14-cancer
microarray data, clearly outperforming the evaluated linear classifiers employing
different regularization approaches in facilitating joint predictions across multiple
traits.

LassoNet can capture complex interaction effects between features via its neural
network module. When input features are correlated or interact with each other in
predicting the target phenotype, LassoNet assigns non-zero coefficients to these features
to account for their joint effect. However, because of the model architecture and the
regularization that encourage sparsity, LassoNet’s ability to capture interactions is
smaller compared to the interaction-based models like AutoInt, TabR and TabNet.
Additionally, the evaluations indicate that some tabular deep learning models can
achieve comparable or competitive results in classification tasks across our datasets
(GANDALF). For the models based on transformers (AutoInt, TabTransformer,
TabNet and SAINT), we can notice that a self-attention mechanism within the encoder
can capture more complex interactions, but it doesn’t improve results compared to
LassoNet since they lack efficient regularization procedures.

Conclusion
In this paper, we provide an overview and comparison of recent deep learning
architectures tailored for tabular data and their application to multi-trait genome-wide
prediction (MTGWP). Through extensive evaluations on real-world genomic datasets,
the study identifies LassoNet as a standout performer, surpassing decision tree methods
like LightGBM and other tabular deep learning architectures in terms of both predictive
accuracy and computing efficiency. Moreover, the inherent variable selection property of
LassoNet provides a systematic way to find important genetic markers that contribute to
phenotype expression.

Methods
Definitions

The key part of tabular deep learning is a deep neural network and usually in the form of
a feed-forward network. A deep neural network defines a mapping f̂ [7] following

that learns the model parameters W (i.e. the weights of a neural network) that results
in the best approximation of true underlying and unknown function f. In this case,
X ∈ Rp is the input feature data with corresponding output target Y ∈ Zk for k classes
or Y ∈ Rk for k regression tasks represented as a set of tuples {xi, yi}i∈n . Throughout this
study, we focus on genomic data X of dimension n× p with associated multiple traits Y
of dimension n× k with the restriction that the all traits are of the same modality (i.e.
either continuous or binary). However, the input data can be of different modalities
(for example a mixture between DNA marker and RNA expression data) which

(1)Y = f (X) ≈ f̂ (X;W),

Page 10 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

fundamentally contrasts with the homogeneous nature of image, audio or text data. The
network used in this work is feed-forward, which means that the input information flows
in one direction to the output without any feedback connections [7]. Multi-task tabular
deep learning involves training a model to simultaneously minimize a multivariate loss
function L(f̂ (X;W),Y) . The goal is to capitalize on possible shared representations
across related tasks in order to enhance the model’s performance.

Tabular neural networks

NODE

Inspired by CatBoost [13], the neural oblivious decision ensemble (NODE) [38] is
designed to leverage the interpretability of decision trees while benefiting from the
expressive prediction power of neural networks.

Each oblivious decision module in NODE consists of several layers of decision nodes.
At each layer l, each node makes a decision based on a splitting feature g and a learnable
threshold b. For the l-th layer and node j, the decision function can be expressed as

where H(·) denotes the Heaviside step function and dl,j(X) is the output of the
decision node. Then all r decision nodes in the l-th layer will produce a decision vector
vl = [dl,1(X), dl,2(X), · · · , dl,r(X)] . NODE uses an ensemble of such decision trees
through these output nodes.

To make the oblivious decision trees (ODTs) differentiable, the splitting feature choice gl,j
and the comparison operator H(gl,j − bl,j) are replaced by their differentiable counterparts.
The choice function is replaced by a weighted sum of features, with weights computed
based on the α − entmax transformation [49] over the learnable feature selection matrix.
The Heaviside function H(·) is relaxed to a two-class entmax , which is denoted as
σα(v) = entmaxα([v, 0]) . Its scaled version cl,j(X) = σα(

gl,j(v)−bl,j
τl,j

) is used due to potential

variations in feature scales by using learnable parameters. The computed cl,j(v) is combined
into a “choice” tensor C ∈ R2d . The final prediction is then computed as a weighted linear
combination of response tensor entries R with weights from the entries of choice tensor C.
Assume that the tree outputs are one-dimensional ĥ(v) and each NODE layer contains
several trees whose outputs are concatenated by m individual trees [ĥ1(v), · · · , ĥm(v)] .
Then the NODE layer can be trained alone or within a complex structure, just like fully-
connected layers that serve as input for the subsequent layers. Similar to DenseNet [50],
this architecture is a sequence of l NODE layers, where each layer uses a concatenation of
previous layers as its input. This aggregated output is then passed through a final fully
connected layer to produce the final prediction Ŷ , with the structure of this final layer
depending on the task (regression or classification).

TabR

TabR [39] is a feed-forward network incorporating a customized t-Nearest-Neighbors-
like component in the middle layer to produce a better prediction. Its main idea is to
utilize the self-attention mechanism of transformers to capture complex interactions
between features in tabular data.

(2)dl,j(X) = H(gl,j − bl,j),

Page 11 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

With the feature matrix X, a feed-forward retrieval-free network f (X) = P(E(X))
is first partitioned into two parts: an encode E : X → Rp

′
 part and a predictor

P : Rp
′
→ PŶ part. To make the model incrementally retrieval-based, a retrieval

module R in a residual branch is added after E, where X̃ ∈ Rp
′
 is the intermediate

representation of the target object, {x̃i}i∈Icand ⊂ Rp
′
 are the intermediate representations

of the candidates and {yi}i∈Icand ⊂ Y are the labels of the candidates.
The retrieval module R is defined in the spirit of k-nearest neighbors. For the target

object’s representation, the retrieval module takes the x1,...,t nearest neighbors among the
candidates x̃i according to the similarity module S and aggregates their values produced
by the value module V with the definitions

where WQ , WK , WV are the weights for the corresponding transformation. They play a
critical role in transforming inputs to better capturing the similarities between entries,
contributing to the model’s ability to learn complex patterns and relationships within the
data. By adding context labels, the performance of the similarity S and the value module
V can be improved. Finally, the formal complete description of TabR which implements
the R module is

where t = WK (X̃) , ti = WK (x̃i)and the operation of O is defined as
O(·) = LinearWithoutBias(Dropout(Relu(Linear(·)))) . The retrieval module R enriches
the target object’s representation by retrieving and processing relevant objects from the
candidates. Finally, the predictor P makes a prediction.

TabNet

TabNet [37] combines the strengths of both tree-based methods and deep neural
networks using a sequential attention mechanism. It emerges as a deep learning
model embodying the feature selection principles of decision trees, with its encoder
comprising a feature transformer, an attentive transformer, and feature masking.

The features in X will be the input to a batch normalization layer which yields
X

′ ∈ Rw×z , where w is the batch size and z is the dimension. Assume the number
of hidden layers is l, the output of the feature transformer then becomes w × l
which is split into two parts to construct a gated linear unit: a standard decision
step ρ[i] ∈ Rw×la and a shared across decision step a[i] ∈ Rw×lρ . The former is used
for the final output of TabNet, and the latter is used as an input of the attentive
transformer. Each block is composed of a fully-connected (FC) layer, batch
normalization (BN) and a gated linear unit (GLU). For the attentive transformer, the
main function is to get a learnable mask layer M[j] ∈ Rw×z according to

where γi(a[i − 1])) is from the FC to BN, and sparsemax is a mapping from the vector
to a simplex that obtains sparsity. The scaling prior - P[j-1] has a close connection to the

(3)S(X̃ , x̃i) = WQ(X̃)
TWK (x̃i) V(X̃ , x̃i, yi) = WV (x̃i),

(4)S(X̃ , x̃i) = −�t − ti�2 V(X̃ , x̃i, yi) = Wyi +O(t − ti),

(5)M[j] = sparsemax(P[j − 1] · γi(a[j − 1])),

Page 12 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

mask M[j] via the features used in previous steps and one can notice that the initial value
of P[0] equals 1. To ensure the sparsity of M[j], a regularized constraint is given to the
parameters to make the distribution of M[j] more reasonable.

All the output from the earlier steps are summed to give the final output through
the FC layer. For the multi-task learning, each task-specific branch ends with
an output layer that produces a scalar output for the regression task. The shared
layers can facilitate the extraction of relevant features for multi-task learning and
the task-specific branches capture patterns specific to each multi-task regression
target. The TabNet decoder is composed of a feature transformer block at each step.
After reconstructing the features from the encoded representation, the aggregated
features will be passed through a fully connected layer to do the predictions Ŷ .

TabTransformer

Considering the characteristics of context embeddings, TabTransformer [42] is built
upon self-attention based transformers. This model comprises a column embedding
layer, a stack of l Transformer layers, and a multi-layer perceptron. Each Transformer
layer consists of a multi-head self-attention layer followed by a position-wise feed-
forward layer. For the tuples {xi, yi}i∈n , each of the xi is embedded into a parametric
embedding of dimension s using column embedding. Let eφi(xi) ∈ Rs be the embedding
of the xi feature, and Eφ(xcat) = {eφ1(x1), · · · , eφs′ (xs′)} is the set of embeddings for all
the categorical features. Then Eφ(xcat) serves as input to the sequential Transformer
layers fθ , which operate on parametric embeddings and return the corresponding
contextual embeddings hs′ where h ∈ Rs . These contextual embeddings are concatenated
along with the features to first form a vector which serves as the input to an MLP that is
used to predict the target Ŷ .

A self-attention layer in TabTransformer comprises three parametric matrices -
Key (K), Query (Q) and Value (V). Each input embedding is projected on to these
matrices to generate the corresponding vectors and attends to all other embeddings
through an attention head, which is computed as Attention(K ,Q,V) = A · V , where
A = softmax((QKT)/

√
k ′)(k ′ is the dimension of Key). The output of the attention head

is projected back to the embedding through a FC, which in turn is passed through two
position-wise feed-forward layers. The contextual embeddings are concatenated to form
the feature xcont . If we let δ be the cross-entropy for classification and the mean square
error for regression tasks, the prediction Ŷ can be obtained by minimizing the loss
function L(f̂ (X;W),Y) = δ(MLP(Transformer(Eφ(xcat)), xcont),Y).

FT‑Transformer

FT-Transformer performs feature transformations that enhance the model’s ability
to capture complex patterns [43]. It handles individual features independently before
combining them to make predictions. There are two important parts of FT-Transformer:
the feature tokenizer and the transformer.

The feature Tokenizer component first transforms the input feature X to embeddings
G ∈ Rm

′×n
′
 . The embedding for the feature xi is computed as

Page 13 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

where bi is the i-th feature bias, fi is implemented as the element-wise multiplication
with the weight matrix Wi . There is also a function f (cat)i implemented as a lookup table
W

(cat)
i for categorical features with one-hot vectors of the corresponding categorical

features eTi . Then, the vectors are stacked as G = stack[G1, · · · ,Gi,G
(cat)
1 , · · · ,G(cat)

i]
and the embedding of the [CLS] token (or “output token”) is appended to the G and l
Transformer layers F1, F2, · · · , Fl as

After using the PreNorm setting, the final representation of the [CLS] token is used
for prediction. For the multi-task learning situation, the initial layer of FT-Transformer
consists of a shared transform encoder that will process the input feature that are
propagated as the task-specific heads for each regression task. These heads are small
MLPs that take the output of the shared encoder and generate task-specific predictions.
Denoting the final representation of the [CLS] token as G[CLS]

l , then the prediction is
Ŷ = f (G

[CLS]
l ;W).

AutoInt

Given the limited ability of shallow networks to model interactions, AutoInt [40] is
designed based on transformer mechanisms that enhance the modelling capabilities
for feature interactions. The main idea of AutoInt is mapping of the original features to
sparse low dimensions and modeling of the interactions among the high-order features.

With an embedding vector υi for field i, the original feature xi is embedded into low
dense vectors through the embedding layer as σi = υixi . The output of the embedding
layer is a concatenation of multiple embedding vectors, which are the input of an
interaction layer. For the following interaction layer, a multi-head mechanism is utilized
to map the feature into multiple subspaces and generate the different feature interaction
pattern in these spaces. Further on, more high-order interactions will be produced
through stacking of interaction layers. For the feature σi in attention space I, there are
three vectors: WQ for query, WK for key, and WV for value, respectively. The similarity
between the feature σi and feature σj is first obtained as φI =< WI

Qσi,W
I
Kσj > , and then

the distribution of the attention is produced using softmax. With a weighted sum, the
new feature of σi can be acquired as σ̂iI.

For multiple attention spaces, the new feature from each space can be concatenated
to get the final representation of σi as σ̂i . To preserve the learned combinatorial features,
including raw individual features, a standard connection is added to the network

where WRes is the projection matrix and ReLU(z) = max(0, z) is the standard non-
linear activation function. Thus, the representation of each feature σi is updated into a
new representation σRes

i . By stacking multiple such layers, an arbitrary order of σ̂i can
be modeled. The output of the interacting layer is a set of feature vectors {σRes

i }pi=1 . By

(6)Gi = fi(xi)+ bi,

(7)G0 = stack[[CLS],G] Gi = Fi(Gi−1).

(8)σRes
i = ReLU(σ̂i +WResσi),

Page 14 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

concatenating all of the learned feature interactions, the aggregated representation will
be passed through a final layer for the predictions of Ŷ .

LassoNet

LassoNet is based on the sparsity idea of the Lasso and achieves feature sparsity by
allowing a feature to participate in a hidden unit only if its input connection is active
[35]. The features X and a residual feed-forward neural network F with an arbitrary
width and depth [51] can be described as

where gW is a feed-forward network with wights W (fully connected). The object
function of LassoNet for multi-task learning is

where L(θ ,W) is the loss on the training data set, and W 1
i denotes the weights for

feature i in the first hidden layer. The constraint means that the total amount of non-
linearity involving feature i according to the relative effect importance of xi as a main
effect. The residual link and the first hidden layer jointly pass through a hierarchical
soft-thresholding optimizer S(x) = sign(x) ·max{|x| − �, 0} . For the multi-task learning,
the layers of the neural network remain common across all tasks to capture shared
representations. The sparsity of the input layer weights gives complete control of the
feature sparsity of the network. When ν = 0 , all the hidden units are inactive and only
the skip connection remains which means that the formulation recovers exactly the
Lasso. On the other hand, when ν → ∞ , one recovers a standard unregularized feed-
forward neural network. The linear and nonlinear components are optimized jointly to
capture arbitrary nonlinearity.

GANDALF

Inspired by gated recurrent units (GRUs) [52] for representation learning, the gated
adaptive network for deep automated learning of features (GANDALF) is designed for
tabular data based on a gating mechanism and in-built feature selection called Gated
Feature Learning Unit (GFLU) [41].

A learnable mask Mn ∈ Rp is used for the soft sparse selection of important features
for each stage n of feature learning in GFLU. The mask is constructed by applying
a sparse transformation on a learnable parameter vector ℑn ∈ Rp combined with
t-softmax activation for encouraging sparsity selection [53]. Here, let Xn be the input
features and Mn = t-softmax(ℑn) the mask, the feature selection can be defined by

where ℑn and t are learnable parameters and ⊙ denotes an element-wise multiplication
operation. The weight matrix W depends on the value of t. The gating mechanism has a

(9)F = {f̂ ≡ f̂θ ,W : X �→ θTX + gWX},

(10)arg min
θ ,W

L(θ ,W)+ ��θ�1 s.t.
∥

∥

∥
W

(1)
i

∥

∥

∥

∞
≤ ν|θi|, i = 1, · · · , p,

(11)Xn = Mn ⊙ X

(12)Mn = t-softmax(ℑn, t),

Page 15 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

reset gate rn and an update gate zn . The update gate decides how much information to
update in its internal feature representation, which can be defined as

where ϕn−1 is the (n− 1)-th stage of the GFLU and Wz
n is a learnable parameter for the

weight at stage n. Then the candidate feature representation ϕ̂n is computed as

where rn decides how much information to forget from the previous feature
representation, [] represents a concatenation operation, and WO

n represents a learnable
parameter. The reset gate can be computed in a similar way as the update gate:
r − n = σ(Wr

n · [ϕn−1;Xn]).
GANDALF can be viewed as a stack of GFLUs arranged in a sequence mannerthat

at each stage n selects a subset of features and learns a representations of features and
therefore multiple stages act in a hierarchical way to built up the optimal representation
for the prediction task. Then this representation is fed to a multi-layer perceptron for the
final prediction.

SAINT

SAINT (self-attention and intersample attention transformer) [44] is inspired by the
transformer encoder, where the model takes in a sequence of feature embeddings and
outputs contextual representations of the same dimension. Its main idea is to leverage
several mechanisms to overcome the difficulties of training on tabular data. For the
embedding layer, each feature in the input row is embedded into a e-dimensional space
as

where E ∈ R
n×p×e , and e is the embedding dimension. In the stacking of L identical

stages, each stage consists of one self-attention transformer block and one intersample
attention transformer block. The contextual representations of the input of batch
b can be given as {ri}bi=1 = S({E(xi)}bi=1) . When L = 1 , ri can be obtained as the
following procedure

where MSA is a multi-head self-attention layer with h heads, FF is a fully-connected
feed-forward layer with a GELU non-linearity, LN is a normalization layer with skip
connection and MISA is an intersample attention transformer block. For the intersample
attention, it is computed across the different data points (i.e. rows of the tabular data
matrix) in the batch. This can be helpful to improve the representation of a given data
point by inspecting other points. For the self-supervised pretraining method, CutMix

(13)zn = σ(Wz
n · [ϕn−1; xn]),

(14)ϕ̂n = tanh(WO
n · [rn ⊙ ϕn−1;X]),

(15)E = Embedding(X),

(16)

z
(1)
i = LN(MSA(E(xi)))+ E(xi)

z
(2)
i = LN(FF1(z

(1)
i))+ z

(1)
i

z
(3)
i = LN(MISA({z(2)i }bi=1))+ z

(2)
i

ri = LN(FF2(z
(3)
i))+ z

(3)
i

,

Page 16 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

is used to augment samples in the input space and mixup is used in the embedding
space for the augmented representation. At the final prediction stage, the corresponding
embedding is passed through a single layer MLP with ReLU activation to get the output
Ŷ .

Implementation details

Tuning

For each dataset, we tuned the hyperparameters of each model using Bayesian
optimization (BO) with 100 iterations. The hyperparameter search was conducted on
the validation folds of the training set, ensuring that the test set remained untouched
and independent. To optimize the hyperparameters, we used a 5-fold cross-validation
(CV) approach on the training set. For each fold, the model was trained on 4 folds
and validated on the remaining fold. This process was repeated 5 times, with each
fold serving as the validation set once. The performance metrics from the 5 folds were
averaged to obtain a single performance measure for the given set of hyperparameters.
Various combinations of hyperparameters were evaluated, and the set that provided
the best average performance across the 5 folds was selected as the optimal set.
Subsequently, we executed models in parallel across each fold and independently
calculating the test MSE or test accuracy. The performance metric was then collected
and averaged from this parallelized execution to facilitate the Bayesian Optimization
process using Tree Parzen Estimator (TPE) for parameter suggestions. The best
hyperparameters were selected based on the loss criteria (i.e. MSE or accuracy) of the
validation set. This iterative process continued until the predefined stopping criterion
was reached. For the TPE method, we relied on the stochasticity inherent in draws from
the models, ensuring diverse candidate suggestions from one iteration to the next while
incorporating new recommendations from BO [54]. To obtain a balance between time
consumption and precision of the performance metric results, we set the BO stopping
criterion to 1e-5. The experiments were conducted using 5 NVIDIA Tesla V100 GPUs.
Each GPU is equipped with 32 GB of HBM2 memory. The initial parameter ranges of the
hyperparameters of the models are public available online along with our code.

There are two important hyperparamters in LassoNet: the l1-penalty coefficient �
and the hierarchy coefficient M, which control the complexity of the fitted model and
the relative strength of the linear and nonlinear components, respectively. First, we
performed some initial test runs to determine a suitable range of M and � . For the � ,
we made sure that the initial dense model with � = 0 trained well before starting the
regularization path. Then the stepsize over � was implemented following the same
strategy as the original paper.

Evaluation

For each tuned configuration, ensemble predictions were generated by conducting
10 experiments with different random seeds, and the average results are reported on
the test set. For the multi-trait classification task, evaluation metrics include average
classification accuracy with standard deviation (stddev), Bries scores and the area
under the curve (AUC) with standard deviation. For the regression task, the metrics

Page 17 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

reported are the test mean squared error (MSE) with standard deviation and the Pearson
correlation coefficient r, averaged across traits for each dataset.

Material
Mice data

The first data of our study is the mice data which is part of the BGLR package in R [55],
but originally comes from the Wellcome Trust (http://gscan.well.ox.ac.uk) and has
been used for whole-genome regression in several other studies [56, 57]. It consists of
genotypes and phenotypes of 1,814 mice. Each mouse was genotyped at 10,346 single
nucleotide polymorphisms (SNPs) that were coded as 0, 1 and 2. Here we use two
continuous traits, body length (BL) and body mass index (BMI). The entire dataset
was divided into a training set (70%), a validation set (10%) and an independent test set
(20%).

Pig data

The largest tabular data set in our study is the pig data [58] which contains 3534
individuals with high-density genotypes and continuous phenotypes of five anonymized
traits. After cleaning some missing data, we finally obtain 2314 samples and each sample
contains 52, 843 SNPs. The data was anonymised by randomising the map order and
cording of the SNP genotypes were 0, 1, and 2. The dataset was partitioned into three
subsets for training, validation and independent testing using the same approach as for
the mice data.

Wheat data

The wheat data set originates from CIMMYT’s Global Wheat Program and is also a
part of the BGLR package [55]. It comprises 599 wheat lines from the CIMMYT Global
Wheat Program evaluated in four international environments representing four basic
agroclimatic regions (mega-environments). The wheat lines were genotyped using 1,447
Diversity Array Technology (DArT) markers. As a quality control, all the markers with
a minor allele frequency below 0.05 were eliminated, and any missing genotypes were
imputed using samples from the marginal distribution of marker genotypes. Following
these procedures, the dataset was reduced to 1,279 DArT markers which are coded as
0 and 1. We used the data from the different environments as multiple traits, resulting
in a total of four traits. The whole datasets was divided into three datasets for training,
validation and testing following the procedure of the pig and mice data.

14-Cancer microarray data

The cancer data originates from a study by [59] and has been used in for example [48].
The data uses oligonucleotide microarrays containing 16,063 oligonucleotide probe sets
for the gene expression. It contains 16,063 gene expression feature values and 198 tumor
samples, which were divided into 144 training samples and 54 test samples. Of the
training samples, 100 were used for training and 44 allocated for validation. Each feature
represents the expression level of a specific gene across various samples. The binary
traits constitutes 14 common human cancers, including Breast (BR), Prostate (PR), Lung

Page 18 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

(LU), Leukemia (LE), Renal (RE), Pancreas (PA), Ovarym (OV), Mesothelioma (ME) and
CNS cancers. For further details see [59].

Loblolly pine data

The lobolly pine population is derived from 32 parent trees representing a wide range
of accessions from the Atlantic coastal plain, Florida, and the lower Gulf of the United
States. Parents were crossed in a circular mating design with additional off-diagnal
crosses, resulting in 70 full-sib families with an average of 13.5 individuals per family [60,
61]. It was originally composed of 951 individuals from 61 families that was genotyped
using an Illumina Infinium assay [62]. A subset of 4,853 SNPs (encoded as 0, 1, 2)
were polymorphic and used in our study. By discretizing the values of the deregressed
breeding values > 0 to 1 and deregressed breeding values < 0 to 0, we recreated two
binary traits: presence or absence of rust (Rustbin) and presence or absence of roots
(Rootnumbin). Then the traits were recoded to four multi-classes ([0,0],[0,1],[1,0] and
[1,1]). After cleaning some missing data, we finally got 806 samples and each sample
contains 4,853 SNPs. The dataset was divided into three subsets-training, validation and
testing - using the same percentage as for the mice, pig and wheat data.
Acknowledgements
Not applicable.

Author contributions
Y.F. performed the analyses. Y.F. and P.W. wrote the main text and reviewed the manuscript.

Funding
Open Access funding provided by University of Oulu (including Oulu University Hospital). This work was supported by
the University of Oulu & The Research Council of Finland Profi5/HiDyn funding for mathematics and AI: data insight for
high dimensional dynamics [Grant 326291].

Availability of data and materials
The code for the tabular deep learning models and the datasets are available at https:// github. com/ angel YHF/ Tabul ar-
deep- learn ing- for- GWP. The original data sets are available at: Mice data: https:// cran.r- proje ct. org/ web/ packa ges/ BGLR/
index. html Pig data: https:// acade mic. oup. com/ g3jou rnal/ artic le/2/ 4/ 429/ 60260 60/ 4294_ FileS1.zip Wheat data: https://
cran.r- proje ct. org/ web/ packa ges/ BGLR/ index. html 14-cancer microarray data: https:// www. kaggle. com/ datas ets/ trant
hinhuy/ 14can cermi croar rayda ta Loblolly pine data: https:// acade mic. oup. com/ genet ics/ artic le/ 190/4/ 1503/ 60640 84/
Loblolly_Pine_Resende_.zip.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 6 June 2024 Accepted: 19 September 2024

References
 1. Meuwissen TH, Hayes BJ, Goddard M. Prediction of total genetic value using genome-wide dense marker maps.

Genetics. 2001;157(4):1819–29.
 2. Jubair S, Domaratzki M. Crop genomic selection with deep learning and environmental data: a survey. Front Artif

Intell. 2023;5:1040295.
 3. Abraham G, Inouye M. Genomic risk prediction of complex human disease and its clinical application. Curr Opin

Genet Dev. 2015;33:10–6.

https://github.com/angelYHF/Tabular-deep-learning-for-GWP.
https://github.com/angelYHF/Tabular-deep-learning-for-GWP.
https://cran.r-project.org/web/packages/BGLR/index.html
https://cran.r-project.org/web/packages/BGLR/index.html
https://academic.oup.com/g3journal/article/2/4/429/6026060/4294_
https://cran.r-project.org/web/packages/BGLR/index.html
https://cran.r-project.org/web/packages/BGLR/index.html
https://www.kaggle.com/datasets/tranthinhuy/14cancermicroarraydata
https://www.kaggle.com/datasets/tranthinhuy/14cancermicroarraydata
https://academic.oup.com/genetics/article/190/4/1503/6064084/

Page 19 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

 4. Lee SH, Van Der Werf JH, Hayes BJ, Goddard ME, Visscher PM. Predicting unobserved phenotypes for complex traits
from whole-genome SNP data. PLoS Genet. 2008;4(10):1000231.

 5. Waldmann P, Ferenčaković M, Mészáros G, Khayatzadeh N, Curik I, Sölkner J. AUTALASSO: an automatic adaptive
LASSO for genome-wide prediction. BMC Bioinform. 2019;20:1–10.

 6. Momen M, Mehrgardi AA, Sheikhi A, Kranis A, Tusell L, Morota G, Rosa GJ, Gianola D. Predictive ability of genome-
assisted statistical models under various forms of gene action. Sci Rep. 2018;8(1):12309.

 7. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge, MA, USA: MIT Press; 2016.
 8. Ryan M. Deep learning with structured data. New York: Manning Publications; 2020.
 9. Borisov V, Leemann T, Seßler K, Haug J, Pawelczyk M, Kasneci G. Deep neural networks and tabular data: a survey.

IEEE Trans Neural Netw Learn Syst. 2024;30:7499–519.
 10. Breiman L. Random forests. Mach Learn. 2001;45:5–32.
 11. Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd international

conference on knowledge discovery and data mining; 2016, p. 785–94
 12. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y. Lightgbm: a highly efficient gradient boosting decision

tree. Adv Neural Inf Process Syst. 2017;30
 13. Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. CatBoost: unbiased boosting with categorical features.

Adv Neural Inf Process Syst. 2018;31
 14. Wang Y, Feng D, Li D, Chen X, Zhao Y, Niu X. A mobile recommendation system based on logistic regression and gra-

dient boosting decision trees. In: 2016 International joint conference on neural networks (IJCNN); 2016, p. 1896–902
 15. Wen H, Zhang J, Lin Q, Yang K, Huang P. Multi-level deep cascade trees for conversion rate prediction in recommen-

dation system. In: Proceedings of the AAAI conference on artificial intelligence; 2019, vol. 33, p. 338–45
 16. Roe BP, Yang H-J, Zhu J, Liu Y, Stancu I, McGregor G. Boosted decision trees as an alternative to artificial neural

networks for particle identification. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip.
2005;543(2–3):577–84.

 17. Bondarenko I. More layers! End-to-end regression and uncertainty on tabular data with deep learning. arXiv preprint
arXiv: 2112. 03566 (2021)

 18. Li Y, Shi W, Wasserman WW. Genome-wide prediction of cis-regulatory regions using supervised deep learning
methods. BMC Bioinform. 2018;19:202.

 19. Gianola D, Okut H, Weigel KA, Rosa GJM. Predicting complex quantitative traits with Bayesian neural networks: a
case study with Jersey cows and wheat. BMC Genet. 2011;12:1–14.

 20. Pérez-Rodríguez P, Gianola D, González-Camacho JM, Crossa J, Manès Y, Dreisigacker S. Comparison between linear
and non-parametric regression models for genome-enabled prediction in wheat. G3: Genes Genomes Genet.
2012;2(12):1595–605.

 21. Montesinos-López OA, Montesinos-López A, Pérez-Rodríguez P, Barrón-López JA, Martini JW, Fajardo-Flores SB,
Gaytan-Lugo LS, Santana-Mancilla PC, Crossa J. A review of deep learning applications for genomic selection. BMC
Genom. 2021;22:1–23.

 22. Lee H-J, Lee JH, Gondro C, Koh YJ, Lee SH. DeepGBLUP: joint deep learning networks and GBLUP framework for
accurate genomic prediction of complex traits in Korean native cattle. Genet Sel Evol. 2023;55(1):56.

 23. Bellot P, Los Campos G, Pérez-Enciso M. Can deep learning improve genomic prediction of complex human traits?
Genetics. 2018;210(3):809–19.

 24. Waldmann P, Pfeiffer C, Mészáros G. Sparse convolutional neural networks for genome-wide prediction. Front Genet.
2020;11: 499643.

 25. Ma W, Qiu Z, Song J, Li J, Cheng Q, Zhai J, Ma C. A deep convolutional neural network approach for predicting
phenotypes from genotypes. Planta. 2018;248:1307–18.

 26. Sandhu K, Patil SS, Pumphrey M, Carter A. Multitrait machine-and deep-learning models for genomic selection
using spectral information in a wheat breeding program. Plant Genome. 2021;14(3):20119.

 27. Zhang Q, Sun T, Wang J. Genome-wide association study and high-quality gene mining related to soybean protein
and fat. BMC Genom. 2023;24(1):596.

 28. Khaki S, Wang L, Archontoulis SV. A CNN-RNN framework for crop yield prediction. Front Plant Sci. 2020;10: 492736.
 29. Nevavuori P, Narra N, Lipping T. Crop yield prediction with deep convolutional neural networks. Comput Electron

Agric. 2019;163: 104859.
 30. Azodi CB, Pardo J, VanBuren R, Los Campos G, Shiu S-H. Transcriptome-based prediction of complex traits in maize.

Plant Cell. 2020;32(1):139–51.
 31. Fu Y, Xu J, Tang Z, Wang L, Yin D, Fan Y, Zhang D, Deng F, Zhang Y, Zhang H, et al. A gene prioritization method based

on a swine multi-omics knowledgebase and a deep learning model. Commun Biol. 2020;3(1):502.
 32. Hu H, Campbell MT, Yeats TH, Zheng X, Runcie DE, Covarrubias-Pazaran G, Broeckling C, Yao L, Caffe-Treml M, Gutiér-

rez L, et al. Multi-omics prediction of oat agronomic and seed nutritional traits across environments and in distantly
related populations. Theor Appl Genet. 2021;134:4043–54.

 33. Khurana E, Fu Y, Chen J, Gerstein M. Interpretation of genomic variants using a unified biological network approach.
PLoS Comput Biol. 2013;9(3):1002886.

 34. Jubair S, Tucker JR, Henderson N, Hiebert CW, Badea A, Domaratzki M, Fernando WD. GPTransformer: a transformer-
based deep learning method for predicting Fusarium related traits in barley. Front Plant Sci. 2021;12: 761402.

 35. Lemhadri I, Ruan F, Abraham L, Tibshirani R. Lassonet: a neural network with feature sparsity. J Mach Learn Res.
2021;22(127):1–29.

 36. Mathew B, Hauptmann A, Léon J, Sillanpää MJ. NeuralLasso: neural networks meet lasso in genomic prediction.
Front Plant Sci. 2022;13: 800161.

 37. Arik S.Ö, Pfister T. Tabnet: attentive interpretable tabular learning. In: Proceedings of the AAAI conference on artificial
intelligence; 2021, vol. 35, p. 6679–87

 38. Popov S, Morozov S, Babenko A. Neural oblivious decision ensembles for deep learning on tabular data. arXiv
preprint arXiv: 1909. 06312 (2019)

http://arxiv.org/abs/2112.03566
http://arxiv.org/abs/1909.06312

Page 20 of 20Fan and Waldmann BMC Bioinformatics (2024) 25:322

 39. Gorishniy Y, Rubachev I, Kartashev N, Shlenskii D, Kotelnikov A, Babenko A. Tabr: unlocking the power of retrieval-
augmented tabular deep learning. arXiv preprint arXiv: 2307. 14338 (2023)

 40. Song W, Shi C, Xiao Z, Duan Z, Xu Y, Zhang M, Tang J. Autoint: automatic feature interaction learning via self-atten-
tive neural networks. In: Proceedings of the 28th ACM international conference on information and knowledge
management; 2019, p. 1161–70

 41. Joseph M, Raj H. GANDALF: gated adaptive network for deep automated learning of features. arXiv preprint arXiv:
2207. 08548 (2024)

 42. Huang X, Khetan A, Cvitkovic M, Karnin Z. Tabtransformer: tabular data modeling using contextual embeddings.
arXiv preprint arXiv: 2012. 06678 (2020)

 43. Gorishniy Y, Rubachev I, Khrulkov V, Babenko A. Revisiting deep learning models for tabular data. Adv Neural Inf
Process Syst. 2021;34:18932–43.

 44. Somepalli G, Goldblum M, Schwarzschild A, Bruss CB, Goldstein T. Saint: improved neural networks for tabular data
via row attention and contrastive pre-training. arXiv preprint arXiv: 2106. 01342 (2021)

 45. Watson D. Interpretable machine learning for genomics. Hum Genet. 2022;141:1499–513.
 46. Conard AM, DenAdel A, Crawford L. A spectrum of explainable and interpretable machine learning approaches for

genomic studies. WIREs Comput Stat. 2023;15:1617.
 47. Fan Y, Launonen I, Sillanpää MJ, Waldmann P. Evaluation of sparse proximal multi-task learning for genome-wide

prediction. IEEE Access. 2024;12:51665–75.
 48. Hastie T, Tibshirani R, Friedman JH, Friedman JH. The elements of statistical learning: data mining, inference, and

prediction, vol. 2. New York: Springer; 2009.
 49. Peters B, Niculae V, Martins AF. Sparse sequence-to-sequence models. arXiv preprint arXiv: 1905. 05702 (2019)
 50. Huang G, Liu Z, Van Der Maaten L, Weinberger K.Q. Densely connected convolutional networks. In: Proceedings of

the IEEE conference on computer vision and pattern recognition; 2017, p. 4700–8
 51. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on

computer vision and pattern recognition; 2016, p. 770–8
 52. Cho K, Van Merriënboer B, Bahdanau D, Bengio Y. On the properties of neural machine translation: encoder-decoder

approaches. arXiv preprint arXiv: 1409. 1259 (2014)
 53. Zhao S, Liang Z, Wen J, Chen J. Sparsing and smoothing for the seq2seq models. IEEE Trans Artif Intell. 2022
 54. Bergstra J, Yamins D, Cox DD, et al. Hyperopt: a Python library for optimizing the hyperparameters of machine learn-

ing algorithms. SciPy. 2013;13:20.
 55. Pérez P, Los Campos G. Genome-wide regression and prediction with the BGLR statistical package. Genetics.

2014;198(2):483–95.
 56. Legarra A, Robert-Granié C, Manfredi E, Elsen J-M. Performance of genomic selection in mice. Genetics.

2008;180(1):611–8.
 57. Okut H, Gianola D, Rosa GJ, Weigel KA. Prediction of body mass index in mice using dense molecular markers and a

regularized neural network. Genet Res. 2011;93(3):189–201.
 58. Cleveland MA, Hickey JM, Forni S. A common dataset for genomic analysis of livestock populations. G3: Genes

Genomes Genet. 2012;2(4):429–35.
 59. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang C-H, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP, et al.

Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci. 2001;98(26):15149–54.
 60. Resende M Jr, Munoz P, Resende MD, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst

M. Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics.
2012;190(4):1503–10.

 61. Baltunis BS, Huber DA, White TL, Goldfarb B, Stelzer HE. Genetic analysis of early field growth of loblolly pine clones
and seedlings from the same full-sib families. Can J For Res. 2006;37(1):195–205.

 62. Eckert AJ, Van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, González-Martínez SC, Neale DB. Patterns of
population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L.,
Pinaceae). Genetics. 2010;185(3):969–82.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2307.14338
http://arxiv.org/abs/2207.08548
http://arxiv.org/abs/2207.08548
http://arxiv.org/abs/2012.06678
http://arxiv.org/abs/2106.01342
http://arxiv.org/abs/1905.05702
http://arxiv.org/abs/1409.1259

	Tabular deep learning: a comparative study applied to multi-task genome-wide prediction
	Abstract
	Purpose:
	Methods:
	Results:
	Conclusion:

	Background
	Results
	Model comparison
	Interpretability analysis
	Computation time

	Discussion
	Conclusion
	Methods
	Definitions
	Tabular neural networks
	NODE
	TabR
	TabNet
	TabTransformer
	FT-Transformer
	AutoInt
	LassoNet
	GANDALF
	SAINT

	Implementation details
	Tuning
	Evaluation

	Material
	Mice data
	Pig data
	Wheat data
	14-Cancer microarray data
	Loblolly pine data

	Acknowledgements
	References

