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Abstract
Background: The developments of high-throughput genotyping technologies, which enable the
simultaneous genotyping of hundreds of thousands of single nucleotide polymorphisms (SNP) have
the potential to increase the benefits of genetic epidemiology studies. Although the enhanced
resolution of these platforms increases the chance of interrogating functional SNPs that are
themselves causative or in linkage disequilibrium with causal SNPs, commonly used single SNP-
association approaches suffer from serious multiple hypothesis testing problems and provide
limited insights into combinations of loci that may contribute to complex diseases. Drawing
inspiration from Gene Set Enrichment Analysis developed for gene expression data, we have
developed a method, named GLOSSI (Gene-loci Set Analysis), that integrates prior biological
knowledge into the statistical analysis of genotyping data to test the association of a group of SNPs
(loci-set) with complex disease phenotypes. The most significant loci-sets can be used to formulate
hypotheses from a functional viewpoint that can be validated experimentally.

Results: In a simulation study, GLOSSI showed sufficient power to detect loci-sets with less than
10% of SNPs having moderate-to-large effect sizes and intermediate minor allele frequency values.
When applied to a biological dataset where no single SNP-association was found in a previous
study, GLOSSI was able to identify several loci-sets that are significantly related to blood pressure
response to an antihypertensive drug.

Conclusion: GLOSSI is valuable for association of SNPs at multiple genetic loci with complex
disease phenotypes. In contrast to methods based on the Kolmogorov-Smirnov statistic, the
approach is parametric and only utilizes information from within the interrogated loci-set. It
properly accounts for dependency among SNPs and allows the testing of loci-sets of any size.

Background
The genetic component of complex disorders such as
hypertension, Parkinson's disease, cancer, and diabetes is
believed to result from the compound effect of multiple

DNA variations in different chromosomal regions. In this
context, the paradigm of searching across the genome for
univariate single nucleotide polymorphism (SNP) associ-
ations may not be the most appropriate or realistic strat-
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egy. A preferred approach would consider the effects of
multiple SNPs jointly. Unstructured enumeration of all
possible combinations of SNPs for association is compu-
tationally demanding, if not infeasible. Variable selection
needs to be performed before testing such multi-locus
effects due to the discrepancy between numbers of SNPs
and sample size in a typical genome-wide association
study. In the current work, we focused the proposed asso-
ciation analyses of SNPs belonging to genes that are bio-
logically related. The criteria for grouping SNPs can be
based on biological theory, expert opinion, or localization
in genes that control the same functional process or are
co-regulated. Such groups of SNPs will be referred to as
loci-sets. We have developed a method called GLOSSI
(Gene-loci Set Analysis) to score loci-sets as a function of
the significance level of the individual SNPs comprising
each loci-set. In what follows, we will use the terms locus
and SNP interchangeably.

The idea of directly scoring a predefined set of genetic fea-
tures is not new. It has sparked considerable interest in the
context of gene expression data analysis since the publica-
tion of the pioneering paper by Mootha et al. [1,2]. These
authors designated and implemented the Gene Set
Enrichment Analysis (GSEA) approach to identify func-
tionally related genes that display overall coordinated
expression changes with respect to biological states or dis-
ease phenotypes. The annotated biological function is
expected to be more relevant if the set is 'enriched' with
genes showing good-to-moderate association signals as
compared to the remaining genes.

Recently, Wang et al. [3] built on work of Subramanian et
al. [2] and extended it to genotyping data. Since many
SNPs can be assigned to the same gene, the authors used
the best signal (biggest χ2-value) from each gene in their
calculation. Similar to GSEA, enrichment of association
signals was measured by using a modified Kolmogorov-
Smirnov (KS) statistic and statistical significance deter-
mined through permutation testing. One drawback of the
KS statistic is that it depends, in part, on the signals out-
side of the tested loci-set. Put another way, it assumes the
'real' causal SNPs are fully contained in a single relevant
loci-set, if such a set exists. In practice, causal SNPs can
probably span across multiple loci-sets, without account-
ing for the imperfect SNP classification that might arise,
for instance, from the empirical definition of the bound-
ary of a loci-set. Under these conditions, application of
the KS statistic will result in the attenuation of the overall
significance of the relevant loci-set. Another limitation
pointed out by the authors is the need to carry out the
computationally demanding permutation of sample
labels, instead of the faster gene label permutation to
properly assess the statistical significance of the KS statis-
tic. When many loci-sets have to be tested, the computa-

tional challenge is increased since a larger number of
permutations have to be performed so as to detect signif-
icant association with correction for multiple hypothesis
testing.

The method we describe below addresses these two issues.
GLOSSI scores loci-sets by an alternative strategy that only
focuses on information from within a loci-set and allows
the determination of significance level with relative com-
putational ease.

Results and discussion
Fisher's combined probability test
Suppose that the data collected are from I independent
subjects on J loci, where the number of loci genotyped is
typically much larger than the sample size, i.e. J >> I. Let yi
represents the phenotypic measurement for the i-th sub-
ject, i = 1,..., I, with the phenotype being understood in a
broad sense as for instance a binary or multiclass label, a
continuous quantity, a censored variable, or even count
data. For illustration purposes, we assume here that the
phenotype is binary (coded as 0/1). Using a standard
encoding of the genotype as a count of the major allele,
we denote the genotyping data as:

with i = 1,..., I and j = 1,..., J. Also, let gjk be an indicator
variable indexing the k-th loci-set, i.e. for j = 1,..., J and k =
1,..., K (assuming there are K loci-sets of interest)

A measure of statistical significance is first calculated
between each of the J loci with a chosen binary phenotype
(eg case versus control). Either allele or genotype frequen-
cies can be used as the basis for testing a locus in terms of
its ability to distinguish the two phenotypic classes under
study. Various statistical approaches are appropriate for
deriving the p-value, from contingency-table-based meth-
ods: Fisher's exact test, Pearson's χ2 test, or Cochran-
Armitage trend test; to regression-based techniques: logis-
tic analysis, probit analysis, or complementary-log-log
analysis. These approaches could have widely different
methodological assumptions, specifically on the way in
which the phenotype depends on the loci (eg additive,
recessive, dominant, or unconstrained). Because it is a
common belief that the additive assumption is generally
adequate for complex disorders, we opt for the Cochran-
Armitage trend test in view of its statistical power. The
trend test statistic is formulated in the Method Section.
Henceforth, we denote p-value for the j-th locus by pj.
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The null hypothesis of no association between yi and sij
implies that pj is distributed as a standard uniform ran-
dom variable, taking values in the interval (0,1]. Further-
more, tj = -2log pj has a chi-square distribution with two
degrees of freedom.

When SNPs are independent, the overall significance of a
loci-set can be represented by a single statistic and tested
on the basis of Fisher's method [4]:

where . That is, the sum of independent -2log

pj of the k-th loci-set follows a chi-square distribution with

degrees of freedom equal 2 times the total number of
SNPs in the set. The simplicity of this approach is very
appealing. In addition, it was shown by Little and Folks
[5,6] that Fisher's combined probability test is asymptoti-
cally (as the number of tests is increased) Bahadur opti-
mal. However, the assumption of independence is not
tenable in a high-throughput GWAS even if only tag SNPs
are used in the study. Basing inference on the independ-
ence assumption could therefore greatly inflate the appar-
ent statistical significance of a loci-set, leading to more
false positive findings. For this reason, we suggest correct-
ing for correlation using Brown's approximation [7]:

with  in which Ω is the covariance matrix of

t. Brown showed in his paper that the approximation

works well in general except when tj's are highly negatively

correlated. Since correlations between tjs from two-sided

tests can only be positive, the approximation should be

adequate for most genetic association studies. Note that Ω
is unknown and needs to be estimated. We chose to per-
form the estimation through shuffling the phenotype
labels 100 times, though smaller number of permutations

are often sufficient to attain a stable estimate for Ω. Details
of the permutation scheme are deferred to the Method
Section.

Simulation study
In order to objectively assess the potential of the proposed
methodology, we conducted a simulation study. A web-
based tool, namely HapSample [8], was used to generate
case-control samples with genetically realistic genotypes.
We restricted the simulation to a subset of SNPs interro-
gated by the Sentrix® HumanHap300 BeadChip [9], which
consists mostly of tag SNPs. More explicitly, a total of
59,140 SNPs no more than 20 millions bases away from
the end of each autosome were retained in the study. Of
these, we filtered out 770 loci based on the following cri-
teria: 737 are not in the HapMap phase I/II data [10]; 20
have a minor allele frequency (MAF) of zero according to
the HapMap project (Utah population); and 13 lie near
the edge of some chromosomes which possess linkage
patterns (inferred from HapMap data) that are not com-
patible with the simulator recombination algorithm.

The genotypes of the remaining 58,370 loci were simu-
lated with 22 settings, i.e. the null hypothesis (Scenario 0)
and 21 distinct alternative hypotheses, reflecting varying
numbers of SNPs associated with the case-control status
and different effect sizes (see Table 1). An artificial loci-set
was affixed to each scenario, but only two distinct sets
were introduced to enhance comparability. We created the
loci-sets and fixed causal SNPs as follows. Given a certain
MAF value (5% or 25%), two SNPs at least 1 million bases
apart were randomly picked from the chromosomes. We
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Table 1: Parameter specification in the simulated examples

Scenario Number of causal SNPs RR (OR)* MAF† of causal SNPs Whether causal SNPs were 'genotyped'

1–3 1, 5 or 20 1.07 (1.10) 0.25 Yes
4–6 1, 5 or 20 1.34 (1.52) 0.05 Yes
7–9 1, 5 or 20 1.34 (1.50) 0.25 Yes

10–12 1, 5, or 20 1.61 (2.00) 0.05 Yes
13–15 1, 5, or 20 1.61 (1.94) 0.25 Yes
16–18 1 or 5 2.00 (2.67) 0.25 Yes
19–21 1, 5, or 17‡ 1.61 (~1.94) ~0.25 No

*RR (OR) = relative risks (odds ratio) when a loci carries two disease alleles, assuming an additive model; †MAF = minor allele frequency of the 
Utah samples in the HapMap project. ‡Three out of the 20 original causal SNPs, generated under the case where MAF equals 0.25, are not in high 
LD with any SNP genotyped in the HapMap phase I/II project. Disease prevalence and crossover rate are fixed at 25% and 1.0 centiMorgan, 
respectively, in all simulations.
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assigned a fraction of them, or one of their 'untyped' link-
age disequilibrium (LD) counterparts (R2 > 0.8 via Hap-
map) in Scenarios 19–21, as containing a high risk allele.
Note that either none or only one SNP per autosome was
assumed causative in compliance with the constraint of
HapSample. Moreover, we assumed additivity on the phe-
notype-genotype relationships and considered the causal
SNPs as independent from each other. All SNPs located
within 15 kilobases upstream or downstream (average
size of a real gene) of the 44 selected loci constitute a loci-
set. This resulted in 231 members in the MAF = 0.05 loci-
set while the size of the other set was 254.

Every single simulation setup was replicated a thousand
times for each of these case-control sizes: 200–200, 400–
400 and 1000–1000. In other words, a total of 66 thou-
sand independent data sets were generated. GLOSSI was
run on the simulated data sets one-at-a-time and the
resulting significance levels of the hypothetical loci-sets
were stored so as to evaluate statistical power and type I
error rate. These were derived as the proportion of loci-set
p-values achieving a smaller numerical value than 0.05. As
would be anticipated, the distribution of p-values under
the null hypothesis closely resembles the standard uni-
form distribution (Figure 1). The empirical type I error
rates, calculated under 0.05 as well as two other popular
nominal levels, are presented in Table 2. All type I error
rates are within the 95% confidence intervals of the spec-
ified levels (α = 0.05, 95% CI 0.036 – 0.064; α = 0.001,
95% CI 0.004 – 0.016; α = 0.001 95% CI 0 – 0.003). This
leads us to conclude that GLOSSI offer adequate results in
the true null scenario.

The results for 200 affected and 200 unaffected samples
under the varying alternative hypotheses are graphically
documented in Figure 2. Despite having a smaller fraction
of causal SNPs than the corresponding MAF = 0.05 set, the
enriched MAF = 0.25 loci-set is more readily identified by
GLOSSI as significant. It is surprising to see that relatively
higher power is obtained in cases where causal SNPs are

not 'genotyped'. This is counterintuitive and likely to
occur by chance, but it requires further investigation. It
should also be noted that the method displays very low
statistical power when only 1 causal SNP was included in
the loci-set. The capability of detecting one-SNP enrich-
ment stays below the standard 80% cut-off level for the
other sample sizes considered in this study (data not
shown). Figure 3 shows the relationship between sample
size and power for some representative scenarios in which
sufficient power was attained at the total sample size of
2000. Given that we fixed less than 10% of the SNPs in the
MAF = 0.25 loci-set as causative, GLOSSI exceeds 80%
power when i.) relative risk (RR) is 2 and sample size is
400, ii.) RR = 1.61 with 1200 samples, or iii.) RR = 1.34
with 1000 cases and 1000 controls. In summary, higher
RR, larger MAF, increased number of causal loci and big-
ger sample size all have a positive impact on the power.

It is of interest to compare the performance of GLOSSI
against the modified KS approach proposed by Wang et al.
[3]. To this end, eight additional non-overlapping regions
(hypothetical genes) were randomly picked from each
chromosome. We altered the extension of the newly
selected regions to either double, equal or halve the size of
the hypothetical genes in the loci-set. These were used to
create a reference distribution in the modified KS test.
Without loss of generality, we focused the comparison on
the null and two alternative hypotheses with the use of
our data set of 200 cases and 200 controls. Scenarios 17
and 18 were chosen here because their powers were near
80% in the case of GLOSSI.

Outputs from the modified KS test on the basis of both
phenotype and gene label permutations under the null
hypothesis are summarized in Table 3. When there is ine-
quality in the gene sizes in and out of the loci-set, gene
label shuffling, though less computationally burdensome,
can lead to substantial deviation from the nominal type I
error rate of 5%. It offered satisfactory result when the size
of all the hypothetical genes was set to be the same. In
contrast, resampling case-control status appears adequate
for the null distribution regardless of the relative size of
genes. However, size of genes did have an influence on the
power of the modified KS statistic in the two tested non-
null hypotheses even when sample label permutation was
applied. Proportion of significant p-values (relative size of
genes: out/in) was calculated to be 48.6% (1/2), 59.8%
(1/1) and 70.8% (2/1) for Scenario 17 and 84.7% (1/2),
85.5% (1/1) and 85.8% (2/1) for Scenario 18. The KS sta-
tistic seemed to parallel GLOSSI (power = 69.0% – Sce-
nario 17; and 86.6% – Scenario 18) in power when larger
genes were used as reference.

We speculated in the Background Section that causal loci
in genes not belonging to the query loci-set can dilute the

Table 2: Estimated type I error rates for GLOSSI in the 
simulated examples

Total sample size Nominal rate, α Proportion of p-value <α

400 0.05 0.057
0.01 0.011
0.001 0

1200 0.05 0.045
0.01 0.012
0.001 0.002

2000 0.05 0.049
0.01 0.010
0.001 0.003
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degree of significance and, therefore, statistical power of
the KS statistic. Moreover, the power should drop as the
fraction of genes with causal SNPs outside of the loci-set
increases. To test these, we reassigned two SNPs (with
MAF = 0.25) in different genes of the reference set as caus-
ative. Since HapSample can only handle 1 causal locus per
chromosome, we study the change in the proportion of
loci being causative by decreasing the number of hypo-
thetical genes not in the loci-set from 176 to 88 and then
to 44. Results from case-control label shuffling are pre-
sented in Table 4. As expected, Scenario 18 with more
SNPs having high risk alleles is less susceptible to the 'con-
taminants'. Although the simulation setup is somewhat
artificial, it supports our claims in general.

Antihypertensive response example
GLOSSI was used in this example to identify potentially
instructive loci-sets for their influences on diastolic blood
pressure (DBP) response to hydrochlorothiazide in the
Genetic Epidemiology of Responses to Antihypertensives
study (GERA) [11]. On the basis of the age and baseline
DBP-adjusted distribution of DBP response, the study
group was partitioned into race-and-gender specific
"good", "intermediate" and "poor" responders. Raw
intensity data obtained via the Affymetrix GeneChip®

Human Mapping 100 K Set [12] were available for 194

African Americans (97 good and 97 poor responders, 50
women and 47 men in each of these response groups) and
195 non-Hispanic Caucasians (98 good – 42 females and
56 males; and 97 poor – 42 females and 55 males
responders). Genotype calls were made through the use of
Dynamic Modeling algorithm [13]. The following SNPs
were excluded from the analysis: on the X-chromosome,
monomorphic, MAF < 2%, "call"-rate < 80% or deviated
from Hardy-Weinberg equilibrium at p < .001. Thus our
illustration is based on 102,334 and 95,221 post-filtering
SNPs in the black and white samples, respectively. See
Turner et al. [14] for a detailed description of the study
design and procedures taken to preprocess the Affymetrix
data. We derived loci-sets from 1412 generic and human-
specific functional sets of the publicly accessible Molecu-
lar Signature Database (MSigDB version 2.1 [15]). Only
SNPs located within 5000 base pairs upstream or down-
stream of a gene (defined using Affymetrix build na24
annotation files) were considered relevant to that gene.
Table 5 reports the most significant loci-sets from apply-
ing GLOSSI on all non-empty loci-sets (1405 for Whites
and 1404 for Blacks). q-values [16,17] were calculated to
guard against the cost of multiple hypothesis testing. This
provides an expected proportion of false positives among
loci-sets with unadjusted p-values at least as extreme as
the current set of interest.

GLOSSI reported 26 loci-set with a q-value lower than 5%
in Whites but no loci-set passed this cutoff in Blacks
(Table 5). The size of the 26 loci-sets ranges from 16 to
300 SNPs. This result is quite encouraging since single
SNP methods previously applied to the same datasets
could not detect any SNP that was statistically signifi-
cantly associated with DBP response to hydrochlorothi-
azide (unpublished results). Among the top ranking loci-
sets of the populations, two were derived from the same
gene expression experiment of kidney transplant biopsies
[18]. These loci-sets are 'upregulated in acute rejection
transplanted kidney biopsies' (MsigDB ID = c2:834, p-
value = 0.0003) for non-Hispanic Caucasians and 'upreg-
ulated in well functioning transplanted kidney biopsies'
(MsigDB ID = c2:836, p-value = 0.0009) for African Amer-
icans. Although biological interpretation of the results is
not straightforward, one can hypothesize that genes in
those two loci-sets are related to kidney pathophysiology
or normal physiology and, therefore, may be relevant to
sodium excretion, blood pressure regulation, and DBP
response to diuretic therapy. One could also speculate
that the different physiological mechanisms indexed by
these two loci-sets are consistent with known differences
in diuretic response between Black and White individuals
with hypertension.

Other loci-sets are less informative and harder to inter-
pret. Inspection of their names suggests that several of the

Histogram of p-values acquired under the null hypothesis (Scenario 0) based on 1000 simulated data sets of 200 cases and 200 controlsFigure 1
Histogram of p-values acquired under the null 
hypothesis (Scenario 0) based on 1000 simulated 
data sets of 200 cases and 200 controls. The dashed line 
is the expected theoretical height of a bar if no SNP in the 
loci-set was related to the case-control labels.
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Statistical power estimated using 200 cases and 200 controls across a range of experimental settingsFigure 2
Statistical power estimated using 200 cases and 200 controls across a range of experimental settings. x-y coor-
dinates of the numbers within the plot represent number of causal SNPs and power respectively for individual simulated exam-
ples. Relative risks (RR) are denoted by the numbers themselves. Cases with the same RR value and MAF of 0.25 are linked 
using solid lines while those having MAF of 0.05 are joined by dashed lines. The lines are colored grey if causal SNPs were not 
genotyped; black otherwise.
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significant loci-sets in Whites could conceivably be
involved in regulation of antihypertensive drug response.
These include 'growth hormone signaling pathway'
(MsigDB ID = c2:198), 'calcium signaling by HBx of Hep-
atitis B virus' (MsigDB ID = c2:569), and 'insulin signaling
pathway' (MsigDB ID = c2:229). The relationship of some
other loci-sets with DBP response to hydrochlorothiazide

requires a more speculative interpretation. For example, a
few of them appear to be related to cell growth regulation
but with no obvious relationship to blood pressure. How-
ever, a possible connection could exist through mitogenic
hormones that are often vasoconstrictive and antinatriu-
retic and, therefore, would elevate blood pressure (eg,
angiotensin II). Conversely, vasodilating and natriuretic

Plot of power versus sample sizeFigure 3
Plot of power versus sample size. Only scenarios surpassing 80% power in the case of 2000 samples are illustrated, except 
for Scenarios 20 and 21 where their curves closely resemble those from Scenarios 14 and 15. Integers within the plot denote 
the scenario number (see Table 1).
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hormones that lower blood pressure are often anti-
mitogenic (eg, atrial natriuretic peptide).

Conclusion
The GLOSSI methodology for scoring loci-sets (a priori
defined groups of SNPs) overcomes limitations of com-
monly-used single SNP approaches. The origin of a loci-
set facilitates the interpretation of statistical outputs, pro-
viding a biological understanding of the mechanisms that
underlie diseases or other phenotypes of interest. In con-
trast to the approach of Wang et al. [3], the proposed pro-
cedure is parametric: it assumes that p-values from
individual SNPs follow a standard uniform distribution
under the null hypothesis of no association and infers sta-
tistical relevance of each loci-set against a χ2 distribution.
Consequently it has the advantage of computational
speed, demands measurements only of SNPs within the
query loci-set, and imposes no constraint on the size of
the set. Although we only focus on binary phenotypes in
this communication, the technique is general and equally
applicable to other kinds of outcomes or any types of
genome-scale data. In particular, the locus-specific p-val-
ues could be generated by statistical methods equipped
with the ability to control for the presence of covariates
(eg age, gender, etc). Appropriate adjustment for addi-
tional covariates would allow more accurate estimation of

the true genotype-phenotype effect. The performance of
the proposed method was evaluated by using computer
simulated data as well as data from an antihypertensive
pharmacogenomic study. In the simulation study,
GLOSSI yielded the anticipated type-I error rate when no
SNP in the loci-set was related to the binary outcome.
Also, it demonstrated sufficiently high power for detecting
loci-sets in which a fair number of SNPs (< 10%) had
moderate to large effect sizes and intermediate MAF val-
ues. In the real data example, the proposed method
appears to have been able to identify novel loci-sets not
previously known or suspected to be involved in blood
pressure regulation or antihypertensive drug response.

The lack of firm biological interpretation in the antihyper-
tensive response example underlines one of the limita-
tions of our method. Although GLOSSI is capable of
detecting relevant loci-sets as demonstrated in the simula-
tion experiment, its usefulness depends directly on the
definition and availability of loci-sets when applying it to
biological data. The currently available functionally anno-
tated loci-sets are biased toward groups of genes involved
in cancers since most of them were derived from such dis-
ease studies but very few of them focus on blood pressure
or kidney-related investigations. Undoubtedly, more
annotated and curated loci-sets will be available over

Table 3: Estimated type I error rates for the modified KS statistic

Type of permutation Relative size of genes: out/in loci-set Proportion of p-value < 0.05 95% CI

Phenotype 50% 0.052 (0.038,0.066)
100% 0.053 (0.039,0.067)
200% 0.051 (0.037,0.065)

Gene 50% 0.27 (0.24,0.29)
100% 0.046 (0.033,0.059)
200% 0.004 (0,0.008)

Table 4: Power of the modified KS statistic when two genes in the reference set consist of a causal SNP

Number of genes outside of loci-set Relative size of genes: out/in loci-set Proportion of p-value < 0.05

Scenario 17 Scenario 18

50% 0.464 0.842
176 100% 0.581 0.854

200% 0.684 0.860

50% 0.371 0.804
88 100% 0.495 0.829

200% 0.629 0.854

50% 0.145 0.683
44 100% 0.187 0.732

200% 0.161 0.773
Page 8 of 10
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time, which in turn will increase the applicability of
GLOSSI for a given disease phenotype. The definition of a
loci-set itself can also be challenged. The current assign-
ment of SNPs to a gene, according to fixed physical dis-
tance boundaries from that gene, might not be optimal,
not even in principle, let alone given the uncertainty in
determining the appropriate fixed distance.

It must be stressed that GLOSSI only accounts for the
additive, independent effect of individual SNPs and,
therefore, ignores possible biological interactions that
might exist. The joint effect of SNPs within a loci-set can
be captured using multivariate methods [19-21]. How-
ever, a fair comparison of multivariate models derived
from various loci-sets is hard to achieve since it demands
sample label permutation testing. More specifically, the
statistical model needs to be rebuilt for every loci-set in
each permutation, which quickly becomes impractical as
the numbers of loci-sets and permutations increase. Other
complications that might arise during the application of
multivariate analysis include overfitting and model insta-
bility. To balance the need for joint effects modeling with

computational time effectiveness, one can envision devel-
oping a hierarchical approach that first uses GLOSSI for
rapid identification of significant loci-sets followed by
more extensive multivariate modeling. This approach is
currently being investigated in our group.

Methods
Cochran-Armitage trend test
For the jth locus, the trend test statistic can be written as:

where

T
n n p N N

p p N N N N N N I
j Jj = + − +

− + +
=1 2 2 1 2 2

1 0 1 1 2 4 0 2
1

( )
( )( ) /

, , , ,…

p
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∑
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Table 5: Loci-sets with unadjusted p-value no greater than 0.1% in the antihypertensive response example

Loci-set MsigDB ID No. SNP No. relevant gene p-value q-value

Non-Hispanic white
TPO signaling pathway c2:338 48 10 0.0001 0.035
Erk1/Erk2 Mapk signaling pathway c2:178 74 16 0.0001 0.035
Sprouty regulation of tyrosine kinase signals c2:316 36 10 0.0001 0.035
Multiple antiapoptotic pathways from IGF-1R signaling lead to bad 
phosphorylation

c2:214 24 8 0.0002 0.035

PTEN pathway c2:557 30 8 0.0002 0.035
Transcription factor CREB and its extracellular signals c2:152 83 16 0.0002 0.035
Growth hormone signaling pathway c2:198 50 11 0.0002 0.035
PTEN dependent cell cycle arrest and apoptosis c2:292 24 8 0.0003 0.035
Upregulated in acute rejection transplanted kidney biopsies c2:834 132 25 0.0003 0.035
IL 3 signaling pathway c2:223 18 6 0.0003 0.035
Trka receptor signaling pathway c2:339 41 5 0.0003 0.035
IL-2 receptor beta chain in T cell activation c2:222 40 11 0.0004 0.035
B cell antigen receptor c2:569 49 18 0.0004 0.035
IL 4 receptor signaling in B lymphocytes c2:563 39 12 0.0004 0.035
Calcium signaling by HBx of Hepatitis B virus c2:569 16 4 0.0005 0.035
Glycogen processing c2:602 39 8 0.0005 0.035
IGF-1 signaling pathway c2:213 31 9 0.0005 0.035
Down regulated following Apc loss c2:1048 156 32 0.0005 0.035
Liver selective c2:979 300 104 0.0005 0.035
TrkA receptor c2:559 19 6 0.0006 0.035
Inhibition of cellular proliferation by gleevec c2:199 37 10 0.0006 0.035
IL 6 signaling pathway c2:226 25 8 0.0006 0.035
Insulin signaling pathway c2:229 26 8 0.0007 0.039
Upregulated in fibroblasts following infection with human cytomegalovirus c2:1269 131 24 0.0008 0.040
Down regulated by both curcumin and sulindac in SW260 colon carcinoma cells c2:1412 50 10 0.0010 0.047
Upregulated by TPA in resistant HL-525 cells c2:1679 90 19 0.0010 0.048

African American
Upregulated by UV-B light in epidermal keratinocytes c2:1717 55 12 0.0004 0.56
Upregulated in well functioning transplanted kidney biopsies c2:836 1347 285 0.0009 0.63
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with δ(.) signifies an indicator function taking value one
if its argument is correct and zero otherwise. The null
hypothesis of the test is no linear trend in the proportion
of group memberships at each of the three SNP genotypes,
i.e. the proportion of 0/1 class distinction is the same for
all levels. The statistic follows a standard normal distribu-
tion under this null hypothesis. Hence the evidence of
association (p-value) between yi and sij can be inferred by
comparing Tj

2 to a χ2 distribution with 1 degree of free-
dom, i.e. this will be a two-sided test.

Estimating covariance matrix by permutation
The existence of local LD implies that tj, j = 1,..., J, are not
independent. Their covariance matrix, Ω, under the null
hypothesis can be estimated through the use of permuta-
tion as follows. Assume that the phenotype measure-
ments are independently and identically distributed. The
subscript of y1, y2,..., yI are first shuffled reiteratively. One
could generate either all I! permissible permutations or
just a random sample of them. Then recalculate tj for all
loci over every permuted datasets. Each of the resulting set
of t-values represents a joint observation from the sam-
pling distribution of t = (tj,..., tj)T that is consistent with the
null hypothesis. Given enough permutations, the empiri-
cal covariance of the t-values from the above should
approximate Ω. Note that because not all SNPs are
assigned to loci-sets, it is more computationally efficient
to perform the calculations only on the relevant loci.
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