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Abstract

Background: We previously developed EFICAz, an enzyme function inference approach that
combines predictions from non-completely overlapping component methods. Two of the four
components in the original EFICAz are based on the detection of functionally discriminating
residues (FDRs). FDRs distinguish between member of an enzyme family that are homofunctional
(classified under the EC number of interest) or heterofunctional (annotated with another EC
number or lacking enzymatic activity). Each of the two FDR-based components is associated to one
of two specific kinds of enzyme families. EFICAz exhibits high precision performance, except when
the maximal test to training sequence identity (MTTSI) is lower than 30%. To improve EFICAZ's
performance in this regime, we: i) increased the number of predictive components and ii) took
advantage of consensual information from the different components to make the final EC number
assignment.

Results: We have developed two new EFICAz components, analogs to the two FDR-based
components, where the discrimination between homo and heterofunctional members is based on
the evaluation, via Support Vector Machine models, of all the aligned positions between the query
sequence and the multiple sequence alignments associated to the enzyme families. Benchmark
results indicate that: i) the new SVM-based components outperform their FDR-based counterparts,
and ii) both SVM-based and FDR-based components generate unique predictions. We developed
classification tree models to optimally combine the results from the six EFICAz components into
a final EC number prediction. The new implementation of our approach, EFICAz?2, exhibits a highly
improved prediction precision at MTTSI < 30% compared to the original EFICAz, with only a slight
decrease in prediction recall. A comparative analysis of enzyme function annotation of the human
proteome by EFICAz2 and KEGG shows that: i) when both sources make EC number assignments
for the same protein sequence, the assignments tend to be consistent and ii) EFICAz2 generates
considerably more unique assignments than KEGG.

Conclusion: Performance benchmarks and the comparison with KEGG demonstrate that
EFICAZ2 is a powerful and precise tool for enzyme function annotation, with multiple applications
in genome analysis and metabolic pathway reconstruction. The EFICAz2 web service is available at:
http://cssb.biology.gatech.edu/skolnick/webservice/EFICAz2/index.html
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Background

From a purely biochemical point of view, enzymes consti-
tute the most important group of proteins. They are versa-
tile, catalyzing most chemical reactions involved in the
metabolism of living organisms, and abundant, represent-
ing approximately 15% to 35% of a given proteome [1,2].
Enzymes are classified according to the Enzyme Commis-
sion (EC) system, a hierarchical system that assigns a
unique four-field number to each enzymatic activity [3].
The first field of an EC number indicates the general class
of catalyzed reaction. The second and third fields depend
on different criteria related to the chemical features of the
substrate and the product of the reaction, and the fourth
field is a sequential number without any special meaning.
A comprehensive and detailed enzyme function annota-
tion of the available genomes is necessary not only to
increase our understanding of the biochemistry of living
organisms, but also to gain more insight into the evolu-
tionary processes that originated the diversity of enzymes
currently found in nature [4]. The precise assignment of
EC numbers to catalytic proteins is a vital requirement for
the correct reconstruction of metabolic pathways [5].
Moreover, reconstructed metabolic pathways play a key
role in many biomedical approaches [6-9], but the success
of these applications strongly depends of the quality of
the functional annotations of the enzymes comprising
such pathways [10].

Despite the great importance of precise EC number assign-
ments, enzyme functions as well as other molecular, cel-
lular or physiological functions, are often inferred from
sequence similarity to previously characterized proteins
[11]. In this annotation modality, commonly known as
"prediction by homology transfer", the (incorrect)
assumption is that all homologs have the same function
[12]. This functional annotation strategy is negatively
affected by at least two factors. The first factor is the func-
tional diversity of highly similar sequences observed in
many protein families [13]. For example, to transfer
detailed enzyme function, given by four-field EC num-
bers, with an average precision of at least 90%, a sequence
identity threshold of 60% is required [14]. However, the
functional annotation of many genomes has been carried
out employing much lower thresholds [15]. The second
factor is the structural and functional modularity of pro-
teins [16]; thus, when the modular nature of proteins is
disregarded, functional annotations based on best data-
base hits are often erroneous [17]. Mainly due to these fac-
tors, sequence similarity-based annotation strategies
result in a high number of errors [18,19] that often prop-
agate in public databases [20]. For instance, it has been
estimated that functional assignments inferred by
sequence similarity in the Gene Ontology sequence data-
base (GOSeqLite), have an estimated error rate of 49%
[21]. Other approaches for enzyme function prediction
do not directly depend on the level of similarity between
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sequences. For example, several methods are based on the
identification of specific structural patterns associated
with functional sites [22-24], but they are limited by the
requirement that the query protein's structure be solved.
Yet other approaches are based on the analysis of proper-
ties of proteins such as tissue specificity, subcellular loca-
tion and phylogenetic information [25], or genome
context and other functional association evidence [26].
However, these methods also suffer from the lack of con-
sistent and comprehensive database annotations related
to this kind of sequence-independent features.

To address the limitations of transfer of enzyme function
by sequence similarity, we developed EFICAz (Enzyme
Function Inference by a Combined Approach), an engine
for large-scale high-precision enzyme function inference
[27]. The original implementation of EFICAz combines
the predictions of four independent methods: (C1)
CHIEFc family based FDR recognition: detection of
Functionally Discriminating Residues (FDRs) in enzyme
families obtained by a Conservation-controlled HMM
Iterative procedure for Enzyme Family classification
(CHIEEc), (C2) Multiple Pfam family based FDR recog-
nition: detection of FDRs in combinations of Pfam fami-
lies that concurrently detect a particular enzyme function,
(C3) CHIEFc family specific SIT evaluation: pairwise
sequence comparison using a CHIEFc family specific
Sequence Identity Threshold (SIT), and (C4) High specif-
icity multiple PROSITE pattern recognition: detection of
multiple PROSITE patterns that, taken all together, are
specifically associated to a particular enzyme function.
Since each predictive component was designed to be
highly precise and predictions made by any pair of com-
ponents do not completely overlap (including C1 and C2,
which only differ in the way the protein families are
defined), at the final stage, EFICAz makes a particular EC
number assignment when one or more of the four compo-
nent methods predict a given EC number. Since EFICAz
and its components have been fully described before [27],
here, we briefly introduce the basics of the predictive com-
ponents based on the recognition of FDRs and highlight
possible improvements.

A CHIEFc or Pfam enzyme family E is defined by a multi-
ple alignment of sequences evolutionary related to a seed
group of sequences sharing a particular EC number ECp.
FDRs are residues in specific positions of the alignment,
selected via an Evolutionary Footprinting method [27] for
their ability to discriminate between homo-functional
and hetero-functional family members. Homo- and het-
ero-functional family members are defined as sequences
annotated or not annotated with the EC number EC,
respectively. To apply an FDR recognition method, we
first determine if a query sequence q is a member of an
enzyme family E by evaluating a Hidden Markov Model
derived from E. If so, we check if q exhibits conservation
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of the FDRs associated with E. When both conditions are
fulfilled, we predict that q is a homo-functional member
of E and assign the EC number EC, to the query sequence
q. A figure illustrating the concept of FDRs can be found
in Additional file 1: Figure S1. Example of Functionally
Discriminating Residues (FDRs). A potential pitfall of the
FDR recognition methods is that if the number of FDRs
for a given enzyme family is too small, it can be difficult
to achieve high prediction precision, because the match-
ing of a very small number of residues in an alignment is
more likely to occur by chance. Conversely, if the number
of FDRs is too large, the prediction recall might suffer,
because the matching of a large number of residues in an
alignment imposes a very restrictive condition. In princi-
ple, these issues could be addressed by techniques more
advanced than FDR matching in terms of their ability to
detect the signals characteristic of homo-functional
enzyme family members in the query sequence. In this
work, we describe the development of a method for
enzyme function inference that is based on this premise.
We employ a Support Vector Machine (SVM) learning
approach [28] that evaluates all the aligned positions
between a query sequence and the multiple sequence
alignment associated to a given Pfam or CHIEFc enzyme
family. We term these components: (C5) CHIEFc family
based SVM evaluation and (C6) Multiple Pfam family
based SVM evaluation, and our benchmarks show that
they yield higher predictive performance than their coun-
terparts based on FDR recognition.

As mentioned above, in the previous implementation of
EFICAz, all EC numbers predicted by the four original
component methods were been reported, whether they
agreed with each other or not. Here, based on estimations
of the method's performance that are more realistic than
those published before [1,27], we show that such a strat-
egy tends to negatively affect prediction precision, espe-
cially at low levels of maximal test to training sequence
identity (MTTSI, formally defined in the Methods sec-
tion). To address this issue, we have developed a tree-
based classification algorithm [29] that applies a set of
hierarchical rules to generate an EC number assignment
from the list of the component methods that predict such
EC number and the query sequence's MTTSI. We have
included the two additional SVM-based component
methods as well as the classification tree algorithm in the
current implementation of EFICAz, that we term EFICAZz2.
According to the results of our performance benchmarks,
EFICAZz? is dramatically more precise than EFICAz at low
MTTSI, while it shows only a modest decrease in recall in
this MTTSI regime.

The rest of this paper is organized as follows: in the Results
and Discussion section, we describe the development and
benchmarking of the SVM-based enzyme function infer-
ence method and the classification tree algorithm to gen-
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erate the final EC number prediction, and present a
comparative study of enzyme function annotations of the
human proteome by EFICAz2 and KEGG [30]. In the Con-
clusions section, we summarize the present work, stress its
significance, and discuss its limitations. Finally, in the
Methods section, we describe the data sources and proce-
dures for training and benchmarking of EFICAz2, provide
details about the statistical analyses and technical aspects
of the generation of SVM and classification tree models,
and describe the data sources for the comparative analysis
of enzyme function annotation of the human proteome.

Results and Discussion

Novel EFICAz components based on SVM

Two of the four component methods in the original
implementation of EFICAz are based on the identification
of homo-functional members of a given CHIEFc (C1) or
Multiple Pfam enzyme family (C2), i.e., members whose
enzymatic activity coincides with that of the seed enzymes
that originated the family. The criterion followed by these
methods to consider a query sequence as homo-func-
tional (and therefore make the corresponding EC assign-
ment) is the matching of FDRs. Since FDRs constitute a
subset of all residues in the multiple sequence alignment
associated to an enzyme family, we reasoned that an algo-
rithm operating over all the aligned positions (i.e., with
access to all possible information) could achieve higher
discriminatory power, at least in certain cases. This situa-
tion is analogous to that of patterns and profiles for the
identification of protein families and domains in the
PROSITE database [31].

Initially, PROSITE consisted of patterns alone and was
later enriched by the inclusion of profiles. Although, in
general, PROSITE profiles exhibit increased sensitivity
with respect to patterns, profiles and patterns comple-
ment each other, i.e. both types of descriptors offer
unique advantages in particular cases [32].

Our implementation of the profile-like approach to the
recognition of homo-functional sequences is based on
SVM models associated to each enzyme family. The basic
idea of the SVM algorithm is mapping the data from an
input space into a high-dimensional feature space via a
kernel function, and finding a hyper-plane to separate
positive and negative samples in the feature space [28].
The training of the SVM models is carried out using the
whole set of aligned residues in the corresponding multi-
ple sequence alignment, which include both positives or
homo-functional sequences and negatives or hetero-func-
tional sequences (see Methods section, "Support vector
machine models"). The new component methods were
termed: (C5) CHIEFc family based SVM evaluation and
(C6) Multiple Pfam family based SVM evaluation. In
order to compare the performance of the new SVM-based
components to that of the FDR-based components, we
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carried out extensive benchmarking. First, we trained the
two FDR-based (C1 and C2) and the two SVM-based com-
ponents (C5 and C6) using previous releases of the corre-
sponding databases; these specific versions of the
component methods were later included in EFICAz?2 ver-
sion 10, based on the Release 10 of UniProt [33] (see
Methods section, "Datasets for the training of different
EFICAz2versions"). Then, we selected test sequences from
all of the well annotated, newly added Swiss-Prot
sequences in UniProt Release 12.6 that were not included
in the Release 10. Finally, for each test sequence, we col-
lected the enzyme function predicted by each of the four
components under evaluation and calculated the average
precision and recall (see Methods section, "Benchmarking
of EFICAz2 version 10"). The statistical significance of the
differences in method's performance was evaluated as
described in "Statistical analyses”, in the Methods section.

Figure 1 shows a comparison of the performance of the
FDR-based (C1) and the SVM-based approaches (C5)
applied to three-field EC number (Figure 1AB) and four-
field EC number CHIEFc enzyme families (Figure 1CD).
In the case of three-field EC number classifiers, the SVM-
based method achieves significantly higher average
recall at MTTSI lower than 30% and higher than 80%
(Figure 1A), but shows no significant difference in aver-
age precision (Figure 1B). The SVM-based implementa-
tion for four-field EC number classifiers also shows an
advantage in terms of average recall at MTTSI higher than
80% (Figure 1C), in addition to a significant increase of
average precision at MTTSI between 30% and 40%. Fig-
ure 2 shows a comparison of the performances of the
FDR-based (C2) and the SVM-based approaches (C6)
applied to three-field EC number (Figure 2AB) and four-
field EC number Multiple Pfam enzyme families (Figure
2CD). For three-field EC number classifiers, the SVM-
based method exhibits significantly higher average recall
in the 40% to 50% and higher than 80% MTTSI intervals
(Figure 2A), and significantly higher average precision in
the 30% to 40% MTTSI interval (Figure 2B). For four-
field EC number classifiers, the improvements in average
recall (Figure 2C) and precision (Figure 2D) of the SVM-
based approach applied to Multiple Pfam families occur
in the same MTTSI intervals as the improvements
observed when this approach is applied to CHIEFc fam-
ilies (Figure 1C, D). In summary, in all the cases where
the differences are statistically significant, the SVM-based
methods show improved performance with respect to
the corresponding FDR-based implementations. In fact,
with only a few exceptions, the SVM-based methods
exhibit the same or better average recall and precision
than the FDR-based ones, although in several MTTSI
intervals the current benchmark does not contain
enough test sequences to make the differences between
methods statistically significant.
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Since EFICAz works by combining the predictions of dif-
ferent non-completely overlapping methods, even if the
FDR- and the SVM-based approaches had identical aver-
age performance, they could still be both useful, provided
that each method can generate its own set of unique pre-
dictions. Figure 3 shows the fraction of test sequences cor-
rectly predicted by either approach, both approaches, or
none of them, when implemented on three-field or four-
field EC number classifiers based on Pfam or CHIEFc
enzyme families. Although the overlap of the approaches
is high, each method provides a set of unique predictions,
with a higher contribution from the SVM-approach for
three-field EC number classifiers (10.0% and 6.3% for
Multiple Pfam and CHIEFc enzyme families, respec-
tively), and similar contributions from each approach for
four-field EC number classifiers. Thus, we decided to keep
the FDR-based predicted components and incorporate the
SVM-based components: (C5) CHIEFc family based SVM
evaluation and (C6) Multiple Pfam family based SVM
evaluation in the new version of EFICAz.

Combination rules based on classification trees

The original version of EFICAz adopted the simple strat-
egy of predicting a given EC number when at least one of
its four component did [27]. Figure 4 shows the result of
a benchmark that compares the performance of three dif-
ferent implementations of EFICAz (version 10), in terms
of average recall (Figure 4AC) and average precision (Fig-
ure 4BD), distinguishing between two levels of detail of
enzyme function given by three-field (Figure 4AB) or four-
field EC numbers (Figure 4CD). As opposed to the results
from previous benchmarks [1,27], the original EFICAz
implementation shows poor average precision at MTTSI <
30% (Figure 4BD, green columns). The discrepancy arises
because in this work we employed a more rigorous way to
estimate the precision of our method (see Methods sec-
tion, "Benchmarking of EFICAz2 version 10"). We ana-
lyzed the effect of adding the two SVM-based components
to EFICAz, bringing the total number of component
methods to six (Figure 4, blue columns). As expected, a
general pattern of increased recall (Figure 4AC) and
decreased precision (Figure 4BD) with respect to the orig-
inal four-component EFICAz can be observed, although
only for three-field EC number classifiers at MTTSI < 30%
was the decrease in precision statistically significant.

In order to improve the precision of our approach, we
decided to investigate more efficient ways to integrate the
predictions generated by the six EFICAz component meth-
ods. We had demonstrated in our previous work that
increased precision can be achieved by requiring the con-
sensus of two or more components of EFICAz [27]. Here,
we decided to train decision tree models to find the opti-
mal way to take advantage of consensual information
from the different components. Decision trees are very

Page 4 of 15

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:107 http://www.biomedcentral.com/1471-2105/10/107

0.95 0.97 0.96
i 0.83 086 (g3 290 090 "5 088 4. 086 +/
A 1.0- Three-field 073 o2 078y O e+ O e 046 4 016
. EC numbers i 034 0+:/3-5 033 32 029 0.25 0.27 _
0.8 0.37 .
= 0.44
@ 0.64 +/-
i 0.31 /
o)
n'e
62 62l 63 63 @ 71 71 65 65 W 83 383 W 107 107

099 (gg 098 097 0.99 1.001.00 0.99 1.00 1.00 1.00
091 098 7 TOT Ml al - H- H- 4L+ 4 4

B ., Three-field 081 +-  *° 005 17012 017006 0.020.02 0.050.01 0.01 0.1
' EC numbers H- 026 O
c 087 0.49
S o 0.43
‘o 0.6 0.43 +/-
© . 0.43
o)
—
o
51 4sfl 55 54l 56 s6 66 65l 61 2 | 77 81 102 106

0.92 0.93
083 083087 o084 ;. 087

C 1.0- Four-field 0.77 4. R +/-
' EC numbers ] - 099 0+é6 021 ooq 216
0.8 0.61 0.59 0.39 :
. +- 4/
= 0.46 0.41
i 0.36
®© 06 0.28 -
R I
0.2
0.0 64 64 68 68 W 99 90 WMo 96 116 116 § 111 111 |l 162 162 W 280 280
_ 097 098 1.00 1.00 1.00 0.99 1.00 1.00 1.00
' 095 091 07 095 0% a4 M- W 4l 4 4 4
D ,,, Fourdfield 0;5/3_3 048 * 017 oo2 016 014 0.00 0.000.03 0.08 0.00 0.00 0.06
' EC numbers 0.29
0.37
< 0.8
-% 0.6- 0.35
S +- 0.24
@ 0.4- 0.47 +1-
j -
o 0.41
0.2+
0.0 53 42 W77 7280 78 @ 97 98 [ 94 98 W 142 140 | 253 264
0 30 40 50 60 70 80 90 100
MTTSI (%) B CHIEFC.,, B CHIEFC,,,
Figure |

Prediction performance of the FDR-based and SVM-based approaches applied to Multiple Pfam enzyme fami-
lies. For three-field (A, B) or four-field EC number classifiers (C, D), the average recall (A, C) and average precision (B, D) of
the FDR-based (blue columns) and SVM-based (red columns) approaches is plotted at different intervals of maximal test to
training sequence identity (MTTSI). The average of each performance indicator is done over all the EC numbers defined in the
specified MTTSl interval (numbers at the bottom of each column). Details about the benchmark can be found in "Benchmarking
of EFICAZ2 version 10", in the Methods section. Statistically significant differences in performance are indicated by black lines
under the corresponding columns (see "Statistical analyses", in the Methods section). Values on top of each column represent
average +/- standard deviation.
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Prediction performance of the FDR-based and SVM-based approaches applied to CHIEFc enzyme families. For
three-field (A, B) or four-field EC number classifiers (C, D), the average recall (A, C) and average precision (B, D) of the FDR-
based (blue columns) and SVM-based (red columns) approaches is plotted at different intervals of maximal test to training
sequence identity (MTTSI). The average of each performance indicator is done over all the EC numbers defined in the specified
MTTSI interval (numbers at the bottom of each column). Details about the benchmark can be found in "Benchmarking of
EFICAz2 version 10", in the Methods section. Statistically significant differences in performance are indicated by black lines
under the corresponding columns (see "Statistical analyses", in the Methods section). Values on top of each column represent
average +/- standard deviation.
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Prediction overlap of FDR-based and SVM-based
methods. The fractions of test sequences (corresponding to
the benchmark described in "Benchmarking of EFICAz2 ver-
sion 10", in the Methods section) correctly predicted by
three or four-field EC number classifiers applied to Multiple
Pfam or CHIEFc enzyme families are represented. For combi-
nation of enzyme family and level of description of the classi-
fiers, we show the fraction corresponding to unique
predictions made by the FDR-based (blue) or SVM-based
method (green), and the fraction corresponding to predic-
tions made by both (orange) or none of the methods (yel-
low).

effective tools in machine learning that produce accurate,
highly interpretable predictions and have been success-
fully used in several computational biology and bioinfor-
matics applications [34], including enzyme function
prediction [25]. For our particular case, we sought deci-
sion trees able to output a binary outcome (whether a
given EC number is assigned or not to a protein
sequence), based on the prediction results of each compo-
nent. Decision trees that produce discrete outcomes are
called classification trees [29]. There are several possibili-
ties to consider regarding the level of generalization of the
classification trees, for example, whether or not they
depend on the specific EC number type. In principle, EC
number-specific classification trees could yield more accu-
rate predictions. However, since not all the EC number
types are represented in the set of test sequences, we opted
for an EC number-independent solution.

After the training procedure detailed in "Decision tree
learning model" in the Methods section, we obtained the
four classification trees shown in Figure 5, one for each
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combination of three or four-field EC number classifiers
and low (< 30%) or high (= 30%) MTTSI. Inspection of
the questions associated to the nodes of the classification
trees indicates that the SVM-based components are the
most informative ones, for example, CHIEFc family based
SVM evaluation plays a role in all four trees (Figure 5). The
version of our approach that employs these classification
trees to integrate the information from the six possible
component methods was termed EFICAz2.

We compared the performance of EFICAz? (Figure 4, red
columns) to that of the original EFICAz with four compo-
nents or the updated version with six components. Com-
pared to the original EFICAz, EFICAz? displays a
statistically significant decrease in average recall at MTTSI
< 30% (a difference in recall of 5% and 10% for three- and
four- field EC numbers, respectively, Figure 4AC) and at a
few other MTTSI intervals, although the difference in
recall is less than 5% in these latter cases. More impor-
tantly, EFICAz? shows a dramatic increase in average pre-
cision at MTTSI < 30% (a difference in precision of 25%
and 55% for three- and four- field EC numbers, respec-
tively, Figure 4BD). Similar tendencies, with average recall
increases and average precision decreases of higher mag-
nitude, can be observed when EFICAz? is compared to EFI-
CAz updated to six components. In summary, we first
shifted the precision-recall trade-off towards higher recall
and lower precision by adding the SVM-based compo-
nents to the original EFICAz implementation. Then, by
making more efficient use of consensus between predic-
tions from different components via classification tree
models, we achieved acceptable levels of average precision
at low MTTSI, with low impact on the average recall. The
EFICAZz?2 code is available upon request to academic and
non-profit users. In addition, we have made EFICAz2
available as a web service [35] that allows the submission
of query protein sequences and returns the output via
email. If an enzyme function inference is made, the out-
put consists of the four-field or three-field EC number pre-
diction/s, the predictive component/s that recognized the
EC number/s, the MTTSI interval associated to the query
sequence and the mean and standard deviation of the pre-
cision performance obtained from benchmarks.

EFICAZ2 exhibits an average precision of at least 90% for
MTTSI > 40% (Figure 4B, D), a non trivial achievement,
considering that to achieve this level of precision from a
sequence similarity criterion alone, MTTSI > 60% is
required [14]. Moreover, we significantly improved the
prediction precision at MTTSI < 30%, compared to the
original implementation of EFICAz. Nevertheless, the
recall in this regime still requires additional improvement
(average recall of 33% and 23% for three-field and four-
field EC numbers at MTTSI < 30%, respectively, Figure
4AC). One possibility to overcome this EFICAz?2's limita-
tion is to include methods that do not depend on
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Figure 4

Prediction performance of different EFICAz implementations. For three-field (A, B) or four-field EC number classifi-
ers (C, D), the average recall (A, C) and average precision (B, D) of the original EFICAz (green columns), EFICAz plus the new
SVM-based components (blue columns) and EFICAz2 (red columns) is plotted at different intervals of maximal test to training
sequence identity (MTTSI). The average of each performance indicator is done over all the EC numbers defined in the specified
MTTSI interval (numbers at the bottom of each column). Details about the benchmark can be found in "Benchmarking of
EFICAz2 version 10", in the Methods section. Statistically significant differences in performance are indicated by black lines
under the corresponding columns (see "Statistical analyses", in the Methods section). Values on top of each column represent
average +/- standard deviation.
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A Three-field EC, MTTSI<30% B Three-field EC, MTTSIZ30%

C Four-field EC, MTTSI<30%

no

no

PFon=1

D Four-field EC, MTTSI=30%

no

no PFFDR=0 and
(PF4=1 or Prst=1)

Figure 5

yes

Predictive models for EFICAz2 based on classification trees. Classification trees corresponding to three-field (A, B)
and four-field EC numbers (C, D) to integrate predictions from each of the six EFICAz2 components for protein sequences that
exhibit MTTSI < 30% (A, C) or MTTSI > 30% (B, D). CHpg = CHIEFc family based FDR recognition; PFzpg = Multiple Pfam
family based FDR recognition; CHg .+ = CHIEFc family specific SIT evaluation; Prst = High specificity multiple PROSITE pattern
recognition; CH,,,,, = CHIEFc family based SVM evaluation; PF,, = Multiple Pfam family based SVM evaluation.

sequence information. Some protein features that have
been used before with the purpose of enzyme function
prediction include protein- protein interaction [36], phy-
logenetic distribution, tissue specificity and subcellular
localization [25]. Although we will explore the possibility
of including non-sequence-dependent features of proteins
in future versions of EFICAz, its implementation may be
impaired by the low availability or inconsistency that this
kind of annotations exhibits in current databases.

Enzyme function annotation of the human proteome by
EFICAz?

We carried out an enzyme function reannotation of the
human proteome (24,305 protein sequences) using
EFICAz? version 13 (see Methods section, "Datasets for
the training of different EFICAz2 versions") and compared
our annotations with those available in a recent release of
KEGG (see Methods section, "Enzyme function annota-
tion of the human proteome"). We decided to use KEGG
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annotations rather than other sources to compare against
our EFICAz? predictions because of the emphasis that this
database puts on detailed EC number information, a fun-
damental requirement for the correct mapping of meta-
bolic pathways. Two different levels of detail of the
enzyme function assignment (given by three-field and
four-field EC numbers) were considered separately for the
analysis. Table 1 summarizes the results of the compari-
son. A single protein may have more than one enzymatic
activity; therefore, multiple EC numbers can be assigned
to the same protein. Where it is pertinent, both the
number of protein sequences and the number of annota-
tions (that can be higher than the number of sequences)
were reported.

http://www.biomedcentral.com/1471-2105/10/107

Table 1 show that, although both KEGG and EFICAz? pro-
vide unique annotations, the novel assignments made by
EFICAZz? significantly exceed those from KEGG. At the
level of detail of three-field EC numbers, there are 798
novel annotations by EFICAz2 corresponding to 790 pro-
teins versus 309 unique annotations for 281 proteins
from KEGG. Similarly, for four-field EC numbers, there
are 522 novel annotations for 483 proteins by EFICAz2
versus 338 unique annotations for 310 proteins from
KEGG. We analyzed the agreement between EFICAz2 and
KEGG assignments for the 2,626 sequences that were
annotated with a level of detail of at least one three-field
EC number by both sources. For a given annotated pro-
tein, we distinguished among three possibilities: i) full

Table I: Comparative enzyme function annotation of the human proteome(V)

Level of detail of the enzyme function assignment: Three-field EC numbers

Annotation source

EC numbers with less than

EFICAZ? predictions®?
Three-field EC numbers: 3,508/3,4160)

three fields(4: 20,889

EC numbers with less than
three fields): 21,398

20,608

EFICAZz2 novels: 798/790

Level of EC annotation agreement(®)

KEGG annotations(®) Annotation source  None Partial Full
Three-field EC numbers: KEGG novels: 309/281 EFICAZ2 18/18 138/67 2,554/2,541
2,954/2,907
KEGG 18/18 73/67
Level of detail of the enzyme function assignment: Four-field EC numbers
EFICAZ? predictions®?

Annotation source

EC numbers with less than

Four-field EC numbers: 2,850/2,645

four fields: 21,660

EC numbers with less than
four fields: 21,833

KEGG annotations()

Four-field EC numbers: 2,523/
2,472

21,350

KEGG novels: 338/310

EFICAz2 novels: 522/483

Level of EC annotation agreement(®)

Annotation source  None Partial Full
EFICAZ2 49/46  260/117  2,019/1,999
KEGG 46/46 120/117

(
@ Predictions made by EFICAz2 version 13.
(
(

4 Includes non-enzymes, considered as having zero-field EC numbers.

1) The source of the 24,305 human protein sequences is the KEGG Genes database Release 47.0+/06-26, of June 26, 2008.

3) Annotations obtained from the KEGG Brite database Release 47.0+/06-26, of June 26, 2008.

() Non-bolded font indicates number of annotations while bolded font refers to the number of annotated protein sequences (a single protein can
display more than one enzymatic activity, thus, multiple EC numbers can be assigned to the same protein sequence).

(6) Here, we compare the agreement between annotations from KEGG and EFICAZ2 that have the same level of detail, whether three-field or four-
field EC numbers. Three different levels of agreement are considered: 1) Full: all EC numbers assigned to the protein by KEGG and EFICAz2 are
identical, 2) Partial: at least one but not all the EC numbers assigned to the protein by KEGG and EFICAz2 agree, and 3) None: none of the EC

numbers assigned to the protein by KEGG and EFICAZ2 coincides.
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Table 2: Number of sequences in reference sets used for EFICAz2 training

Reference sequence set

EFICAz2 version |10 EFICAZ2 version |13

"non enzymes"

"enzymes" (all)

"enzymes" (three-field EC number)
"enzymes" (four-field EC number)

132.342 174,898
94,028 136,167
90,801 131,503
76,698 111,577

Table 3: Number of families and EC number types associated with different EFICAz2 predictive components

Type of EFICAz2 component

EFICAZz2 version 10

Three-field EC numbers

EFICAZz2 version 13

Four-field EC numbers

EFICAZz2 version 10 EFICAZz2 version |3

PFAM families 2294/202(H
CHIEFc families 2932/208
PROSITE patterns 807/102
All EFICAZz2 components 208

2294/201 2022/1987 2153/2069

2947/209 3548/2248 3607/2354

1949/128 527/228 1368/437
209 2248 2354

(1) Non-bolded font indicates number of families or patterns while bolded font refers to the number of different EC number types recognized by the

indicated category of EFICAZ2 predictive component.

agreement, where all the EC number/s assigned to the pro-
tein by EFICAz2 and KEGG coincide, ii) partial agreement,
where at least one but not all the EC numbers assigned to
the protein by these sources agree, and iii) no agreement,
where none of the EC numbers assigned to the protein by
these sources agree. For the 2,626 common sequences
annotated with three-field EC numbers, the level of full
agreement is 96.8%, while the level of partial agreement
or better is 99.3%. Similarly, for the 2,162 sequences
annotated with four-field EC numbers by both sources,

A\
A\

M Three-field EC numbers

(O] i
120 Four-field EC numbers

Number of enzym
B [} [0} 5\
T 2292

N
(=)
1

0_"“" 1110

LIS N B N B BN B B B

0 50 100 400 800
Number of test sequences per enzyme type

.- -
L T 7T

Figure 6

Distribution of the number of test sequences per
enzyme type. Distribution of 9,397 test enzyme sequences
into 145 types of three-field EC numbers (green columns)
and 6,996 test enzyme sequences into 614 types of four-field
EC numbers (red columns).

the full and at least partial agreement is 92.5% and 97.9%,
respectively. The matching of EC numbers is done at the
stated level of detail, i.e. when comparing three-field or
four-field EC numbers, only the first three fields or the full
four fields are considered, respectively.

The level of agreement between KEGG and EFICAz2 can
also be assessed on the basis of the total number of EC
number predictions by one or the other source, rather
than by the total number of annotated proteins. The
number of annotations and the number of proteins may
differ because a single protein may have more than one
enzymatic activity; therefore, more than one EC number
may be associated to it. In this case, we only distinguish
between agreement and lack of it. The number annota-
tions by EFICAz? and KEGG for the 2,626 sequences
annotated with three-field EC numbers by both sources is
2,710 and 2,645, respectively. Thus, the level of agree-
ment is 96.7% ([67+2,554]/2,710) and 99.1%
(]67+2,554]/2,645) when expressed in terms of the
number of EFICAz? and KEGG three-field EC number
annotations, respectively. The number of annotations by
EFICAz? and KEGG for the 2,162 sequences annotated
with four-field EC numbers by both sources is 2,328 and
2,185, respectively. Therefore, the level of agreement is
91.7% ([117+2,019]/2,328) and 97.8% ([117+2,019]/
2,185), when expressed in terms of the number of
EFICAZz? and KEGG four-field EC number annotations,
respectively.

This comparative analysis indicates that when both
sources make EC number assignments for the same pro-
tein sequence, there is a high chance that these assign-
ments are consistent. On the other hand, at the level of
detail of three-field EC numbers, EFICAz2 generates more
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than double the number of unique assignments (i.e.,
assignments for proteins annotated as non-enzymes by
the other compared source), while it provides more than
50% additional unique assignments when four-field EC
numbers are considered. The unique EC number assign-
ments made by EFICAz2 can be found in Additional file 2:
Novel enzyme function annotations of the human pro-
teome by EFICAz2.

Conclusion

In this work, we described, implemented and tested
EFICAz2, a new version of EFICAz [27], our automated
approach for enzyme function prediction, enhanced by
means of machine learning techniques. We increased the
number of EFICAz components from four to six by adding
two methods based on the evaluation of Pfam and
CHIEFc enzyme families by SVM classifiers. The SVM-
based components showed statistically significant per-
formance improvements compared to their counterpart
methods based on the detection of FDRs. We generated a
set of classification trees to integrate and take advantage of
the complementarity between the predictions from the six
component methods, and achieved a remarkable increase
in average precision at low MTTSI, with only moderate
impact on average recall. When we applied EFICAz? to the
enzyme function reannotation of the human proteome,
we found that for proteins annotated as enzymes by both
EFICAz2 and KEGG, the assigned EC numbers were highly
consistent. Moreover, the number of unique enzyme
assignments generated by EFICAZ? is significantly higher
than the unique enzyme annotations in KEGG. Thus, the
results of the performance benchmark and the compari-
son with KEGG, demonstrate that EFICAz2 is a powerful
and precise tool for enzyme function annotation, with
multiple applications in genome analysis and metabolic
pathway reconstruction.

Methods

Datasets for the training of different EFICAz2 versions

The training of EFICAz2 requires a source of protein
sequences with high quality functional annotations; for
this purpose, we employ the UniProt Knowledgebase
database (UniProt) [33]. From the UniProtKB/Swiss-Prot
component of UniProt (Swiss-Prot), we extract a set of
enzyme sequences and a set of non-enzyme sequences,
according to the criteria described in the original EFICAz
article [27]. These reference sets are employed for the
training of all the EFICAz2 predictive components. Table 2
shows the number of sequences included in the
"enzymes" and "non-enzymes" sets corresponding to ver-
sions 10 and 13 of EFICAz2, as well as the number of
sequences with three- and four-field EC number annota-
tions in the "enzymes" sets. To train EFICAz2 versions 10
and 13, we used Releases 10 (March 2007) and 13 (Febru-
ary 2008) of UniProt, respectively. For training of the pre-
dictive components "Multiple Pfam family based FDR

http://www.biomedcentral.com/1471-2105/10/107

recognition" and "Multiple Pfam family based SVM eval-
uation" of both EFICAz?2 versions, we used the Pfam data-
base [37] Release 22. Finally, for the training of the "High
specificity multiple PROSITE pattern recognition" compo-
nent of EFICAz? versions 10 and 13, we used the Releases
20.26 and 20.30 of the PROSITE database [31], respec-
tively. For EFICAz2 versions 10 and 13, Table 3 shows the
number of Pfam enzyme families, CHIEFc enzyme fami-
lies and PROSITE patterns as well as the number of differ-
ent three-field and four-field EC numbers associated to
them.

Benchmarking of EFICAz? version 10

To evaluate the effect of the modifications introduced into
EFICAz, we performed a benchmark using annotated
Swiss-Prot sequences that were not used for training
EFICAz? version 10. First, we generated (as described
above) "enzymes" and "non-enzymes" reference sets from
all the newly added Swiss-Prot sequences in UniProt
Release 12.6 that were not included in the Release 10 of
this database. The test sequences used to evaluate three-
field EC number prediction performance consist of all the
16,430 members of the "non-enzymes" set plus 9,397
members of the "enzymes" set annotated with at least one
of the 208 three-field EC number types recognized by
EFICAz? version 10. Similarly, the test sequences to evalu-
ate four-field EC number prediction performance include
the 16,430 non-enzymes plus 6,996 members of the
'enzymes" set annotated with at least one of the 2,248
four-field EC number types recognized by EFICAz2 version
10. Figure 6 shows the distribution of the number of test
sequences per enzyme type. Then, we compared the func-
tional annotations of each test sequence in UniProt 12.6
with our functional predictions using EFICAz2 version 10,
which is based on the Release 10 of UniProt.

For a given enzyme function f described by a three-field or
four-field EC number, we calculate: precision; = TP//
(TP+FPy), and recall; = TP/(TP; + FNy), where (i) TP,
(number of true positives) is the number of test sequences
for which the function f is assigned by both EFICAz2 and
UniProt 12.6, (ii) FP, (number of false positives) is the
number of test sequences for which the function f is
assigned by EFICAz? but not by UniProt 12.6, and (iii) FNg
(number of false negatives) is the number of test
sequences for which the function f is assigned by UniProt
12.6 but not by EFICAz2.

In UniProt, as well as and in most protein sequence data-
bases, the distribution of different EC classes is non-uni-
form, i.e. some enzyme functions are overrepresented
while others are underrepresented (see Figure 6). To
reduce the bias towards the most represented enzyme
functions, we evaluate precision and recall for each indi-
vidual enzyme function f, and then calculate average val-
ues. On the other hand, it is clear that test sequences with
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higher sequence identity to training enzymes are easier to
predict than those exhibiting lower sequence identity.
This correlation plus the fact that, in general, the sequence
identities of the test sequences to the training enzymes are
not uniformly distributed, introduces another potential
source of bias. To reduce this second type of bias, we eval-
uate EFICAz?'s performance at different levels of maximal
test to training sequence identity (MTTSI). We define
MTTSI as the maximal sequence identity between a given
test sequence whose predicted function is f and any train-
ing enzyme whose true function is f.

Given a MTTSI interval m and an enzyme function f, we
first select the test sequences whose EFICAz?2 predicted
function is f and whose MTTSI falls into the interval m.
Then, based on the selected test sequences, we calculate
the precision and recall of EFICAz? for enzyme function f
and MTSSI bin m. For each MTSSI bin, we calculate and
report the average precision and recall across all enzyme
functions for which these performance indicators are
defined (i.e., where (TP;+ FPy) > 0 for precision calcula-
tion and where (TP;+ FN/) > 0 for recall calculation). It has
to be mentioned that in previous benchmarks of EFICAz
[1,27], we calculated the average precision per MTTSI bin
only across the EC number types that were represented in
the test sequences. In this work, we decided to average the
performance of all possible EC number types, which
translates into a decreased average precision (because, by
definition, all the additional enzyme functions consid-
ered for the average will have zero true positives) but pro-
vides a more realistic estimation of our method's
performance.

In this work, we evaluated two more versions of EFICAz,
besides EFICAz2: i) the original implementation of EFI-
CAz where predictions from four component methods are
combined without integration by classification tree mod-
els, and ii) a version that combines the previous four com-
ponents and the two new SVM-based components, also
lacking the benefit of classification tree predictive models.
These versions only differ from EFICAz? in the number of
utilized component methods, or the way the predictions
from different components are combined. Thus, the pro-
cedures for training of the individual components
described above for EFICAz2 also apply to these two other
versions of EFICAz.

Statistical analyses

We performed two-tailed t-tests to determine the signifi-
cance of the differences in the average recall and precision
at specific MTTSI intervals observed between different
pairs of predictive methods. Our null hypothesis was that
there is no significant change in these performance indica-
tors (critical alpha level = 0.05). To evaluate differences in
average recall, we used correlated t-tests because the recall
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values from each of the two compared methods can be
matched according to their specific EC numbers. Con-
versely, to evaluate differences in average precision, we
used t-tests for unpaired data because the prediction pre-
cision values associated with each method are not defined
for the same set of EC numbers. In this case, assuming that
the random variables had different (heteroscedastic t-test)
or the same variance (homoscedastic t-test) yielded the
same results at the set critical alpha level of 0.05.

Support vector machine models

We built an SVM model for each particular Pfam and
CHIEFc enzyme family, whether the family is associated
to a three-field or to a four-field EC number. Each enzyme
family consists of a multiple sequence alignment of
homo- and hetero-functional members; the goal of each
SVM model is to discriminate between them. For classifi-
cation purposes, homo- and hetero-functional members
of an enzyme family are considered as positives and neg-
atives, respectively. To transform the aligned protein
sequences into a data matrix suitable for machine learn-
ing, a particular amino acid encoding scheme needs to be
selected. Several methods for amino acid encoding have
been proposed in the literature [38-40]. Here, we adopt an
encoding method where each amino acid is represented
by five highly interpretable continuous variables derived
from multivariate statistic analysis of 494 physicochemi-
cal attributes [39]. Thus, for training and evaluation of the
SVM models, each aligned position of a member sequence
is regarded as a five-dimensional vector, and a multiple
sequence alignment with M proteins and N aligned posi-
tions is converted to a data matrix with M samples and
N*5 input features. Therefore, a different SVM model is
associated to each enzyme family, each model having a
different number of features, depending on the number of
aligned positions. We implemented the SVM models
using the libSVM package [41] (kernel function = Radial
Basis Function (RBF), y = 1/k, where k is the number of
attributes in the input data, and C = 1).

Decision tree learning model

Decision trees are predictive models that classify data by
mapping features of the data items to inferences about
their target values, by means of a hierarchy of questions
about such features [29]. Decision trees can be imple-
mented as classification trees when the outcome is dis-
crete, or regression trees when the outcome is continuous
[29]. In this work, we have used classification trees to inte-
grate the predictions generated by each of the six EFICAz
component methods (C1 to C6) into a final, more precise
EC number prediction. The source for training and testing
of our classification tree predictive models is the dataset
described in "Benchmarking of EFICAz? version 10", in
the Methods section. Our training samples are (p, z) pairs,
where p denotes a protein sequence and z indicates its EC
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number. The features considered for the classification are
the prediction statuses of the six EFICAz components. We
encode the feature information for a given sample (p, z)
in a six dimensional binary vector. Thus, "1" in certain
dimension of the vector means that the corresponding
EFICAz component predicts that protein sequence p
exhibits the enzymatic activity associated to EC number z,
while "0" indicates the opposite. The outcome of the pre-
dictive model is a logic variable indicating whether or not
z is assigned to p.

We generated classification trees for two levels of enzyme
function description (three- and four-field EC numbers)
in two variants each, one for protein sequences with
MTTSI < 30% and the other for protein sequences with
MTTSI 2 30%. The 30% MTTSI threshold was empirically
determined and optimized to achieve a biologically useful
trade-off between the prediction performance of
sequences in or out of the "Twilight Zone" of function
prediction, as evaluated in our benchmarks. To create the
classification trees, we used the rpart package version 3.1~
41 from the statistical analysis tool R [42]. The fitting of
the models was done using the default parameters of the
rpart function, with the exception of the weights argument.
We opted for an EC number-dependent case weight equal
to the harmonic mean of 1 and 1/N, i.e. 2/(N+1), where
N is the number of training sequences that belong to a
given EC number. The rationale of this weighting scheme
is that it is a halfway balance between two extreme situa-
tions: i) implementing a weight = 1/N and thus com-
pletely ignoring the natural biases in enzyme abundance
that might be partially reflected in databases (all EC
number types are treated equally, whether represented by
only one or by a large number of sequences), and ii) using
a weight > 1 for all cases (no weighting), with the risk of
excessively biasing the models towards the EC numbers
most abundantly represented in our training set of
sequences.

Enzyme function annotation of the human proteome

The sources for the human protein sequences and their
enzyme function annotations were the KEGG Genes and
Brite databases (Release 47.0+/06-26, of June 26, 2008),
respectively.
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