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results in low RNA capture e�ciency, ampli�cation failure, and many expressed genes 
being measured as zero values. �ese dropout events primarily occur due to sequencing 
technology limitations, which only capture a small amount of initial mRNA in a single 
cell, leading to low sequencing depth and ampli�cation failure. It is crucial to estimate 
zero expression values introduced by dropouts and sequencing errors since downstream 
analysis of scRNA-seq heavily relies on expression measurement accuracy [4].

In recent years, there has been a surge of proposed Single-cell RNA-sequencing data 
imputation method to address the challenge of redundant zeros in scRNA-seq data. 
�ese methods can be classi�ed into four types.

�e �rst type is model-based imputation, which directly employs a probabilistic model 
to interpolate sparsity modeling. For example, SAVER, proposed by Huang [5], is a 
method for scRNA-seq data expression imputation based on UMI counts. �ey assume 
that each expression measure is recovered by estimating prior parameters following a 
Poisson-Gamma mixture distribution, also known as the negative binomial model. �is 
is followed by an empirical Bayes-like method of Poisson-LASSO regression for gene 
counts. Another model-based method ScRecover [6], is an expression recovery method 
for scRNA-seq data based on a zero-in�ated negative binomial model. �is method pre-
dicts the number of genes that are expressed in a cell by estimating the probability of 
“dropout-zeros” for each gene in each cell. �e ScImpute method learns the dropout 
probability of each gene in each cell based on a mixture model and then automatically 
identi�es values in gene expression a�ected by dropout events with the help of the same 
genes in other similar cells [7]. Computational methods based on model imputation gen-
erally yield fewer false positives, but this depends largely on the diversity of cell types 
in the sample. �e more cell types there are, the more cell type-speci�c labeling can be 
reduced by model-based methods. VIPER [8] employs statistical models to estimate 
missing values, emphasizing the preservation of variability in the data. �is approach 
enhances the consistency of the imputed data with actual biological conditions. SDIm-
pute [9] employs statistical models to fully utilize cell-level and gene-level information 
for imputation. �is approach captures the structural features of the data by analyzing 
the relationships between cells and genes.

�e second type of method is the smoothing-based imputation method. For instance, 
DrImpute [10] is a clustering algorithm that identi�es similar cells and performs data 
imputation through the average expression level of the expression values of similar cells. 
On the other hand, MAGIC [11] �rst constructs a distance matrix by calculating the dis-
tance between every two cells, then converts the distance matrix into an a�nity matrix 
using the Gaussian kernel, and constructs an a�nity map based on the Markov chain 
after normalization to restore the dropout value. However, these methods require the 
identi�cation of structures in the data that can be used to predict dropout expression 
levels, such as similar cell expression, a�nity relationship, or neighbor asymptotic rela-
tionship, and then use smoothing algorithms for imputation. As a result, these methods 
can introduce a signi�cant number of false positive signals. It is crucial to note that while 
these methods can be e�ective, they rely on assumptions that may not always hold in 
practice.

�e third type of imputation method is based on deep learning [12]. DCA is an inter-
polation algorithm that utilizes a deep counting autoencoder, which designs a unique 
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loss function for scRNA-seq data [13]. It utilizes the noise model and the mean value 
of the distribution parameters to gene expression in an unsupervised way, according to 
the input gene expression data. �e expression matrix is then reconstructed and out-
put. scVI is a probabilistic representation analysis tool for single-cell gene expression 
that utilizes a hierarchical Bayes model design algorithm of deep neural network [14]. By 
compressing each cell and its gene expression, and using the decoder to map the latent 
space to the posterior of the gene expression distribution parameters, estimates are 
interpolated. AutoImpute [15] is an imputation algorithm based on autoencoders and 
sparse representation matrices, which solves dropout events by learning the inherent 
distribution of data. DeepImpute [16] is an interpolation algorithm based on deep neu-
ral networks that utilizes the divide-and-conquer approach to reduce the complexity of 
the algorithm by learning small-scale problems and �ne-tuning the sub-neural network, 
resulting in e�ective interpolation. scIGANs [17] is an algorithm based on an adversarial 
neural network that converts the expression pro�le of each cell into an image. �e pro-
cess of interpolating matrix data is the image inpainting process, and it is also a method 
of interpolating cells of the same type using nearest neighbors. However, most of these 
algorithms rely on deep learning models for image restoration and are limited by the 
lack of real interpolation labels for single-cell data, making it challenging to verify and 
train for accuracy like images.

�e fourth type of methods is low-rank matrix imputation methods. ALRA is an 
imputation method that uses an adaptive threshold low-rank approximation via singular 
value decomposition (SVD) and exploits the non-negativity and correlation of the matrix 
representation for imputation [18]. mcImpute [19] is an imputation algorithm based on 
low-rank matrix completion, which uses the kernel norm minimization algorithm to 
solve the non-convex optimization problem of the observation matrix to restore gene 
dropouts. �ese methods utilize matrix decomposition to distinguish “true zeros” from 
“dropout zeros”. However, “dropout zeros” may not fully conform to some matrix charac-
teristics, so the interpolation e�ect needs to be veri�ed.

A systematic evaluation conducted by Hou et�al. [20] on single-cell RNA sequencing 
(scRNA-seq) imputation methods reveals that the majority of these techniques outper-
form non-imputation methods in recovering gene expression, as observed in bulk RNA 
sequencing. However, it is notable that while these methods enhance gene expression 
recovery, they generally do not enhance the performance of downstream analyses, such 
as clustering and trajectory analysis, when compared to the absence of imputation. �us, 
caution is advised in their application. Furthermore, the evaluation demonstrates signi�-
cant variability in the performance of these methods across di�erent evaluation aspects. 
Cheng et�al. [21] demonstrated that various imputation methods exhibit di�ering e�ects 
across distinct datasets, indicating that imputation may be dataset-speci�c and that 
challenges in imputation persist.

Here, we present a novel approach, SAE-Impute, designed to accurately fill in 
dropout values within single-cell data. SAE-Impute accurately estimates missing val-
ues by exploiting the low-dimensional subspace structure of the data. This method 
effectively captures the intrinsic relationships within the data through a linear com-
bination of observations, thereby enhancing the accuracy of interpolation. The 
autoencoder learns feature representations from the data, while subspace regression 
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adeptly addresses missing patterns. This combination not only improves the mod-
el’s robustness but also enhances its adaptability. The method combines a subspace 
regression model with an autoencoder model. A subspace regression method was 
employed to address missing values within the dataset. This method leverages the 
low-dimensional subspace structure of the data to estimate missing values through 
a linear combination of observed values, thus enhancing the precision of missing 
value imputation. Additionally, our innovative use of feature engineering and data 
preprocessing techniques sets our method apart from existing algorithms, ena-
bling it to effectively handle the complexities and challenges inherent in single-cell 
RNA sequencing data. Just like data heterogeneity and technical noise, single-cell 
RNA sequencing data is derived from individual cells, leading to significant varia-
tions in gene expression among different cells. Factors such as the type, state, and 
environment of each cell can influence its RNA expression profile, complicating the 
analysis. Additionally, the single-cell sequencing technology itself can introduce 
noise, including biases in library construction and errors during sequencing. These 
sources of noise may hinder the extraction of true signals and compromise the reli-
ability of the data analysis results. Subsequently, an autoencoder is integrated to cap-
ture the nonlinear characteristics of the data, consequently enhancing the accuracy 
and resilience of the interpolation process, and the data processed using the sub-
space regression model can decrease the computational complexity of the autoen-
coder. The fusion of these methodologies enables more effective management of 
the prevalent missing value issue encountered in single-cell RNA sequencing data, 
thereby enhancing data integrity and reliability. Firstly, we use the subspace regres-
sion model to identify possible dropout values, ensuring that only highly correlated 
information is used to impute true dropout values by grouping genes with similar 
patterns into smaller groups. We then incorporate the predicted values obtained by 
the subspace regression model into the autoencoder, leveraging its inherent advan-
tages to train and find the actual dropout values alongside the original data. The 
subspace regression model effectively preserves the correlation between cells and 
minimizes the introduction of false positive signals and noise interference [22], 
while the autoencoder is capable of handling diverse cell distributions and expres-
sion patterns, resulting in faster and more scalable imputation.

Results
In order to assess the effectiveness of imputation techniques, we conducted a com-
parison of the SAE-impute method against six other methods across four popu-
lar models. These included SAVER [5], ScRecover [6], ScImpute [7], MAGIC [11], 
AutoImpute [15], ALRA [18] and scGCL [12]. SAVER, ScRecover, and ScImpute are 
model-based interpolation methods, while MAGIC is a smooth-based interpolation 
method. AutoImpute is a machine-learning-based interpolation method, and ALRA 
is a low-rank matrix interpolation method.
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SAE-Impute clustering performance evaluation

To evaluate the performance of SAE-impute in identifying dropout values, we use sim-
ulated data with known ground truth. In our experimental analysis, we �rst calculate 
the clustering performance evaluation using the Adjusted Rand Index (ARI) by cluster-
ing the cells with the Louvain method [23]. ARI is calculated by comparing the Louvain 
clustering results with known cell labels, with a value range of − 1 to 1, where 1 repre-
sents perfect consistency and 0 represents random partition. �e ARI formula is de�ned 
as follows:

where C represents the actual category division, a is the number of instance pairs that 
are classi�ed into the same class in C and the same cluster in the Louvain result, b is the 
number of instance pairs that are divided into di�erent categories in C and into di�erent 
clusters in the Louvain result, and n is the total number of instances.

�e SAE-Impute model leverages imputation weight labels consisting of data �lled 
with the predicted value IP of the subspace regression model to improve the e�ective-
ness of missing value imputation. �is approach not only preserves the correlation 
between cells but also helps to mitigate the issue of over�tting. Additionally, the weight 
label associated with the prediction matrix enhances the clustering e�ect of the model, 
as evidenced in Fig�1. �e results demonstrate that the SAE-Impute model outperforms 
SAVER, Screcover, ScImpute, MAGIC, AutoImpute, ALRA and scGCL methods in 
terms of clustering performance across four di�erent datasets.

SAE-Impute e�ectively identi�es dropout values

�e F1 score [24] is a metric used to evaluate the performance of a classi�cation model, 
which takes into account both the precision and recall of the model. And the F1 score is 
a measure of a model’s accuracy and recall, weighted by their harmonic mean. It ranges 

(1)
ARI =

RI − E[RI]

max(RI)− E[RI]
,RI =

a+ b
(

n
2

)

Fig. 1 Performance comparison of SAE-Impute and other methods for cell clustering on four different 
single-cell data. Adjusted Rand Index: ARI
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from 0 (worst) to 1 (best) and indicates how well the model performs. A higher F1 score 
indicates better model performance. �e F1 score formula is de�ned as follows:

Among these metrics, precision measures the proportion of true positives among all 
positive predictions made by the model, and recall measures the proportion of true posi-
tives among all actual positive cases.

Drawing an analogy to single-cell RNA-sequencing data interpolation, the F1 score 
can be utilized to assess the accuracy of the interpolation and the reconstruction e�ect 
of the original data. Speci�cally, in a single-cell dataset with numerous missing values, 
the F1 score of the interpolation method can re�ect the reliability and quality of the 
interpolated dataset. In single-cell imputation, data with a missing rate exceeding 70% is 
typically considered to be of no practical value.

Table�1 and Fig.�2 present the average F1 score across four datasets from Barron et�al 
[25]. Chen et�al [26]. Ramanno et�al [27]. and Zeisel et�al [28]. While our method may not 

(2)Fβ = (1+ β2) ·
precision · recall
precision+ recall

Table 1 The F1 scores of imputation methods on different dropout datasets

Methods Dropout rate: 
30%

Dropout rate: 
40%

Dropout rate: 
50%

Dropout rate: 
60%

Dropout 
rate: 
70%

SAEImpute 0.34 0.51 0.58 0.61 0.65

0.32 0.48 0.53 0.57 0.63

0.30 0.45 0.52 0.56 0.61

0.36 0.52 0.61 0.61 0.64

SAVER 0.39 0.47 0.54 0.55 0.57

0.36 0.45 0.50 0.52 0.54

0.34 0.42 0.48 0.49 0.53

0.41 0.50 0.56 0.53 0.55

AutoImpute 0.36 0.31 0.27 0.22 0.19

0.35 0.29 0.24 0.19 0.17

0.32 0.26 0.23 0.18 0.15

0.38 0.30 0.26 0.21 0.18

MAGIC 0.42 0.54 0.55 0.59 0.64

0.38 0.50 0.53 0.55 0.60

0.36 0.49 0.51 0.54 0.59

0.40 0.55 0.57 0.59 0.63

ScRecover 0.58 0.49 0.25 0.17 0.11

0.58 0.48 0.24 0.17 0.09

0.55 0.46 0.23 0.15 0.08

0.57 0.49 0.24 0.13 0.10

ScImpute 0.31 0.22 0.13 0.11 0.10

0.29 0.20 0.12 0.11 0.10

0.27 0.19 0.11 0.10 0.09

0.29 0.23 0.12 0.11 0.10

scGCL 0.41 0.53 0.55 0.58 0.62

0.37 0.51 0.52 0.53 0.60

0.35 0.48 0.51 0.52 0.57

0.39 0.53 0.56 0.58 0.61
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achieve the highest accuracy when the missing rate is low, its e�ectiveness signi�cantly 
improves as the missing rate increases. �is improvement is particularly signi�cant 
when considering real-world situations where the missing rate reaches approximately 
60%.

And we assess the performance of multiple methods across four datasets by com-
puting the mean absolute error (MAE) [24] of genes in�uenced by dropout events. To 
enhance the clarity of comparative visualization, we conducted experiments using data 
from La Manno et�al. [27] And Fig.�3 illustrates that our method exhibits a lower abso-
lute error, suggesting its strong interpolation capabilities on these datasets.

SAE-impute improves gene-to-gene and�cell-to-cell correlations

�e average correlation quanti�es the similarity between the imputed data and the 
actual data, serving as a critical criterion for assessing the e�ectiveness of the imputation 
method. By comparing the correlation between the imputed results and the true expres-
sion matrix, researchers can evaluate the model’s performance.

To quantify the similarity between the imputed and original landscapes, we calculate 
the distance correlation index (dCor) [29] for each imputed landscape generated by 
t − SNE . Given X and Y as the 2D representations of the raw and imputed data, dCor is 
calculated as dCor = dCov(X ,Y )√

dVar(X)dVar(Y )
 , where dCov(X,� Y) is the distance covariance 

between X and Y, Var is the variances. Speci�cally, this method calculates the pairwise 
distance of X by computing the distance between each element of X, generating a square 
matrix for each pair of cells. Next, it calculates the pairwise distance of Y. Finally, it com-
pares the two matrices and obtains the distance correlation using the formula above.

We calculated the distance correlation between the raw and imputed data using the 
�rst two components obtained from t − SNE . A higher correlation value indicates a 
greater similarity between the estimated and original landscapes. Our method demon-
strates a high average correlation (Fig.�4). A higher average correlation typically indicates 
that the imputation method is more e�ective in recovering missing values.

SAE-Impute enhances the�di�erential expression analysis

Identifying di�erentially expressed genes is a crucial step in analyzing single-cell RNA-
sequencing data, as it enables the discovery of driver genes within cells and facilitates 
the diagnosis and analysis of diseased cells. In this study, we compared the performance 

Fig. 2 Boxplots showing F1 scores of imputation methods on different dropout level datasets
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of various estimation methods using simulated data. To detect di�erentially expressed 
genes in both real and estimated single-cell sequencing data, we utilized the Wilcoxon 

Fig. 3 Assessment of SAEImpute, SAVER, AutoImpute, MAGIC, ScRecover, and ScImpute through simulation 
studies. The mean absolute error (MAE) was computed by comparing the estimated data with the complete 
data. Across all analyses, SAEImpute consistently exhibited lower MAE values compared to the other methods

Fig. 4 Transcriptome landscape similarity
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rank sum test [30]. To enhance the clarity of comparative visualization, we conducted 
experiments using data from La Manno et�al. [27].

�e assessment of SAEImpute, SAVER, AutoImpute, MAGIC, ScRecover, and 
ScImpute through simulation studies is depicted in Fig.�5. �e correlation coe�cient 
is calculated by comparing the imputed data with the complete data. Our method 
consistently demonstrates a higher correlation coe�cient compared to the other 
methods across all analyses.

SAE-Impute facilitates the�estimation of�cell trajectories

Trajectory inference methods uncover the dynamic development of cells, thereby 
enhancing the identi�cation of new dynamic cell subpopulations [31]. However, miss-
ing events might impede the construction of cellular pseudotime trajectories. Hence, 
evaluating the performance of interpolation methods on cell trajectory inference can 
better illustrate the potential capabilities of such methods for downstream data deri-
vation analysis. Initially, we applied the imputation method to three cell mixture data-
sets that o�er clear pseudotemporal developmental trajectories from one cell line to 
another, rendering them ideal for evaluating imputation method performance. Sub-
sequently, utilizing both the original and imputed datasets, we employed the trajec-
tory analysis method monocle2 to establish a cellular pseudotime path, selecting the 
H2228 cell line as the trajectory’s root state, consistent with a previous study [32]. 
�e evaluation metric comprises the maximum overlap ratio of cells between the 
inferred branches and those within the true trajectory. �e improvement in overlap 
rate re�ects the bene�cial role of single-cell imputation in enhancing data complete-
ness, reducing noise, and improving both statistical power and algorithm perfor-
mance, ultimately increasing the accuracy and reliability of cell trajectory inference. 

Fig. 5 Assessment of SAEImpute, SAVER, AutoImpute, MAGIC, ScRecover, and ScImpute through simulation 
studies. The correlation coefficient is computed by comparing the imputed data with the complete data. Our 
method consistently exhibits a higher correlation coefficient compared to the other methods in all analyses
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As illustrated in Fig.�6, SAE-Impute achieved the highest overlap rate, indicating its 
enhanced performance in cell trajectory inference on the evaluated dataset.

Figure�7 illustrates the UMAP visualization of simulated single-cell RNA sequencing 
(scRNA-seq) data, depicting across 6 distinct cell types, before and after imputation, uti-
lizing the human islet dataset from Barron et�al [25]. Subpopulation strati�cation was 
assessed by comparing the original data with imputed data. “Full” denotes simulated 
scRNA-seq data without any loss, whereas “raw” indicates data with a 50% loss. �e 
remaining sub�gures depict visualizations based on the post-imputation dataset using 
six imputation methods.

Conclusion
As single-cell RNA-sequencing (scRNA-seq) data often contains missing events that 
can impede downstream analysis, we propose a novel imputation method called SAE-
Impute. �is method combines a subspace regression model [33] and an autoencoder to 
e�ectively denoise scRNA-seq data and enable data recovery while preserving the het-
erogeneity of gene expression across cells. One of the key advantages of SAE-Impute is 
its ability to seamlessly integrate with various downstream analysis tools for scRNA-seq 
data. We conducted analytical experiments on both simulated and real datasets, and the 

Fig. 6 The overlap of different imputation methods on three cell mixture datasets
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results demonstrate that our method not only improves the original data, but also out-
performs other imputation methods under certain conditions. �is highlights the poten-
tial of SAE-Impute to signi�cantly enhance the quality of scRNA-seq data and facilitate 
downstream analysis.

As the extent of data loss in real single-cell RNA-sequencing data is often unknown, it 
is common for a large number of true zeros to be present, which can pose a challenge for 
algorithms to distinguish between missing and true zeros. By examining Table�1 and Fig 
6, we can observe that our method performs better with an increasing number of real 
deletions, which is consistent with the situation in real single-cell sequencing data. �is 
highlights the e�ectiveness of our method in accurately interpolating missing values and 
distinguishing between true and dropout zeros.

After conducting a comprehensive analysis of simulated and real datasets, we have 
drawn the following conclusions. Existing methods such as scImpute and scRecover 
assume that single-cell data follows speci�c distribution models, but due to the com-
plexity of single-cell data, relying on a single distribution model may not be su�cient 
to accurately impute dropout values. SAVER is a UMI-based imputation method that 
reduces false positives, but its e�ectiveness decreases as more data is lost. MAGIC relies 
on �nding structures in the data to predict dropout expression levels, which can intro-
duce false positive signals. ALRA uses singular value decomposition, but may not accu-
rately capture the characteristics of real zeros and dropout zeros in the data. AutoImpute 
is limited by the lack of real imputation labels for single-cell data.

To address these limitations, we propose a novel imputation method called SAE-
Impute, which o�ers three key advantages. First, we use a subspace regression model 
to preserve the correlation between cells and minimize the introduction of noise, while 
retaining biological information. Second, the subspace regression model classi�es pos-
sible dropout values as predicted values, providing targeted interpolation. �ird, SAE-
Impute uses an autoencoder framework to learn the underlying structure of single-cell 
sequencing data, making it suitable for high-throughput datasets. Our experimental 
results on both simulated and real datasets demonstrate that SAE-Impute e�ectively 
enhances the recovery of missing expression values and improves the accuracy of down-
stream analyses.

Methods
The overview of�the�SAE-Impute algorithm

In recent years, the exponential growth of biological information data has led to an 
increased adoption of deep learning in the �elds of biology and biomedicine. �e sub-
space regression algorithm has demonstrated its e�ectiveness in preserving correlation 
relationships between data during the clustering process of single-cell data. Addition-
ally, the autoencoder, acknowledged by numerous scholars as a potent tool for compre-
hending the intricate structure of data for reconstruction [34], plays a pivotal role in this 
context. Building upon these insights, we introduce SAE-Impute, an innovative model 
that amalgamates the subspace regression model and autoencoder. Emphasizing the 
preservation of correlation between cells, the SAE-Impute algorithm initially employs 
the subspace regression model to predict potential dropout values. Subsequently, an 
autoencoder model is constrained by these predicted values to impute dropout events 
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in scRNA-seq data (Fig.�8). In this study, our methodology involves (A) acquiring sin-
gle-cell sequencing data and its systematic organization, (B) employing subspace regres-
sion models for predictive analyses, and (C) identifying dropout values, subsequently 
addressing them through imputation utilizing autoencoder models. Subsequently, (D) 
the imputation results are generated, and the experiments are comprehensively com-
pared, evaluated, and analyzed. A comprehensive description of the proposed method 
will be provided below.

Data processing

To generate a reference dataset from real scRNA-seq data, we �rst selected high-quality 
cells and genes with high expression from the original dataset, treating them as the real 
expression IR. We then generated downsampling by drawing a Poisson distribution with 
the mean parameter, resulting in the observation dataset IO. Here are the speci�c details 
of the data collection process:

For the human islet data from Barron et� al [25]. we �ltered out genes with mean 
expression less than 0.001 and non-zero expression in less than three cells. Genes with 
non-zero expression in 25% of cells and cells with a library size greater than 5,000 were 
then selected from the �ltered dataset containing 14,729 genes and 1,937 cells. �is 
resulted in 2,284 genes and 1,076 cells. For the mouse hypothalamus data from Chen 
et�al. [26], we �ltered out cells with a library size greater than 15,000, as well as genes 
with mean expression less than 0.0002 and non-zero expression in less than �ve cells. 
We then selected genes with non-zero expression in 20% of cells and cells with a library 
size greater than 2,000, resulting in 2,159 genes and 7,712 cells. For the human ventral 
midbrain data from Ramanno et�al. [27], we �ltered out genes with mean expression less 
than 0.001 and non-zero expression in less than three cells. We then selected genes with 
non-zero expression in 30% of cells and cells with a library size greater than 5,000, result-
ing in 2,059 genes and 947 cells. For the Zeisel et�al. [28] mouse cortex and hippocampus 

Fig. 8 Overview of SAE-impute. A acquiring single-cell sequencing data and its systematic organization, 
B employing subspace regression models for predictive analyses, and C identifying dropout values, 
subsequently addressing them through imputation utilizing autoencoder models. Subsequently, D the 
imputation results are generated, and the experiments are comprehensively compared, evaluated, and 
analyzed
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data, we selected genes with non-zero expression in 40% of cells and cells with a library 
size greater than 10,000 UMI, resulting in 3,529 genes and 1,800 cells.

Subspace regression models to�make predictions

�is section presents the speci�c calculation method for the subspace regression model 
as a priori model. Firstly, it is determined whether each zero value is a result of dropouts. 
Given a zero-valued entry, let p1 and p2 denote the probability of observing a zero value 
in the corresponding gene and cell, respectively. Since genes and cells have zero values 
that are binomially distributed as X ∼ Bin(n, p1) and Y ∼ Bin(m, p2) , assuming n is the 
number of gene measurements and m is the number of cell measurements, in the case of 
zero values, p = p1 = p2 . If X and Y are independent, then X + Y ∼ Bin(n+m, p) holds 
true. �erefore, the conditional distribution of X, P(X = x | X + Y = r) is a hypergeo-
metric distribution, where x represents the number of zero values observed in a gene, 
and r is the total number of genes observed and zero values in the selected gene and 
cell pair. �e probability function of the hypergeometric distribution can be expressed 
as follows:

Please note that Equation (1) accounts for overlapping entries in both X and Y for 
each gene and cell pair. To address this, we adopt the following strategy: (i) We use 
(n+m− 1) instead of (n+m) as the total number of observations in the selected gene 
pair, (ii) we use (n− 1) instead of (n) as the number of gene measurements, and (iii) 
we use (x − 1) instead of (x) as the number of genes with zero values observed in the 
cells. �is is because such genes do not contribute to the hypergeometric probability 
calculation.

We then calculate a p-value for each zero-value and perform two tests: underrepre-
sentation analysis and overrepresentation analysis, with a signi�cance threshold of 
0.01. Entries with signi�cant p-values in the overrepresentation analysis are considered 
implausible and should be classi�ed. On the other hand, entries with signi�cant p-values 
in the underrepresentation analysis are considered reliable. Entries that fall in neither 
category should be disregarded. �ese values are not extrapolated and should not be 
used for extrapolation purposes.

Based on this hypothesis testing process, we obtain a set of genes that can be used for 
training (training data) and a set of genes that need to be attributed (attributable data). 
A gene is classi�ed as plausible if all its entries are plausible, while a gene is considered 
attributable if at least one value is attributable.

In order to accurately infer dropout values for genes, it is crucial to utilize related 
genes with similar expression patterns. �is module aims to identify subspaces of genes 
within the training data that share similar patterns. We will then use a generalized linear 
regression model on the gene subspace to estimate dropout values in groups. To assign a 
gene in the imputable set g ∈ IO to a subspace, we compute the Euclidean distance from 

that gene to the centroid of each gene subspace d(AB) =
√

∑N
i=1

(

xi − yi
)2 . Based on 

(3)P(X = x − 1 | X + Y = r − 1) =

(

n− 1

x − 1

)(

m

r − x

)

(

n+m− 1

r − 1

)
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the calculated distances, we assign the gene to the closest subspace (with the smallest 
Euclidean distance). To estimate dropout values in gene g, we train a generalized linear 
model using only highly correlated genes within the speci�ed subspace in T. �e lin-
ear regression process consists of two steps: selecting highly correlated genes from the 
training set and training a linear model using these genes to estimate dropout values. To 
ensure that genes with high expression values do not dominate the regression process, 
we always use a logarithmic transformation (base 2) to rescale the data to an acceptable 
range ([0,100] by default). To obtain the prediction matrix IP for matrix IO.

Autoencoder models

In recent years, the accuracy of collaborative �ltering has signi�cantly improved due 
to the emergence of representation learning. In particular, autoencoder-based models 
have played a prominent role in this enhancement [35–37]. Unlike matrix factoriza-
tion or kernel norm minimization techniques, autoencoders require estimating 2×m.r 
independent variables. �is reduction in the number of parameters is advantageous in 
data-constrained scenarios like ours, where models are susceptible to over�tting. Fewer 
parameters decrease the model’s propensity for over�tting and enhance its generaliza-
tion capabilities, resulting in improved overall performance.

As a self-supervised learning approach, autoencoders inherently learn data structures, 
making them well-suited for the analysis of single-cell sequencing data.

An autoencoder consists of two main components: an encoder E and a decoder D. Ini-
tially, the input matrix is transformed into a latent representation (H) where the activa-
tion function φ is applied, resulting in H = φ(EY ) . Subsequently, the decoder (D) maps 
the latent space (H) back to the input space to yield X = DH = Dφ(EX) . During the 
training phase, the encoder and decoder work collaboratively to minimize the Euclidean 
cost function f (x) = argmin

D,E

� X − Dφ(EX) �2F.

In our approach, we leverage the similarities between this problem and collabora-
tive �ltering by using the original matrix IO and the matrix IP predicted by the subspace 
regression model as input data Y. Both matrices are mapped to the latent space (H) dur-
ing training of the encoder and decoder functions. Our ultimate goal is to regenerate 
the estimated expression matrix IR by minimizing the cost function for optimal imputa-
tion.To enhance the e�ectiveness of the autoencoder, further details regarding the model 
architecture and hyperparameter selection are necessary, particularly the choice of the 
regularization coe�cient � . Additionally, we need to clarify how the output from the 
subspace regression model is integrated within the autoencoder framework. Ultimately, 
we aim to regenerate the estimated expression matrix IR by minimizing the cost function 
for perfect imputation as fellow:

In this context, R is computed as the Hadamard product of R = M ◦ X (where M is a 
binary mask), E and D is the decoding mask representation, while � is the regulariza-
tion coe�cient. �e loss is computed using the count of non-zero elements in the sparse 

(4)argmin
E,D

� R− Dσ(E(R))) �2O +
�

2

(

� E �2F + � D �2F
)
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expression matrix M ◦ X , denoted by O. �e sigmoid activation function is applied by 
the encoder layer in the neural network and represented by σ . To avoid over�tting to the 
non-zero values in the count matrix, we apply regularization to the encoder and decoder 
matrices during training. After training, the learned matrices are used to estimate the 
expression matrix, which is represented by Eq.�3. �e estimated matrix, denoted as X̃ , 
contains predicted count values for all positions in the matrix.

�e input raw gene expression matrix undergoes a series of preprocessing steps includ-
ing �ltering for bad genes, normalization to library size, trimming by gene selection, and 
log-transformation. �e resulting processed matrix and the prediction matrix obtained 
from the subspace regression model are then inputted into the AutoImpute model.

�e SAE-Impute model is comprised of a fully connected multi-layer perceptron 
consisting of three layers: an input layer, a hidden layer, and an output layer. �e model 
leverages imputation weight labels, which are comprised of data �lled with subspace 
regression model predictors IP , to improve the �lling of missing values. Gradients are 
computed using backpropagation of errors and the model is trained using gradient 
descent to minimize the cost function.
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