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Abstract 

Purpose: More accurate prediction of phenotype traits can increase the success 
of genomic selection in both plant and animal breeding studies and provide more 
reliable disease risk prediction in humans. Traditional approaches typically use regres-
sion models based on linear assumptions between the genetic markers and the traits 
of interest. Non-linear models have been considered as an alternative tool for modeling 
genomic interactions (i.e. non-additive effects) and other subtle non-linear patterns 
between markers and phenotype. Deep learning has become a state-of-the-art non-
linear prediction method for sound, image and language data. However, genomic 
data is better represented in a tabular format. The existing literature on deep learning 
for tabular data proposes a wide range of novel architectures and reports successful 
results on various datasets. Tabular deep learning applications in genome-wide pre-
diction (GWP) are still rare. In this work, we perform an overview of the main families 
of recent deep learning architectures for tabular data and apply them to multi-trait 
regression and multi-class classification for GWP on real gene datasets.

Methods: The study involves an extensive overview of recent deep learning archi-
tectures for tabular data learning: NODE, TabNet, TabR, TabTransformer, FT-Transformer, 
AutoInt, GANDALF, SAINT and LassoNet. These architectures are applied to multi-trait 
GWP. Comprehensive benchmarks of various tabular deep learning methods are con-
ducted to identify best practices and determine their effectiveness compared to tradi-
tional methods.

Results: Extensive experimental results on several genomic datasets (three for multi-
trait regression and two for multi-class classification) highlight LassoNet as a standout 
performer, surpassing both other tabular deep learning models and the highly efficient 
tree based LightGBM method in terms of both best prediction accuracy and comput-
ing efficiency.

Conclusion: Through series of evaluations on real-world genomic datasets, the study 
identifies LassoNet as a standout performer, surpassing decision tree methods 
like LightGBM and other tabular deep learning architectures in terms of both predictive 
accuracy and computing efficiency. Moreover, the inherent variable selection property 
of LassoNet provides a systematic way to find important genetic markers that contrib-
ute to phenotype expression.
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Background
Genome-wide prediction has become widespread as a valuable tool to estimate genetic 
merit in animal and plant breeding [1, 2]. In humans, GWP has been widely used to 
predict disease risk of highly polygenic complex human traits [3]. Genomic data is 
usually represented in matrices with markers in columns and individual observations 
in rows. Linear mixed models for GWP either model the markers effects directly or 
via pedigree based covariance models and both approaches often obtain competitive 
results [4, 5], but comparative studies show that machine learning (ML) methods are 
better in modelling various interactions in the genome [6]. In recent years, deep neural 
networks have emerged as powerful tools across various domains, ranging from sound 
and image analysis to natural language processing [7]. In these problems, the data points 
are represented as vectors of structured homogeneous features. However, in many other 
real-world applications, tabular data remains the most prevalent data type, consisting of 
samples in rows and different features in columns that don’t follow any simple structure 
[8, 9]. Over the past decade, numerous supervised, self-supervised, and semi-supervised 
learning methods have been proposed to address the specific challenges associated with 
modeling tabular data.

Decision tree models represent a widely adopted machine learning technique and 
serve as the foundation for more sophisticated ensemble methods such as random 
forests [10] and gradient boost decision trees (GBDT) [11–13]. Classical machine 
learning approaches, including GBDT, have dominated tabular data applications due to 
their superior performance. Various GBDT methods, such as XGBoost [11], LightGBM 
[12], and CatBoost [13], construct a robust predictor by ensembling weaker predictors 
through gradient descent in a functional space. They have been applied with success 
across diverse domains [14–16]. Despite their ability to model non-linear dependencies, 
decision trees struggle with out-of-distribution samples [17]. Furthermore, these 
methods lack flexibility and ability to utilize pre-trained models, thereby limiting their 
utility. However, they are computationally very efficient and can be utilized on big data 
sets.

In the context of genomics, a lot of research effort has been invested into prediction of 
molecular properties of organisms [18]. Single-layer neural networks have been utilized 
in animal and plant breeding [19, 20]. These shallow neural networks have been found 
to be prone to overfitting, although they are  sometimes competitive with penalized 
linear models. Recently, several applications of GWP using deep learning have been 
studied and compared with other methods [21, 22]. The most commonly employed 
deep learning architectures in genomic prediction are the multi-layer perceptron 
(MLP) and one-dimensional convolutional neural networks (CNNs), which have been 
used for GWP in for example humans [23], pigs [24], wheat [25, 26] and soybean [27]. 
Current  research has demonstrated that the CNN-RNN method exhibit superior 
performance compared to models based on random forest, deep fully connected neural 
networks, and conventional Lasso regression [28]. A deep neural network was designed 
to predict maize yield across 2,247 locations from 2008 to 2016 using both genotype and 
environmental data in the yield testing stage [29]. Furthermore, a number of studies have 
used multi-omics data to predict complex traits in various organisms, including animals, 
humans and plants [30–32].
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The tabular representation of genomic data offers a structured framework for 
organizing, analyzing, and interpreting complex biological information [33]. Except for 
the usually underperforming MLP, few tabular deep learning models have been applied 
to GWP tasks. One exception is the GPtransformer which is a Transformer-based deep 
learning algorithm that was applied to predicting Fusarium related traits in Barley 
[34]. Neural networks offer an end-to-end pipeline of hierarchical feature extractors 
and a final estimator for tabular data, with components trained together to minimize 
loss functions using gradient-based strategies. Unlike decision trees, neural networks 
can to some extent maintain performance on out-of-distribution data [17]. Recent 
research has highlighted deep learning as a promising alternative approach to decision 
trees [9]. Based on Lasso regularization, three prominent models, the CNNGWP [24], 
the LassoNet [35] and the Neural Lasso [36], underscore the flexibility and efficiency 
of regularized deep learning methods. Developed by researchers at Google Cloud AI, 
TabNet [37] leverages the advantages of decision trees and attention mechanisms to 
effectively learn from tabular data, making it well-suited for tasks such as classification 
and regression. Additionally, NODE [38] combines neural oblivious decision trees with 
dense connections, applying the ensemble method of oblivious decision trees to neural 
networks using differentiable trees based on the entmax function. TabR [39] introduces 
a retrieval-augmented tabular deep learning architecture, achieving strong performance 
through attention-based retrieval components. AutoInt [40] reduces data sparsity by 
transforming high-dimensional data into a low-dimensional space using an embedding 
layer with a gating mechanism for feature representation learning and feature selection. 
Moreover, GANDALF [41] proposes a gated adaptive network for deep automated 
feature learning, incorporating a gating mechanism for feature representation learning. 
Tab-Transformer [42] utilizes self-attention based transformers to transform categorical 
feature embeddings into robust contextual embeddings for improved prediction 
accuracy. FT-Transformer [43], adapted from the transformer architecture, embeds all 
features before applying a stack of transformer layers to operate on the feature level, 
specifically designed for tabular data. By leveraging several mechanisms to overcome the 
difficulties of training on tabular data, SAINT [44] was proposed to boost performance 
for semi-supervised problems with a self-attention and intersample attention 
transformer.

Compared to typical linear statistical models, multi-task deep learning for genomic 
prediction tasks presents a more flexible and powerful framework by leveraging feature 
representation learning and facilitating learning across tasks. Although multi-task deep 
learning models perform well for classification or regression tasks on homogeneous 
input data (e.g., image, audio, and text data), its application to tabular genomic data still 
pose a challenge in the high-dimensional setting where the number of feature variables 
is considerably higher than the number of observations. In this paper, we present a 
comparative GWP study of tabular deep learning together with LightGBM as a GBDT 
representative using five real datasets for both regression and classification.
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Results
Model comparison

Multi-trait regression: The results from the regression tasks are summarized in the 
Table   1. The comparative analysis of different models for multi-trait regression tasks 
across three datasets-Mice, Pig, and Wheat-reveals notable variations in performance, 
primarily measured by Mean Squared Error (MSE) and correlation coefficient (r). 
LassoNet consistently outperforms other models, achieving the lowest MSE and highest 
correlation across all datasets (e.g., Mice data: MSE = 0.135 ± 0.003, r = 0.735; Pig data: 
MSE = 0.151 ± 0.002, r = 0.722). This indicates LassoNet’s superior ability to capture the 
important information in the underlying data structure. In contrast, models like NODE 
and TabR show relatively poor performance, with higher MSE and lower correlation 
values, indicating less accurate predictions (e.g., NODE on Pig data: MSE = 0.242 ± 
0.007, r = 0.531). GANDALF demonstrates competitive results, especially in the Wheat 
dataset, where it records an MSE of 0.191 ± 0.004 and a correlation of 0.651, close to 
LassoNet’s performance. The TabNet models, both supervised and unsupervised, 
perform moderately well across the datasets, with supervised TabNet slightly 
outperforming the unsupervised version. For instance, on the Pig data, supervised 
TabNet achieves an MSE of 0.225 ± 0.006 and r = 0.607, whereas the unsupervised 
version shows a slightly higher MSE of 0.243 ± 0.004 and r = 0.621. FT-Transformer, 
Tab-Transformer and SAINT offer a middle ground in terms of performance, with MSE 
values consistently lower than NODE but higher than LassoNet, reflecting a decent 
trade-off between complexity and predictive power. The results clearly demonstrate that 
LassoNet is the most effective model for multi-trait regression tasks over these datasets.

Multi-class classification: The experimental results for multi-class classification for 
GWD are reported in Table  2. In the multi-trait classification tasks, the performance 
of various models was evaluated based on their accuracy, area under the curve (AUC), 
and Brier score across two datasets: the 14-cancer microarray data and the Loblolly pine 
data (subset). Among the models, LassoNet once again emerged as the top performer, 
achieving the highest accuracy (90.1 ± 0.17) and AUC (91.5 ± 0.152) on the microarray 
data, and further outperforming other models on the Loblolly pine data with an accu-
racy of 93.5 ± 0.19 and an AUC of 96.7 ± 0.190, coupled with the lowest Brier scores 
(0.174 and 0.183, respectively). It is clear that LassoNet has strong capability in both pre-
dictive power and reliability. In contrast, TabNet (unsupervised) displayed the weakest 
performance, with the lowest accuracy (81.2 ± 0.37) and AUC (84.5 ± 0.205) on the 
microarray data as well as worse metrics on the Loblolly pine data (accuracy of 90.3 ± 
0.25 and AUC of 93.6 ± 0.233). This highlights the challenges faced by unsupervised 
approaches in these prediction tasks. GANDALF and FT-Transformer also showed com-
petitive results, with GANDALF reaching an accuracy of 87.4 ± 0.33 and an AUC of 89.7 
± 0.163 on the microarray data. On the Loblolly pine data the accuracy was 91.5 ± 0.26 
and AUC 95.1 ± 0.194, indicating relatively robust performance. FT-Transformer also 
positioned itself as a strong contender. 

Interpretability analysis

In the context of multi-trait genomic prediction, interpretability of models is becoming 
an increasingly important issue for understanding the influence of specific genomic 
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features on model predictions [45, 46]. Feature selection of input variables provides a 
straightforward interprebablity of the evaluated models in this study. Compared with 
other methods, LassoNet offers a high interpretability due to its use of L1 regularization 
(Lasso penalty), which by its inherent sparsity operation identify which input  features 
are most relevant for making predictions (139 on the mice data, 952 on the pig data, 
55 on the wheat data, 764 on the 14-cancer microarray data, and 99 on the Loblolly 
pine data). By selecting a subset of features, LassoNet can focus on the most influential 
variables while ignoring irrelevant or redundant ones. LightGBM can also provide 
interpretable results in terms of feature importance and decision paths within the trees. 
However, LightGBM does not rely on L1 regularization for interpretation, but  instead 
provides two different types of feature importance: split and gain importance. On the 
other side, the tabular deep learning methods lack the inherent interpretabily due to 
their more complex neural network structures. This complexity enables them to capture 
the patterns present in genomic data but also make interpretation and understanding 
of model decision more challenging. We only visualize the selected coefficients for the 
five datasets using LassoNet due to the superiority of this model. Figures 1 and 2 shows 
the selected coefficients for multi-trait regression and multi-class classification over five 
datasets.  

Computation time

To improve the computing efficiency, we use parallel computing with 5 GPUs for the 
different models. The time required for one BO iteration of the models are summarized 
in Table 3. We can clearly see that LightGBM consistently outperforms other models, 
achieving the fastest execution times across all datasets. For instance, LightGBM 
completes one Bayesian Optimization (BO) iteration on the Mice dataset in only 4.9 ± 
0.4 seconds (s), significantly faster than any other model. Similarly, it maintains a clear 
advantage on larger datasets such as Pig, Wheat, and 14-cancer microarray data, with 
times of 33.2 ± 3.5, 25 ± 2.6, and 8.4 ± 0.52  s, respectively. In contrast, NODE and 
Tab-R exhibit the slowest performance, particularly on the Pig and Wheat datasets 
where NODE takes 207 ± 11.7 and 240 ± 14.3  s, respectively, and Tab-R requires 
175 ± 10.7 and 271 ± 11.6  s. This indicates that these models are not optimized for 
computational speed, especially in a multi-GPU setting. LassoNet and AutoInt show 
competitive performance with LassoNet nearly matching LightGBM on the Loblolly 
pine dataset, finishing in 4.1 ± 1.1  s. However, they generally lag behind LightGBM 
on the  other datasets. Models like TabNet (both unsupervised and semi-supervised), 
FT-Transformer, Tab-Transformer, and SAINT offer moderate performance, with 
execution times ranging between those of the fastest and slowest models. These 
models, while not as fast as LightGBM, are notably quicker than NODE and Tab-R, 
particularly on smaller datasets like the Mice and 14-cancer microarray data.
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Discussion
In one earlier study [47], we evaluated several linear sparse proximal multi-task learning 
(SPMTL) methods on the same genomic datasets as in the current study. The 
regularization methods there  include Lasso, group Lasso, sparse group Lasso, nuclear 
norm, and the L2, 12 norm. Among the evaluated methods, the L2, 12 norm achieved the 

best out-of-sample prediction performance across all datasets with the smallest test 
MSE and the highest r on the mice data (MSE = 0.151, r = 0.702) , pig data 
(MSE = 0.160, r = 0.71) , and wheat data (MSE = 0.180, r = 0.620).

Fig. 1 Selected coefficients using LassoNet for multi-trait regression over three datasets, with the number 
of features selected on a specific trait noted in parentheses (zero values in the coefficient matrix have been 
removed)
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Compared with L2, 12 norm from SPMTL methods, the current study presents an 

obvious reduction in test MSE with LassoNet across three datasets: a decrease of 
10.6% for the mice datasets, 5.7% for the pig data, and 17.2% for the wheat dataset, 
respectively. Moreover, employing Markov Chain Monte Carlo (MCMC)-based 

Fig. 2 Selected coefficients using LassoNet over two datasets for multi-class classification, with the number 
of features selected on a specific task noted in parentheses (zero values in the coefficient matrix have been 
removed)

Table 1 Comparison of model performance across different datasets for multi-trait regression tasks

Bold indicates the best results

Mice data Pig data Wheat data

 Model MSE (mean ± 
stddev)

r MSE (mean ± 
stddev)

r MSE (mean ± 
stddev)

r

LightGMB 0.208 ± 0.005 0.572 0.203 ± 0.006 0.652 0.160 ± 0.004 0.657

NODE 0.231 ± 0.008 0.501 0.242 ± 0.007 0.531 0.223 ± 0.006 0.514

LassoNet 0.135 ± 0.003 0.735 0.151 ± 0.002 0.722 0.149 ± 0.003 0.691
AutoInt 0.253 ± 0.007 0.571 0.267 ± 0.006 0.633 0.228 ± 0.005 0.641

TabNet 
(unsupervised)

0.301 ± 0.006 0.566 0.243 ± 0.004 0.621 0.218 ± 0.004 0.635

TabNet (supervised) 0.252 ± 0.008 0.554 0.225 ± 0.006 0.607 0.216 ± 0.005 0.626

FT-Transformer 0.221 ± 0.005 0.531 0.219 ± 0.004 0.585 0.206 ± 0.004 0.602

Tab-Transformer 0.223 ± 0.006 0.526 0.221 ± 0.005 0.563 0.209 ± 0.005 0.558

TabR 0.241 ± 0.009 0.503 0.230 ± 0.007 0.534 0.211 ± 0.006 0.541

GANDALF 0.211 ± 0.006 0.571 0.214 ± 0.005 0.637 0.191 ± 0.004 0.651

SAINT 0.224 ± 0.007 0.537 0.227 ± 0.006 0.581 0.210 ± 0.005 0.576
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multi-task Bayesian ridge regression (BRR) and Bayesian spike-and-slab analysis fur-
ther confirms the efficacy of LassoNet. Specially, the test MSE exhibits significant 
improvements with a reduction of 48.8% compared to BRR on the mice dataset, 50.3% 
compared to  spike-and-slab on the pig dataset, and 43.5% compared to BRR on the 
wheat data. These results demonstrate that LassoNet is very competitive in 
comparison to  both linear SPMTL methods, Bayesian GWP methods and other 
tabular neural network methods in performing joint predictions across correlated 
traits.

In [48], linear classifiers with eight different regularization methods were 
assessed on the microarray data that contains  14 cancer classes. These techniques 

Table 2 Comparison of different models for multi-class classification tasks on two datasets

Bold indicates the best results

14-cancer microarray data Loblolly pine data (subset)

 Model Accuracy 
(mean ± 
stddev)

AUC (mean ± 
stddev)

Brier score Accuracy 
(mean ± 
stddev)

AUC (mean ± 
stddev)

Brier score

LightGMB 85.7± 0.32 88.9 ± 0.171 0.202 91.5± 0.27 93.7 ± 0.201 0.206

NODE 85.1± 0.35 88.7 ± 0.237 0.243 91.1± 0.31 93.4 ± 0.223 0.301

LassoNet 90.1 ± 0.17 91.5 ± 0.152 0.174 93.5 ± 0.19 96.7 ± 0.190 0.183
AutoInt 85.2± 0.33 88.6 ± 0.263 0.381 91.5± 0.30 94.3 ± 0.207 0.372

TabNet 
(unsupervised)

81.2± 0.37 84.5 ± 0.205 0.406 90.3± 0.25 93.6 ± 0.233 0.383

TabNet 
(supervised)

82.3± 0.37 86.1 ± 0.207 0.355 90.1± 0.33 93.6 ± 0.246 0.361

FT-Transformer 84.7± 0.34 88.8 ± 0.181 0.235 90.8± 0.34 94.1 ± 0.252 0.245

Tab-Transformer 83.4± 0.34 88.5 ± 0.177 0.238 90.6± 0.32 94.0 ± 0.243 0.253

TabR 85.1± 0.35 88.6 ± 0.183 0.244 91.4± 0.27 93.5 ± 0.221 0.355

GANDALF 87.4± 0.33 89.7 ± 0.163 0.227 91.5± 0.26 95.1 ± 0.194 0.241

SAINT 84.6± 0.32 88.8 ± 0.175 0.241 90.7± 0.27 93.5 ± 0.185 0.263

Table 3 Time report in seconds (s) (mean ± stddev) of one BO iteration using 5 GPUs for different 
models on the five data sets

Bold indicates the best results

Data sets

 Model Mice data (s) Pig data (s) Wheat data (s) 14-cancer 
microarray 
data (s)

Loblolly pine 
data (subset) 
(s)

LightGBM 4.9 ± 0.4 33.2 ± 3.5 25 ± 2.6 8.4 ± 0.52 4.1 ± 0.27
NODE 46.3 ± 6.3 207 ± 11.7 240 ± 14.3 33.1 ± 3.7 9.1 ± 2.1

LassoNet 5.6 ± 1.1 36.1 ± 3.3 32 ± 3.6 8.8 ± 2.7 4.1 ± 1.1
AutoInt 9.3 ± 1.7 56.8 ± 4.4 53 ± 3.6 9.1 ± 2.2 4.4 ± 1.2

TabNet (unsupervised) 19.1 ± 5.1 75.5 ± 4.3 123 ± 9.1 10.9 ± 2.3 5.7 ± 1.7

TabNet (semi-supervised) 16.9 ± 5.4 67.3 ± 6.1 113 ± 7.7 10.1 ± 4.1 5.2 ± 1.3

FT-Transformer 14.1 ± 3.9 62.3 ± 5.6 147 ± 10.4 13.7 ± 4.0 6.8 ± 2.2

Tab-Transformer 16.3 ± 3.6 85.3 ± 4.8 93 ± 6.6 11.2 ± 5.3 5.9 ± 0.9

Tab-R 55.1 ± 5.5 175 ± 10.7 271 ± 11.6 35.4 ± 7.1 11.2 ± 2.3

GANDALF 16.5 ± 3.1 52.3 ± 6.2 98 ± 5.7 10.2 ± 2.3 5.0 ± 1.0

SAINT 15.3 ± 2.1 67.1 ± 4.2 97.3 ± 4.9 14.1 ± 3.7 7.5 ± 2.1
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included nearest shrunken centroids, L2-penalized discriminant analysis, support 
vector classifier, Lasso regression (one vs all), k-nearest neighbors, L1/L2 penalized 
multinomial, and elastic-net penalized multinomial  regression. Among these 
methods, the elastic-net penalized multinomial method achieved the highest accuracy 
of 78.1%. In contrast, LassoNet attained an accuracy of 90.1% on the same 14-cancer 
microarray data, clearly outperforming the evaluated linear classifiers employing 
different regularization approaches in facilitating joint predictions across multiple 
traits.

LassoNet can capture complex interaction effects between features via its neural 
network module. When input features are correlated or interact with each other in 
predicting the target phenotype, LassoNet assigns non-zero coefficients to these features 
to account for their joint effect. However, because of the model architecture and the 
regularization that encourage sparsity, LassoNet’s ability to capture interactions is 
smaller  compared to the interaction-based models like AutoInt, TabR and TabNet. 
Additionally, the evaluations  indicate that some tabular  deep learning models can 
achieve comparable or competitive results in classification tasks across our  datasets 
(GANDALF). For the models based on transformers (AutoInt, TabTransformer, 
TabNet and SAINT), we can notice that a self-attention mechanism within the encoder 
can capture more complex interactions, but it doesn’t improve results compared to 
LassoNet since they lack efficient regularization procedures.

Conclusion
In this paper, we provide an overview and comparison of recent deep learning 
architectures tailored for tabular data and their application to multi-trait genome-wide 
prediction (MTGWP). Through extensive evaluations on real-world genomic datasets, 
the study identifies LassoNet as a standout performer, surpassing decision tree methods 
like LightGBM and other tabular deep learning architectures in terms of both predictive 
accuracy and computing efficiency. Moreover, the inherent variable selection property of 
LassoNet provides a systematic way to find important genetic markers that contribute to 
phenotype expression.

Methods
Definitions

The key part of tabular deep learning is a deep neural network and usually in the form of 
a feed-forward network. A deep neural network defines a mapping f̂  [7] following

that learns the model parameters W (i.e. the weights of a neural network) that results 
in the best approximation of true underlying and unknown function f. In this case, 
X ∈ Rp is the input feature data with corresponding output target Y ∈ Zk for k classes 
or Y ∈ Rk for k regression tasks represented as a set of tuples {xi, yi}i∈n . Throughout this 
study, we focus on genomic data X of dimension n× p with associated multiple traits Y 
of dimension n× k with the restriction that the all traits are of the same modality (i.e. 
either continuous or binary). However, the input data can be of different modalities 
(for example a mixture between DNA marker and RNA expression data) which 

(1)Y = f (X) ≈ f̂ (X;W ),
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fundamentally contrasts with the homogeneous nature of image, audio or text data. The 
network used in this work is feed-forward, which means that the input information flows 
in one direction to the output without any feedback connections [7]. Multi-task tabular 
deep learning involves training a model to simultaneously minimize a multivariate loss 
function L(f̂ (X;W ),Y ) . The goal is to capitalize on possible shared representations 
across related tasks in order to enhance the model’s performance.

Tabular neural networks

NODE

Inspired by CatBoost [13], the neural oblivious decision ensemble (NODE) [38] is 
designed to leverage the interpretability of decision trees while benefiting from the 
expressive prediction power of neural networks.

Each oblivious decision  module in NODE consists of several layers of decision nodes. 
At each layer l, each node makes a decision based on a splitting feature g and a learnable 
threshold b. For the l-th layer and node j, the decision function can be expressed as

where H(·) denotes the Heaviside step function and dl,j(X) is the output of the 
decision node. Then all r decision nodes in the l-th layer will produce a decision vector 
vl = [dl,1(X), dl,2(X), · · · , dl,r(X)] . NODE uses an ensemble of such  decision trees 
through these output nodes.

To make the oblivious decision trees (ODTs) differentiable, the splitting feature choice gl,j 
and the comparison operator H(gl,j − bl,j) are replaced by their differentiable counterparts. 
The choice function is replaced by a weighted sum of features, with weights computed 
based on the α − entmax transformation [49] over the learnable feature selection matrix. 
The Heaviside function H(·) is relaxed to  a two-class entmax , which is denoted as 
σα(v) = entmaxα([v, 0]) . Its scaled version cl,j(X) = σα(

gl,j(v)−bl,j
τl,j

) is used due to potential 

variations in feature scales by using learnable parameters. The computed cl,j(v) is combined 
into a “choice” tensor C ∈ R2d . The final prediction is then computed as a weighted linear 
combination of response tensor entries R with weights from the entries of choice tensor C. 
Assume that the tree outputs are one-dimensional ĥ(v) and each NODE layer contains 
several trees whose outputs are concatenated by m individual trees [ĥ1(v), · · · , ĥm(v)] . 
Then the NODE layer can be trained alone or within a complex structure, just like fully-
connected layers that serve as input for the subsequent layers. Similar to DenseNet [50], 
this architecture is a sequence of l NODE layers, where each layer uses a concatenation of 
previous layers as its input. This aggregated output is then passed through a final fully 
connected layer to produce the final prediction Ŷ  , with the structure of this final layer 
depending on the task (regression or classification).

TabR

TabR [39] is a feed-forward network incorporating a customized t-Nearest-Neighbors-
like component in the middle layer to produce a better prediction. Its main idea is to 
utilize the self-attention mechanism of transformers to capture complex interactions 
between features in tabular data.

(2)dl,j(X) = H(gl,j − bl,j),
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With the feature matrix X, a feed-forward retrieval-free network f (X) = P(E(X)) 
is first partitioned into two parts: an encode E : X → Rp

′
 part and a predictor 

P : Rp
′
→ PŶ  part. To make the model incrementally retrieval-based, a retrieval 

module R in a residual branch is added after E, where X̃ ∈ Rp
′
 is the intermediate 

representation of the target object, {x̃i}i∈Icand ⊂ Rp
′
 are the intermediate representations 

of the candidates and {yi}i∈Icand ⊂ Y  are the labels of the candidates.
The retrieval module R is defined in the spirit of k-nearest neighbors. For the target 

object’s representation, the retrieval module takes the x1,...,t nearest neighbors among the 
candidates x̃i according to the similarity module S and aggregates their values produced 
by the value module V with the definitions

where WQ , WK  , WV  are the weights for the corresponding transformation. They play a 
critical role in transforming inputs to better capturing the similarities between entries, 
contributing to the model’s ability to learn complex patterns and relationships within the 
data. By adding context labels, the performance of the similarity S and the value module 
V can be improved. Finally, the formal complete description of TabR which implements 
the R module is

where t = WK (X̃) , ti = WK (x̃i)and the operation of O is defined as 
O(·) = LinearWithoutBias(Dropout(Relu(Linear(·)))) . The retrieval module R enriches 
the target object’s representation by retrieving and processing relevant objects from the 
candidates. Finally, the predictor P makes a prediction.

TabNet

TabNet [37] combines the strengths of both tree-based methods and deep neural 
networks using a sequential attention mechanism. It emerges as a deep learning 
model embodying the feature selection principles of decision trees, with its encoder 
comprising a feature transformer, an attentive transformer, and feature masking.

The features in X will be the input to a batch normalization layer which yields 
X

′ ∈ Rw×z , where w is the batch size and z is the dimension. Assume the number 
of hidden layers is l, the output of the feature transformer  then becomes w × l 
which is split into two parts to construct a gated linear unit:  a standard  decision 
step ρ[i] ∈ Rw×la and a shared across decision step a[i] ∈ Rw×lρ . The former is used 
for the final output of TabNet, and the latter is used as an input of the attentive 
transformer. Each block is composed of a fully-connected (FC) layer, batch 
normalization (BN) and a gated linear unit (GLU). For the attentive transformer, the 
main function is to get a learnable mask layer M[j] ∈ Rw×z according to

where γi(a[i − 1])) is from the FC to BN, and sparsemax is a mapping from the vector 
to a simplex that obtains sparsity. The scaling prior - P[j-1] has a close connection to the 

(3)S(X̃ , x̃i) = WQ(X̃)
TWK (x̃i) V(X̃ , x̃i, yi) = WV (x̃i),

(4)S(X̃ , x̃i) = −�t − ti�2 V(X̃ , x̃i, yi) = Wyi +O(t − ti),

(5)M[j] = sparsemax(P[j − 1] · γi(a[j − 1])),
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mask M[j] via the features used in previous steps and one can notice that the initial value 
of P[0] equals 1. To ensure the sparsity of M[j], a regularized constraint is given to the 
parameters to make the distribution of M[j] more reasonable.

All the output from the earlier steps are summed to give the final output through 
the FC layer. For the multi-task learning, each task-specific branch ends with 
an output layer that produces a scalar output for the regression task. The shared 
layers can facilitate the extraction of relevant features for multi-task learning and 
the task-specific branches capture patterns specific to each multi-task regression 
target. The TabNet decoder is composed of a feature transformer block at each step. 
After reconstructing the features from the encoded representation, the aggregated 
features will be passed through a fully connected layer to do the predictions Ŷ .

TabTransformer

Considering the characteristics of context embeddings, TabTransformer [42] is built 
upon self-attention based transformers. This model comprises a column embedding 
layer, a stack of l Transformer layers, and a multi-layer perceptron. Each Transformer 
layer consists of a multi-head self-attention layer followed by a position-wise feed-
forward layer. For the tuples {xi, yi}i∈n , each of the xi is embedded into a parametric 
embedding of dimension s using column embedding. Let eφi(xi) ∈ Rs be the embedding 
of the xi feature, and Eφ(xcat) = {eφ1(x1), · · · , eφs′ (xs′ )} is the set of embeddings for all 
the categorical features. Then Eφ(xcat) serves as input  to the sequential Transformer 
layers fθ , which operate on parametric embeddings and return the corresponding 
contextual embeddings hs′ where h ∈ Rs . These contextual embeddings are concatenated 
along with the features to first form a vector which serves as the input to an MLP that is 
used to predict the target Ŷ .

A self-attention layer in TabTransformer comprises three parametric matrices - 
Key (K), Query (Q) and Value (V). Each input embedding is projected on to these 
matrices to generate the corresponding vectors and  attends to all other embeddings 
through an attention head, which is computed as Attention(K ,Q,V ) = A · V  ,  where 
A = softmax((QKT )/

√
k ′)(k ′ is the dimension of Key). The output of the attention head 

is projected back to the embedding through a FC, which in turn is passed through two 
position-wise feed-forward layers. The contextual embeddings are concatenated to form 
the feature xcont . If we let δ be the cross-entropy for classification and the mean square 
error for regression tasks, the prediction Ŷ  can be obtained by minimizing the loss 
function L(f̂ (X;W ),Y ) = δ(MLP(Transformer(Eφ(xcat)), xcont),Y ).

FT‑Transformer

FT-Transformer performs feature transformations that enhance the model’s ability 
to capture complex patterns [43]. It handles individual features independently before 
combining them to make predictions. There are two important parts of FT-Transformer: 
the feature tokenizer and the transformer.

The feature Tokenizer component first transforms the input feature X to embeddings 
G ∈ Rm

′×n
′
 . The embedding for the feature xi is computed as
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where bi is the i-th feature bias, fi is implemented as the element-wise multiplication 
with the weight matrix Wi . There is also a function f (cat)i  implemented as a lookup table 
W

(cat)
i  for categorical features with one-hot vectors of the corresponding categorical 

features eTi  . Then, the vectors are stacked as G = stack[G1, · · · ,Gi,G
(cat)
1 , · · · ,G(cat)

i ] 
and the embedding of the [CLS] token (or “output token”) is appended to  the G and l 
Transformer layers F1, F2, · · · , Fl as

After using the PreNorm setting, the final representation of the [CLS] token is used 
for prediction. For the multi-task learning situation, the initial layer of FT-Transformer 
consists of a shared transform encoder that will process the input feature that are 
propagated as the task-specific heads for each regression task. These heads are small 
MLPs that take the output of the shared encoder and generate task-specific predictions. 
Denoting the final representation of the [CLS] token as G[CLS]

l  , then the prediction is 
Ŷ = f (G

[CLS]
l ;W ).

AutoInt

Given the limited ability of shallow networks to model interactions, AutoInt [40] is 
designed based on transformer mechanisms that enhance the modelling capabilities 
for feature interactions. The main idea of AutoInt is mapping of the original features to 
sparse low dimensions and modeling of the interactions among the high-order features.

With an embedding vector υi for field i, the original feature xi is embedded into low 
dense vectors through the embedding layer as σi = υixi . The output of the embedding 
layer is a concatenation of multiple embedding vectors, which are the input of an 
interaction layer. For the following interaction layer, a multi-head mechanism is utilized 
to map the feature into multiple subspaces and generate the different feature interaction 
pattern in these spaces. Further on, more high-order interactions will be produced 
through stacking of interaction layers. For the feature σi in attention space I, there are 
three vectors: WQ for query, WK  for key, and WV  for value, respectively. The similarity 
between the feature σi and feature σj is first obtained as φI =< WI

Qσi,W
I
Kσj > , and then 

the distribution of the attention is produced using softmax. With a weighted sum, the 
new feature of σi can be acquired as σ̂iI.

For multiple attention spaces, the new feature from each space can be concatenated 
to get the final representation of σi as σ̂i . To preserve the learned combinatorial features, 
including raw individual features, a standard connection is added to the network

where WRes is the projection matrix and ReLU(z) = max(0, z) is the standard non-
linear activation function. Thus, the representation of each feature σi is updated into a 
new representation σRes

i  . By stacking multiple such layers, an arbitrary order of σ̂i can 
be modeled. The output of the interacting layer is a set of feature vectors {σRes

i }pi=1 . By 

(6)Gi = fi(xi)+ bi,

(7)G0 = stack[[CLS],G] Gi = Fi(Gi−1).

(8)σRes
i = ReLU(σ̂i +WResσi),
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concatenating all of the learned feature interactions, the aggregated representation will 
be passed through a final layer for the predictions of Ŷ .

LassoNet

LassoNet is based on the sparsity idea of the Lasso and achieves feature sparsity by 
allowing a feature to participate in a hidden unit only if its input connection is active 
[35]. The features X and a residual feed-forward neural network F  with an arbitrary 
width and depth [51] can be described as

where gW  is a feed-forward network with wights W (fully connected). The object 
function of LassoNet for multi-task learning is

where L(θ ,W ) is the loss on the training data set, and W 1
i  denotes the weights for 

feature i in the first hidden layer. The constraint means that the total amount of non-
linearity involving feature i according to the relative effect importance of xi as a main 
effect. The residual link  and the first hidden layer jointly pass through a hierarchical 
soft-thresholding optimizer S(x) = sign(x) ·max{|x| − �, 0} . For the multi-task learning, 
the layers of the neural network remain common across all tasks to capture shared 
representations. The sparsity of the   input  layer weights gives complete control of the 
feature sparsity of the network. When ν = 0 , all the hidden units are inactive and only 
the skip connection remains which means that the formulation recovers exactly the 
Lasso. On the other hand, when ν → ∞ , one recovers a standard unregularized feed-
forward neural network. The linear and nonlinear components are optimized jointly to 
capture arbitrary nonlinearity.

GANDALF

Inspired by gated recurrent units (GRUs) [52] for representation learning, the gated 
adaptive network for deep automated learning of features (GANDALF) is designed for 
tabular data based on a gating mechanism and in-built feature selection called Gated 
Feature Learning Unit (GFLU) [41].

A learnable mask Mn ∈ Rp is used for the soft sparse selection of important features 
for each stage n of feature learning in GFLU. The mask is constructed by applying 
a sparse transformation on a learnable parameter vector ℑn ∈ Rp combined with 
t-softmax activation  for encouraging sparsity selection [53]. Here, let Xn be the input 
features and Mn = t-softmax(ℑn) the mask, the feature selection can be defined by

where ℑn and t are learnable parameters and ⊙ denotes an element-wise multiplication 
operation. The weight matrix W depends on the value of t. The gating mechanism has a 

(9)F = {f̂ ≡ f̂θ ,W : X �→ θTX + gWX},

(10)arg min
θ ,W

L(θ ,W )+ ��θ�1 s.t.
∥

∥

∥
W

(1)
i

∥

∥

∥

∞
≤ ν|θi|, i = 1, · · · , p,

(11)Xn = Mn ⊙ X

(12)Mn = t-softmax(ℑn, t),
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reset gate rn and an update gate zn . The update gate decides how much information to 
update in its internal feature representation, which can be defined as

where ϕn−1 is the (n− 1)-th stage of the GFLU and Wz
n is a learnable parameter for the 

weight at stage n. Then the candidate feature representation ϕ̂n is computed as

where rn decides how much information to forget from the previous feature 
representation, [] represents a concatenation operation, and WO

n  represents a learnable 
parameter. The reset gate can be computed in a  similar way  as the update gate: 
r − n = σ(Wr

n · [ϕn−1;Xn]).
GANDALF can be viewed as a stack of GFLUs arranged in a sequence mannerthat 

at each stage n selects a subset of features and learns a representations of features and 
therefore multiple stages act in a hierarchical way to built up the optimal representation 
for the prediction task. Then this representation is fed to a multi-layer perceptron for the 
final prediction.

SAINT

SAINT (self-attention and intersample attention transformer) [44] is inspired by the 
transformer encoder, where the model takes in a sequence of feature embeddings and 
outputs contextual representations of the same dimension. Its main idea is to leverage 
several mechanisms to overcome the difficulties of training on tabular data. For the 
embedding layer, each feature in the input row is embedded into a e-dimensional space 
as

where E ∈ R
n×p×e , and e is the embedding dimension. In the stacking of L identical 

stages, each stage consists of one self-attention transformer block and one intersample 
attention transformer block. The contextual representations of the input of  batch 
b can be given as {ri}bi=1 = S({E(xi)}bi=1) . When L = 1 , ri can be obtained as the 
following procedure 

where MSA  is a multi-head self-attention layer with h heads, FF is a fully-connected 
feed-forward layer with a GELU non-linearity, LN is  a normalization layer with skip 
connection and MISA is an intersample attention transformer block. For the intersample 
attention, it is computed across the different data points (i.e. rows of the tabular data 
matrix) in the batch. This can be helpful to improve the representation of a given data 
point by inspecting other points. For the self-supervised pretraining method, CutMix 

(13)zn = σ(Wz
n · [ϕn−1; xn]),

(14)ϕ̂n = tanh(WO
n · [rn ⊙ ϕn−1;X]),

(15)E = Embedding(X),

(16)

z
(1)
i = LN(MSA(E(xi)))+ E(xi)

z
(2)
i = LN(FF1(z

(1)
i ))+ z

(1)
i

z
(3)
i = LN(MISA({z(2)i }bi=1))+ z

(2)
i

ri = LN(FF2(z
(3)
i ))+ z

(3)
i

,
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is used to augment samples in the input space and mixup is used in the embedding 
space for the augmented representation. At the final prediction stage, the corresponding 
embedding is passed through a single layer MLP with ReLU activation to get the output 
Ŷ .

Implementation details

Tuning

For each dataset, we tuned the hyperparameters of each model using Bayesian 
optimization (BO) with 100 iterations. The hyperparameter search was conducted on 
the validation folds of the training set, ensuring that the test set remained untouched 
and independent. To optimize the hyperparameters, we used a 5-fold cross-validation 
(CV) approach on the training set. For each fold, the model was trained on 4 folds 
and validated on the remaining fold. This process was repeated 5 times, with each 
fold serving as the validation set once. The performance metrics from the 5 folds were 
averaged to obtain a single performance measure for the given set of hyperparameters. 
Various combinations of hyperparameters were evaluated, and the set that provided 
the best average performance across the 5 folds was selected as the optimal set. 
Subsequently, we executed models in parallel across each fold and independently 
calculating the test MSE or test accuracy. The performance metric was then collected 
and averaged from this parallelized execution to facilitate the Bayesian Optimization 
process using Tree Parzen Estimator (TPE) for parameter suggestions. The best 
hyperparameters were selected based on the loss criteria (i.e. MSE or accuracy) of the 
validation set. This iterative process continued until the predefined stopping criterion 
was reached. For the TPE method, we relied on the stochasticity inherent in draws from 
the models, ensuring diverse candidate suggestions from one iteration to the next while 
incorporating new recommendations from BO [54]. To obtain a balance between time 
consumption and precision of the performance metric results, we set the BO stopping 
criterion to 1e-5. The experiments were conducted using 5 NVIDIA Tesla V100 GPUs. 
Each GPU is equipped with 32 GB of HBM2 memory. The initial parameter ranges of the 
hyperparameters of the models are public available online along with our code.

There are two important hyperparamters in LassoNet: the l1-penalty coefficient � 
and the hierarchy coefficient M, which control the complexity of the fitted model and 
the relative strength of the linear and nonlinear components, respectively. First, we 
performed some initial test runs to determine a suitable range of M and � . For the � , 
we made sure that the initial dense model with � = 0 trained well before starting the 
regularization path. Then the stepsize over � was implemented following the same 
strategy as the original paper.

Evaluation

For each tuned configuration, ensemble predictions were generated by conducting 
10 experiments with different random seeds, and the average results are reported on 
the test set. For the multi-trait classification task, evaluation metrics include average 
classification accuracy with standard deviation (stddev), Bries scores and the area 
under the curve (AUC) with standard deviation. For the regression task, the metrics 
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reported are the test mean squared error (MSE) with standard deviation and the Pearson 
correlation coefficient r, averaged across traits for each dataset.

Material
Mice data

The first data of our study is the mice data which is part of the BGLR package in R [55], 
but originally comes from the Wellcome Trust (http://gscan.well.ox.ac.uk) and has 
been used for whole-genome regression in several other studies [56, 57]. It consists of 
genotypes and phenotypes of 1,814 mice. Each mouse was genotyped at 10,346 single 
nucleotide polymorphisms (SNPs) that were coded as 0, 1 and 2. Here we use two 
continuous traits, body length (BL) and body mass index (BMI). The entire dataset 
was divided into a training set (70%), a validation set (10%) and an independent test set 
(20%).

Pig data

The largest tabular data set in our study is the pig data [58] which contains 3534 
individuals with high-density genotypes and continuous phenotypes of five anonymized 
traits. After cleaning some missing data, we finally obtain 2314 samples and each sample 
contains 52, 843 SNPs. The data was anonymised by randomising the map order and 
cording of the SNP genotypes were 0, 1, and 2. The dataset was partitioned into three 
subsets for training, validation and independent testing using the same approach as for 
the mice data.

Wheat data

The wheat data set originates from CIMMYT’s Global Wheat Program and is also a 
part of the BGLR package [55]. It comprises 599 wheat lines from the CIMMYT Global 
Wheat Program evaluated in four international environments representing four basic 
agroclimatic regions (mega-environments). The wheat lines were genotyped using 1,447 
Diversity Array Technology (DArT) markers. As a quality control, all the markers with 
a minor allele frequency below 0.05 were eliminated, and any missing genotypes were 
imputed using samples from the marginal distribution of marker genotypes. Following 
these procedures, the dataset was reduced to 1,279 DArT markers which are coded as 
0 and 1. We used the data from the different environments as multiple traits, resulting 
in a total of four traits. The whole datasets was divided into three datasets for training, 
validation and testing following the procedure of the pig and mice data.

14-Cancer microarray data

The cancer data originates from a study by [59] and has been used in for example [48]. 
The data uses oligonucleotide microarrays containing 16,063 oligonucleotide probe sets 
for the gene expression. It contains 16,063 gene expression feature values and 198 tumor 
samples, which were divided into 144 training samples and 54 test samples. Of the 
training samples, 100 were used for training and 44 allocated for validation. Each feature 
represents the expression level of a specific gene across various samples. The binary 
traits constitutes 14 common human cancers, including Breast (BR), Prostate (PR), Lung 
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(LU), Leukemia (LE), Renal (RE), Pancreas (PA), Ovarym (OV), Mesothelioma (ME) and 
CNS cancers. For further details see [59].

Loblolly pine data

The lobolly pine population is derived from 32 parent trees representing a wide range 
of accessions from the Atlantic coastal plain, Florida, and the lower Gulf of the United 
States. Parents were crossed in a circular mating design with additional off-diagnal 
crosses, resulting in 70 full-sib families with an average of 13.5 individuals per family [60, 
61]. It was originally composed of 951 individuals from 61 families that was genotyped 
using an Illumina Infinium assay [62]. A subset of 4,853 SNPs (encoded as 0, 1, 2) 
were polymorphic and used in our study. By discretizing the values of the deregressed 
breeding values > 0 to 1 and deregressed breeding values < 0 to 0, we recreated two 
binary traits: presence or absence of rust (Rustbin) and presence or absence of roots 
(Rootnumbin). Then  the traits were recoded to four multi-classes ([0,0],[0,1],[1,0] and 
[1,1]). After cleaning some missing data, we finally got 806 samples and each sample 
contains 4,853 SNPs. The dataset was divided into three subsets-training, validation and 
testing - using the same percentage as for the mice, pig and wheat data.
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